TOPIC 6. CERAMIC MATERIALS

• Introduction
• Structure of Ceramic Materials
• Glasses
 • Mechanical Properties of Ceramic Materials
 • Processing of Ceramic Materials
 • Examples of applications
INTRODUCTION

Inorganic Materials made from Metals and Non Metals united by ionic and/or covalent bonds

Can be: crystalline, amorphous or mixture of both

GENERAL PROPERTIES

- Hardness
- Britteness
- Electrical conductivity σ_{electric}
- Thermal conductivity σ_{thermal}
- Compression strength $R_{\text{compression}}$
- Melting point T_m
- Chemical Stability
GENERAL PROPERTIES

- **High Young’s Modulus and high melting points**
 - Strong bonds (covalent and/or ionic)

- **Limited electrical and thermal conductivity**
 - Absence of electronic cloud (directional bond)

- **Low thermal shock resistance**
 - Coefficients of thermal expansion and thermal conductivity are low

- **Refractory**
 - Stability at high temperature (NO CREEP)

- **Resistance to oxidation/corrosion**
 - Chemical stability
CLASSIFICATION

Glasses

Based on SiO$_2$ + additives for ↓ T_f

Traditional Ceramics (clay products)

- Porous ceramics (bricks, pottery, china)
- Compact ceramics (porcelain, earthware)
- Refractory ceramics

Clay: Al$_2$O$_3$·SiO$_2$·H$_2$O
Silica: SiO$_2$
Feldspar: K$_2$O·Al$_2$O$_3$·6SiO$_2$

Engineering Ceramics or Advanced Ceramics:

- Refractory ceramics (SiC, Al$_2$O$_3$, ZrO$_2$, BeO, MgO).
- Piezoelectrics and Ferroelectrics: BaTiO$_3$, SrTiO$_3$
- Electro-optics: LiNbO$_3$
- Abrasive ceramics: nitrides and carbides Si$_3$N$_4$, SiC
- Molecular membranes
- Superconductive ceramics (YBa$_2$Cu$_3$O$_7$)
- Biomaterials: Hydroxyapatite

STRUCTURE

Ceramic Bonds

Pauling: $\% \text{ Ionic character} = 100 \cdot \left[1 - e^{-\frac{(X_A - X_B)^2}{4}} \right]$

Percentage of ionic and covalent character of the bond for some ceramic materials determines the CRystalline Structure

<table>
<thead>
<tr>
<th>Ceramic Material</th>
<th>Atoms in bond</th>
<th>$X_A - X_B$</th>
<th>% Ionic Character</th>
<th>% Covalent Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>Mg—O</td>
<td>2,3</td>
<td>73</td>
<td>27</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>Al—O</td>
<td>2,0</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Si—O</td>
<td>1,7</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>Si—N</td>
<td>1,2</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>SiC</td>
<td>Si—C</td>
<td>0,7</td>
<td>11</td>
<td>89</td>
</tr>
</tbody>
</table>
STRUCTURE

T2 STRUCTURES:

- Ions packing
- Electroneutrality of ionic ceramics
- Crystalline type structures
Ionic structure: packing of anions with cations in interstitials

Sizes $C^+ A^- \Rightarrow r_{\text{cation}} < r_{\text{anion}}$

Electroneutrality

Coordination Index (By increasing C.I \Rightarrow increase stability)

Sharing of polyhedral (sharing vertices instead of edges or faces (increases the distance between cations))
PACKING OF IONS

The relation between radius when A⁻ and C⁺ are in contact. ⇒ Relation of radius is critical (minimum)

<table>
<thead>
<tr>
<th>Arrangement of A⁻ around C⁺ central and C.I.</th>
<th>Cation/anion Radius ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.I. 8 Corners of a cube</td>
<td>0.732-1.0</td>
</tr>
<tr>
<td>C.I. 6 Corners of an octahedron</td>
<td>0.414-0.732</td>
</tr>
<tr>
<td>C.I. 4 Corners of a tetrahedron</td>
<td>0.225-0.414</td>
</tr>
<tr>
<td>C.I. 3 Corners of a triangle</td>
<td>0.155-0.225</td>
</tr>
</tbody>
</table>
SIMPLE CUBIC STRUCTURE: CsCl

- Cl^-: cubic
- Cs^+: centre of the cube
- C.I.: 8

Ceramics that have this type of structure: **CsBr**, **TICl**, **TIBr**.

$$\frac{r_{\text{Cs}^+}}{r_{\text{Cl}^-}} = 0.94 > 0.732 \Rightarrow C.I. = 8 \Rightarrow \text{Cubic structure}$$
Ceramics that have this type of structure: MgO, CaO, FeO, NiO

- Cl\(^{-}\): FCC packing
- Na: all octahedral interstitials.
- 4 Na\(^{+}\) and 4 Cl\(^{-}\) per unit cell C.I.=6

\[\frac{r_{Na^{+}}}{r_{Cl^{-}}} = 0.56 > 0.414 \Rightarrow C.I. = 6 \Rightarrow \text{Octahedral coord.} \]
FCC STRUCTURE: Zn Blende-ZnS

- S^{2-}: FCC packing
- Zn^{2+}: $\frac{1}{2}$ tetrahedral interstitials
- 4 Zn^{2+} and 4 S^{2-} per unit cell

According to Pauling bond $Zn-S \sim 87\%$ covalent

Ceramics that have this type of structure: Typical semiconductors: CdS, $HgTe$, $NiAs$, SiC, $GaAs$
HCP STRUCTURE: CORUNDUM (ALUMINA)

- O^{2-}: HCP packing \rightarrow 6 ions
- Al^{3+}: 2/3 octahedral interstitials \rightarrow 4 ions
- I.C.(Al^{3+}): 6 ; I.C.(O^{2-}): 6

Ceramics that have this type of structure: Cr_2O_3, Fe_2O_3, Al_2O_3...
CRYSITALLINE STRUCTURE OF PEROVSKITE ABO$_3$

A and B cations with different size ($r_A >> r_B$)

- O$^2-$ and Ca$^{2+}$: fcc packing
- Ti$^{4+}$: 1/4 octahedral sites
- C.I.(Ti$^{2+}$): 6; C.I.(Ca$^{2+}$): 12

Ceramics that adopt this type structure:
- BaTiO$_3$, CaTiO$_3$, SrTiO$_3$, PbZrO$_3$, KNbO$_3$, LiNbO$_3$, ...

Ferroelectric Materials,
Magnetic Superconductor properties
(YBa$_2$Cu$_3$O$_7$)
Summary of Some Common Ceramic Crystal Structures

<table>
<thead>
<tr>
<th>Structure name</th>
<th>Structure type</th>
<th>Anion packing</th>
<th>Coordination numbers</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock salt (sodium chloride)</td>
<td>AX</td>
<td>FCC</td>
<td>cation: 6, anion: 6</td>
<td>NaCl, MgO, FeO</td>
</tr>
<tr>
<td>Cesium chloride</td>
<td>AX</td>
<td>Simple cubic</td>
<td>cation: 8, anion: 8</td>
<td>CsCl</td>
</tr>
<tr>
<td>Zinc Blende (sphalerite)</td>
<td>AX</td>
<td>FCC</td>
<td>cation: 4, anion: 4</td>
<td>ZnS, SiC</td>
</tr>
<tr>
<td>Fluorite</td>
<td>AX₂</td>
<td>Simple cubic</td>
<td>cation: 8, anion: 4</td>
<td>CaF₂, UO₂ThO₂</td>
</tr>
<tr>
<td>Perovskite</td>
<td>ABX₃</td>
<td>FCC</td>
<td>cation: 12 (A), 6 (B)</td>
<td>BaTiO₃, SrZrO₃, SrSnO₃</td>
</tr>
<tr>
<td>Spinel</td>
<td>AB₂X₄</td>
<td>FCC</td>
<td>cation: 4(A), 6(B),</td>
<td>MgAl₂O₄, FeAl₂O₄</td>
</tr>
</tbody>
</table>

Sophia A. Tsipas / Francisco Velasco / Belén Levenfeld
COVALENT CERAMICS
They are structural ceramics

DIAMOND → Structure type blend

C → sp³ → c.i. 4 → Tetrahedral CC₄. Bond 100% covalent.

- ↑ wear resistance
- ↑ hardness
- ↑ tensile strength
- Insulator

SiC → Diamond type structure (spherullite)

- Applications: Good abrasive properties. 89% covalent bond
- High hardness, chemically inert.
COVALENT CERAMICS
They are structural ceramics

Si₃N₄ → Cutting Elements, blades, rotors

Si → sp³ → c.i. 4 → SiN₄ Tetrahedra
N → sp² → c.i. 3 → N coordinated to 3 Si
Open structure.
70% covalent bond

β-SiN₄

Sialons **Si₆₋zAl₂O₂N₈₋z (1971)**

It is a solid solution between nitrides and oxides. Derived from Si₃N₄, by substituting z atoms of Si for Al atoms. In order to compensate the valence difference, the same number of N atoms are substituted by O. Cutting tools, antifriction rollers, motors components.
STRUCTURE OF SILICATES

Si and O are the most abundant elements in the earth’s crust
They are the base of traditional ceramics

Useful engineering materials because

- Low price
- Great availability
- Special properties

<table>
<thead>
<tr>
<th>Ceramic</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>K$_2$O</th>
<th>MgO</th>
<th>CaO</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica refractory</td>
<td>96</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireclay refractory</td>
<td>50-70</td>
<td>45-25</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullite refractory</td>
<td>28</td>
<td>72</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical porcelain</td>
<td>61</td>
<td>32</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steatite porcelain</td>
<td>64</td>
<td>5</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland cement</td>
<td>25</td>
<td>9</td>
<td></td>
<td>64</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Composition of some silicate ceramics

Fundamentally in:

- Construction (bricks, cement, glass)
- Electrical and thermal insulating materials
STRUCTURE OF SILICATES

- Si in tetrahedral coordination
- Bond type (Pauling): 50% ionic - 50% covalent
- $r_C/r_A = 0.29 \rightarrow$ stable structure with tetrahedral coordination.
- ↑ packing factor \Rightarrow tetrahedra united in the corners.
- Multitude of possible structures:
 a) Structures of isolated silicates
 b) Ring and Chain structures
 c) Laminar structures
 d) 3D structures
STRUCTURE OF SILICATES

Classification of silicates as a function of the tetrahedra ordering $[\text{SiO}_4]^{4-}$.

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthosilicates or olivines</td>
<td>(island tetrahedra SiO_4^{4-})</td>
</tr>
<tr>
<td>Example: Forsterite (Mg_2SiO_4)</td>
<td></td>
</tr>
<tr>
<td>pyrosilicate</td>
<td>(island tetrahedra $\text{Si}_2\text{O}_7^{6-}$)</td>
</tr>
<tr>
<td>Example: ($\text{Ca}_2\text{MgSi}_2\text{O}_7$)</td>
<td></td>
</tr>
<tr>
<td>metasilicates</td>
<td>($\text{SiO}_3)_n^{2n-}$ (ring and chain structures)</td>
</tr>
<tr>
<td>Ring structures</td>
<td></td>
</tr>
<tr>
<td>Examples: Wollastonite (CaSiO_3), beryl $\text{Be}_3\text{Al}_2(\text{SiO}_3)_6$</td>
<td></td>
</tr>
<tr>
<td>chain structures</td>
<td></td>
</tr>
<tr>
<td>Example: Enstatite (MgSiO_3)</td>
<td></td>
</tr>
<tr>
<td>sheet or layered silicates</td>
<td>($\text{Si}_2\text{O}_5)^{2-}$</td>
</tr>
<tr>
<td>Example: Kaolinite clay $\text{Al}_2(\text{Si}_2\text{O}_5)(\text{OH})_4$</td>
<td>are talc $[\text{Mg}_3(\text{Si}_2\text{O}_5)_2(\text{OH})_2]$ micas [e.g., muscovite, $\text{KAl}_3\text{Si}3\text{O}{10}(\text{OH})_2$]</td>
</tr>
<tr>
<td>3D (SiO_2)</td>
<td>Quartz, tridymite, cristobalite (SiO_2)</td>
</tr>
</tbody>
</table>
STRUCTURE OF SILICATES

Metasilicates (Ring and Chain Structure)

2 of the 4 O\(^-\) atoms in the tetrahedral SiO\(_4\)\(^4-\) are united to another tetrahedral in order to form \textbf{chains of silicate}.

\textbf{Formula: } (SiO\(_3\))\(_n\)\(^{2n-}\)

![Chain Structure](http://commons.wikimedia.org/wiki/File:Wollastonite_a_%2B_c.png)

![Ring Structure](http://commons.wikimedia.org/wiki/File:Cyclosilicates_3.svg)

Wollastonite (CaSiO\(_3\))
STRUCTURE OF SILICATES

Sheet or layered structure
3 of the 4 O\(^{-}\) atoms of in the tetrahedral SiO\(_4\)\(^{4-}\) are united to another tetrahedral in order to form layers of silicates

Formula: Si\(_2\)O\(_5\)\(^{2-}\)

- Kaolinite Al\(_2\)(OH)\(_4\)\(^{2+}\)
- Talc: Mg\(_3\)(OH)\(_4\)\(^{2+}\)

There is one O\(^{-}\) without bond in each tetrahedral
⇒ charge (-) ⇒ Joining laminas (+)

Formation of KAOLINITE

KAOLINITE

Si\(_2\)O\(_5\)\(^{2-}\)

Al\(_2\)(OH)\(_4\) Si\(_2\)O\(_5\)

Electrically neutral
STRUCTURE OF SILICATES

Three-Dimensional Silicates

<table>
<thead>
<tr>
<th>Silica</th>
<th>Feldspars</th>
</tr>
</thead>
<tbody>
<tr>
<td>- They share all the corners in the tetrahedra</td>
<td>- Similar structure to Silica (Al^{3+} replaces Si^{4+}) ⇒ lattice with (-) charge ⇒ compensates the charge with voluminous cations (Na^+, K^+, Ca^{2+}, Ba^{2+}) in interstitial positions.</td>
</tr>
<tr>
<td>- Unit formula: SiO_2</td>
<td>- Principal component of traditional ceramics</td>
</tr>
<tr>
<td>- Presents Allotropy</td>
<td></td>
</tr>
<tr>
<td>- Important component in many traditional ceramics and many types of glasses</td>
<td></td>
</tr>
</tbody>
</table>

- **α-quartz**
- **β-quartz**
- **β-cristobalite**
NON CRYSTALLINE CERAMICS : GLASSES

Behaviour of glass during solidification

Crystalline Solid
- As $\downarrow T$, crystallizes in T_m

GLASS
- As $\downarrow T$, \uparrow viscosity
- Plastic stage \Leftrightarrow Rigid stage

Diagram

- Supercooled liquid
- Glass
- Crystalline s.
- Contraction due to freezing

Volume (per unit mass) vs. Temp

T_g, T_m
CONSTITUENTS OF GLASSES

3 types of oxides

Glass Formers
SiO₂ and B₂O₃

Glass modifiers
(Na₂O, K₂O) and (CaO and MgO)

Intermediates: Al₂O₃
DO NOT form glasses only by themselves.

They are incorporated in the silicate lattice

- Al₂O₃ \(\rightarrow \) tetrahedra AlO₄⁻ replacing SiO₄⁻

- Charge defects (Al³⁺: Si⁴⁺) compensating with alkaline cations and alkaline earths.

Improve special properties:

- Al₂O₃ \(\rightarrow \) ↑ strength at high T (aluminosilicate glasses)

- PbO
 - Modifies optical properties
 - ↓ Tᵣ (glass soldering)
 - Radiation protection of ↑ E
CONSTITUENTS OF GLASSES

Substances constituents of glasses

<table>
<thead>
<tr>
<th>COLOURS THAT METALLIC IONS GIVE TO GLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Cr³⁺</td>
</tr>
<tr>
<td>Cr⁶⁺</td>
</tr>
<tr>
<td>Cu²⁺</td>
</tr>
<tr>
<td>Cu⁺</td>
</tr>
<tr>
<td>Co²⁺</td>
</tr>
<tr>
<td>Ni²⁺</td>
</tr>
<tr>
<td>Mn²⁺</td>
</tr>
<tr>
<td>Mn³⁺</td>
</tr>
<tr>
<td>Fe²⁺</td>
</tr>
<tr>
<td>Fe³⁺</td>
</tr>
<tr>
<td>U⁶⁺</td>
</tr>
<tr>
<td>V³⁺</td>
</tr>
<tr>
<td>V⁴⁺</td>
</tr>
</tbody>
</table>
PROPERTIES OF GLASSES

Mechanical Properties

Brittle Materials ($E \uparrow \uparrow$ elastic modulus) = f (composition, macroscopic (surface) imperfections, volume of material and T)
Low modulus of Weibull
Mechanical strength ↓ (presence of water/air + humidity)

Electrical Properties

Generally insulators ($\sigma \approx 10^{-10} - 10^{-20} \ \Omega\text{cm}^{-1}$)
$\sigma \uparrow \uparrow$ with Temperature
$\sigma \uparrow \uparrow$ with modifier ($=f$(size and amount of modifier))

Thermal Shock

$\uparrow \uparrow \alpha = \downarrow R_{\text{thermal shock}}$

| Material | Thermal Expansion coeff. $({}^\circ\text{C}^{-1})$ | Thermal Shock failure $({}^\circ\text{C})$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda-lime glass</td>
<td>10^{-5}</td>
<td>80</td>
</tr>
<tr>
<td>Sodium borosilicate (Pyrex™ type)</td>
<td>10^{-4}</td>
<td>270</td>
</tr>
<tr>
<td>Fused silica</td>
<td>10^{-6}</td>
<td>1600</td>
</tr>
<tr>
<td>Lithia-alumina-silicate glass ceramic (Pyroceram™ type)</td>
<td>10^{-6}</td>
<td>670</td>
</tr>
<tr>
<td>Transparent lithia-alumina-silicate glass ceramic (Visions™ type)</td>
<td>10^{-6}</td>
<td>1330</td>
</tr>
</tbody>
</table>

Thermal shock resistance of common glasses and glass ceramics