Department of Computer Science and

Engineering
Bachelor in Computer Science and r—
Universidad Engineering ARCOS | ‘J
Carlos IIl de Madrid Computer Architecture O T
Exam

ATTENTION:
e Time limit is 120 minutes.

NAME:

FAMILY NAME:

NIA:

Exercise 1 [3 points]:

In a given processor we want to run the following code fragment:

loop: 1.d $f0, O(Sr1)
l.d 5f2, 0(Sr2)
l.d $f4, 0(Sr3)
mul.d $f0, $f0, 5f2
add.d $f0, $f0, $f4
s.d $f0, 0(Sr4)
addi $r1, 5r1, 8
addi 5r2,5r2, 8
addi $r3, 5r3, 8
addi $r4, 5r4, 8
bne Sri, $r0, loop

In that processor latencies among instructions are:

Instruction producing result

Instruction using result

Latency

FP ALU operation

FP ALU operation

FP ALU operation

Store double

Load double

FP ALU operation

o|lwiun|o

REST

Assume that the loop is executed a number of iterations that is a multiple of 8.
You are asked:

Determine the number of cycles required to run one iteration, if no modification to the code is made.
Determine the number of cycles required to run one iteration, when the loop has been scheduled.
Determine the number of cycles required to run one iteration, when loop unrolling and loop scheduling have
been applied for the cases with an unrolling factor of 2, 4 and 8.

4. Explain differences in obtained results.

Solution

1)

Department of Computer Science and

Engineering
Bachelor in Computer Science and
® Universidad Engineering ARCOS U_Q
Carlos III de Madrid Computer Architecture '..,:—1 -(_._r—f
Exam

26 cycles are required, including identified stalls:

loop: l.d $f0, 0(Sr1)
I.d 5f2, 0(Sr2)
I.d $f4, 0(Sr3)
<stall>x 2
mul.d $f0, $f0, $f2
<stall>x 8
add.d $f0, $f0, Sf4
<stall>x5
s.d $f0, 0(Sr4)
addi 6r1, 5r1, 4
addi $r2, 8r2, 4
addi $r3,5r3, 4
addi Sr4, Sr4, 4
bne Sri1, $r0, loop

2) Loop scheduling can reduce cycles per interation to 22.

loop: l.d $f0, O(Sr1)
l.d $f2, 0(Sr2)
l.d $f4, 0(Sr3)
addi Sr1,5r1, 4
addi $r2, 582, 4
mul.d $f0, $f0, 52
addi $r3,5r3, 4
addi $r4, Sr4, 4
<stall>x 6
add.d $f0, $f0, $f4
<stall>x5
s.d $f0, -4(Sr4)
bne Sr1, $r0, loop

Department of Computer Science and

Engineering
Bachelor in Computer Science and ;
® Universidad Engineering ARCOS ﬁ?‘q
y Carlos III de Madrid ; P P 12X
rlos Ill de Il Computer Architecture "'*:I?'*j—.‘i.f
Exam

3)

loop: I.d $f0, O(Sr1)
I.d 5f2, 0(Sr2)
l.d $f4, 0(Sr3)
l.d. 56, 4(5r0)
l.d 58, 4(Sr0)
l.d $f10, 4(5r0)
mul.d $f0, $f0, $f2
addi $r1, 5r1, 4
mul.d $f6, 5f6, S8
addi $r2,5r2, 8
addi $r3, 5r3, 8
addi Sr4, Sr4, 8
<stall>x 3
add.d $f0, $f0, 5f4
<stall>
add.d $f6, 5f6, $f10
<stall>x 3
s.d $f0, -8(Sr4)
<stall>
s.d $f6, -4(Sr4)
bne Sr1, $r0, loop

In total, 25 cycles are required to run two iterations. Consequently, 12.5 cycles per
iteration are required.

For a loop unrolling factor of 4:

loop: I.d $f0, 0(Sr1)
l.d $f2, 0(Sr2)
l.d $f4, 0(Sr3)
l.d. 6, 4(5r1)
l.d 58, 4(Sr2)
l.d $£10, 4($r3)
I.d $f12, 8($r1)
I.d $f14, 8($r2)
I.d $f16, 8($r3)
l.d. $18, 12(Sr1)
I.d $£20, 12($r2)
I.d $£22, 12($r3)
mul.d $f0, $f0, Sf2
mul.d $f6, $f6, 58

Department of Computer Science and

Engineering
Bachelor in Computer Science and 3
® Universidad Engineering ARCOS E,(
7 Carlos Il de Madrid i —r 2
rlos Ill de Il Computer Architecture '_,Zr,j_._f;(
Exam

mul.d $f12, 5f12, $f14
mul.d $f18, $f18, $f20
addi $r1, Sr1, 16

addi $r2, Sr2, 16

addi $r3, Sr3, 16

addi Sr4, Sr4, 16
<stall>

add.d $f0, $f0, Sf4
add.d $f6, 5f6, 510
add.d $f12, 5f12, $f16
add.d $f18, 5f18, $f22
<stall>x 2

s.d $f0, -16(Sr4)

s.d $6, -12($r4)

s.d $f12, -8(Sr4)

s.d $f18, -4(Sr4)

bne Sr1, $r0, loop

In total, 32 cycles are required for four iterations, giving 8 cycles per iteration.

For a factor of 8, an excessive number of registers would be needed and it would not be
feasible.

However, if we assume a register file sufficiently large, we have:

loop: l.d $f0, 0(Sr1)
I.d $£2, 0($r2)
l.d $f4, 0(Sr3)
l.d. 56, 4(5r1)
I.d $8, 4(3r2)
l.d $F10, 4($r3)
l.d $F12, 8(Sr1)
I.d $f14, 8($r2)
l.d $f16, 8(Sr3)
l.d. $18, 12(Sr1)
I.d $£20, 12(3r2)
I.d $£22, 12($r3)
I.d $£24, 16(5r1)
l.d $f26, 16 (Sr2)
I.d $£28, 16 ($r3)
l.d. $f30, 20($r1)
l.d $f32, 20 (Sr2)
I.d $£34, 20 ($r3)

Department of Computer Science and

Engineering
Bachelor in Computer Science and ;
® Universidad Engineering ARCOS ﬁ?‘q
Carlos III de Madrid i e & a7
rlos 1l de Il Computer Architecture "'*:I?'*j—.‘i.f
Exam

l.d $36, 24($r1)

l.d $f38, 24(5r2)

I.d $£40, 24(5r3)

l.d. $42, 28(Sr1)

I.d $f44, 28(5r2)

l.d $f46, 28(5r3)
mul.d $f0, $f0, $f2
mul.d $f6, 516, $f8
mul.d $f12, 5f12, $f14
mul.d $f18, 5f18, $f20
mul.d $f24, $f24, $f26
mul.d $f30, 530, $f32
mul.d $f36, 5f36, $f38
mul.d $f42, $f42, $fa4
addi $r1, Sr1, 32

addi $r2, Sr2, 32

addi 5r3, Sr3, 32

addi $r4, Sr4, 32
add.d $f0, $f0, 5f4
add.d $f6, 5f6, $f10
add.d $f12, 5f12, $f16
add.d $f18, 518, $f22
add.d $f24, 5124, 528
add.d $f30, 530, $f34
add.d $f36, 536, $f40
add.d $f42, $f42, $fa6
s.d $f0, -32(Sr4)

s.d $f6, -28(Sr4)

s.d $f12, -24($r4)

s.d $f18, -20(Sr4)

s.d $f24, -16(5r4)

s.d $f30, -12($r4)

s.d $f36, -8(Sr4)

s.d $f42, -4(Sr4)

bne Sr1, $r0, bucle

In total, 53 cycles for eight iterations, which gives 6.625 cycles per iteration.

Department of Computer Science and

Engineering
Bachelor in Computer Science and
® Universidad Engineering ARCOS U_Q
Carlos III de Madrid Computer Architecture '..,:—1 -(_._r—f
Exam

4)

We notice that when loop unrolling factor is increased, the number of cycles per
iteration is decreased. This is due to the fact that we achieve a better stall hiding with
productive work and, consequently, the processor is better used.

However, we must keep in mind the increasing pressure on the register file. Thus, a
higher loop unrolling may be excessive.

Universidad
Carlos IIT de Madrid

Department of Computer Science and
Engineering

Bachelor in Computer Science and
Engineering
Computer Architecture

Exam

Exercise 2 [2 points]: A processor with two cores and symmetric shared memory architecture uses a

bus with snooping protocol. Each core has a single level of cache memory which is private for that core.

Cache coherence is kept using MSI protocol. Cache memories use direct mapping and each cache line may
store 64 byte blocks. Caches have a size of 1 MB.

CPU read

CPU read hit

Shared

Place read miss on bus

Write miss for this block

Invalidate for
this block

Shared

(read only)

CPU
read

CPU write s miss
w ; i
2|2 & Place read -
=l miss on bus 52
S =5 ®
8 w [=] £ @
3@ 1 8
a(g Qe g
& £13
Write miss = |®
for this block
Read miss
_ Cache state transitions) for this block
Exclusive based on requests from CPU Exclusive
(read/write) {reaciwrite)

CPU write hit
CPU read hit

\:> CPU write miss
Write-back cache block

Place write miss on bus

(read only)

CPU
read
miss

Cache state transitions basead
on requests from the bus

That processor runs the following sequence of instructions, where each thread runsin a core:

e Thread 1: lw Sr0, x

e Thread 1: add Sr0, Sr0, 1

e Thread 2: lw $t0, z

e Thread 2: add St0, St0, 2

e Thread 1: sw Sr0, x
e Thread 2: sw St0, z

Cache memory is initially empty. A hit in cache memory requires four clock cycles. A miss requires 100

additional cycles for miss resolution.

You are asked:

1. Determine the final state for cache memory in each processor and for main memory, assuming that
variable x is stored at address 0x00104000 and variable z is stored at address 0x00104004.
2. Determine the required time for each memory access in the previous question.

Determine the final state for cache memory in each processor and for main memory, assuming that
variable x is stored at address 0x00104000 and variable z is stored at address 0x00106004.
4. Determine the required time for each memory access in the previous question.

Department of Computer Science and

Engineering
Bachelor in Computer Science and 3
® Universidad Engineering ARCOS E,(
7 Carlos Il de Madrid i —r 2
rlos Ill de Il Computer Architecture '_,Zr,j_._f;(
Exam

SOLUTION
1) In this case, variables x and z are in the same cache line.

We will asume initial values for x and z. For example, x=100 and z=200.

Thread 1: Iw Sr0, x

e The corresponding cache line is in state I.
e Aread miss happens.
e Cache 1: Transition | ->S.

e Aread miss is placed on bus. No efecto on the other cache.

Thread 1: add $r0, Sr0, 1

e No memory accesses generated.

Thread 2: Iw St0, z

e Corresponding cache line is in | state.
e Read miss.

e Cache 2: Transition I->S.

e Read miss placed on bus.

e Cachel:5->S

Thread 2: add S$t0, St0, 2
e No effect.
Thread 1: sw Sr0, x

e Value 101 written at x.

e Write. Transition in cache 1: S->M
e Invalidation placed on bus

e Cach3 2: Transition S->I

Thread 2: sw St0, z

e Value 202 written at z.

e Cache 2: Transition I->M.

e Write miss placed on bus.

e Cache 1: M->I

e Cache 1: block write-back performed.

Department of Computer Science and

Engineering
Bachelor in Computer Science and 3
® Universidad Engineering ARCOS E,(
7 Carlos Il de Madrid i —r 2
rlos Ill de Il Computer Architecture '_,Zr,j_._f;(
Exam

Final state:

e Cach3 1: Invalid block
e Cach3 2: Exclusive block (M). Values: x=101,2=202
e Memory: Values: x=101, z=200

2)
Thread 1: Iw Sr0, x

e Requires 4 cycles to access cache, plus 100 cycles for read miss resolution.
Thread 2: Iw St0, z

e Requires 4 cycles to access cache, plus 100 cycles for read miss resolution.
Thread 1: sw 5r0, x

e Requires 4 cycles to Access cache.
Thread 2: sw St0, z

e Requires 4 cycles to access cache, plus 100 cycles for read miss resolution, plus 100 cycles for write-
back.

3) In this case variables x and z reside in different cache lines.
Thread 1: Iw Sr0, x

e The corresponding cache lineis in | state.

e Read miss.

e Cache 1: Block(x), Transition I ->S.

e Read miss placed on bus. No effect on the other cache.

Thread 1: add $r0, Sr0, 1
e No memory access generated.
Thread 2: Iw St0, z

e The corresponding cache line is in | state.

e Read miss.

e Cache 2: Block(z), Transition I->S.

e Read miss placed on bus. No effect on the other cache.

Thread 2: add StO, StO, 2

Department of Computer Science and

Engineering
Bachelor in Computer Science and ;
® Universidad Engineering ARCOS ﬁ?‘q
Carlos III de Madrid i e & a7
rlos 1l de Il Computer Architecture "'*:I?'*j—.‘i.f
Exam

e No effect.
Thread 1: sw Sr0, x

e Write value 101 at x.
e Write. Block(x), Transition in 1: S->M
e Invalidation placed on bus with no effect on the other cache.

Thread 2: sw St0, z

e Write value 202 at z.
e Cache 2: Block(z), Transition S->M.
e Invalidation placed on bus with no effect on the other cache.

Afther this operations sequence, memory is not modified as there has been no write-back.

e Cache 1, Block(x), Exclusive state (M), x=101
e Cache 2, Block (z), Exclusive state (M)}, z=202
e Memory: x=100, z=200

a)
Thread 1: Iw Sr0, x

e Requires 4 cycles for cache access, plus 100 cycles for read miss resolution.
Thread 2: Iw S$t0, z

e Requires 4 cycles for cache access, plus 100 cycles for read miss resolution.
Thread 1: sw Sr0, x

e Requires 4 cycles for cache access.
Thread 2: sw St0, z

e Requires 4 cycles for cache access.

Department of Computer Science and

Engineering
Bachelor in Computer Science and r—
Engineering ARCOS |
Computer Architecture '._— ;.;%ﬁ_.'.-;f—ﬂ
Exam

Exercise 3 [2 points]:
Design in C++ a lock-free queue with the following requirements:

e The queue must be implemented as a circular buffer with size to hold 100 elements.

e The queue must allow that two threads use it at the same time when one uses the queue only for

inserting (push) and the other for extraction (pop).
e No synchronization mechanism relying on the OS may be used.
e Elements inserted and extracted will be strings of characters.

The queue interface must use the following interface:

class circular buffer ({
public:
circular buffer();
~circular buffer();

bool empty() const noexcept;
bool full() const noexcept;

void put (const std::string & x, bool last) noexcept;
std::pair<bool, std::string> get () noexcept;

/]
}i

You are asked:

1. Complete the class definition with the needed private details.
2. Implement the functions defined in the interface as well as any other auxiliary function you

consider necessary.

1)

class circular buffer ({

public:
circular buffer () = default;
~circular buffer() = default;
bool empty () const noexcept;
bool full() const noexcept;

void put (const std::string & x, bool last) noexcept;
std::pair<bool,std::string> get () noexcept;

private:
int next position(int p) const noexcept;

Department of Computer Science and

Engineering
Bachelor in Computer Science and ,
Universidad Engineering ARCOS ﬁ?‘q
Carlos IIl de Madrid Computer Architecture il s
P | gagng gl
Exam
private:
struct item {
bool last;
std::string value;
b7
static constexpr int size = 100;

item buf [size];
alignas (64) std::atomic<int> next read ({0};
alignas (64) std::atomic<int> next write {0};

2)

bool circular buffer::empty() const noexcept ({
return next read == next write ;

bool circular buffer::full() const noexcept {
const int next = next position(next write .load());
return next == next read .load();

void circular buffer::put(const std::string & x, bool last) noexcept {

const int next = next position(next write .load());
while (next == next read .load()) {

}

buf [next write .load()] = item{last,x};

next write .store(next);

std::pair<bool,std::string> circular buffer::get() noexcept {
while (empty()) {
}
auto res = buf [next read .load()];
next read .store(next position(next read .load()));
return std::make pair(res.last,res.value);

int circular buffer::next position(int p) const noexcept {
return p + ((pt+l>=size)?(l-size):1);

