
Memory consistency models

Memory consistency models
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 1/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Memory model

1 Memory model

2 Sequential consistency

3 Other consistency models

4 Use case: Intel

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 2/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Memory model

Memory consistency

P1

P2

P3

P4

Memory

Memory consistency model:
Set of rules defining how the memory system processes
memory operations from multiple processors.
Contract between programmer and system.
Determines which optimizations are valid on correct
programs.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 3/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Memory model

Memory model

Interface between program and its transformers.
Defines which values can be returned by a read operation.

The language’s memory model has implications for
hardware.

Language
C, C++, FORTRAN

. . . C
om

pi
le

r

Machine
Code

H
ar

dw
ar

e

Executed
Code

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 4/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Memory model

Single processor memory model

P

Memory

STORE
. . .

LOAD
. . .

STORE
. . .

LOAD

Memory behavior model:
Memory operations happen in program
order.

A read returns the value from the last write in
program order.

Semantics defined by sequential program
order:

Simple but constrained reasoning.
Solve data and control dependencies.

Independent operations may be executed in
parallel.
Optimizations preserve semantics.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 5/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

1 Memory model

2 Sequential consistency

3 Other consistency models

4 Use case: Intel

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 6/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

P P2 P3 P4 P5

LOAD
. . .

STORE
. . .

LOAD

Memory

A multiprocessor system is sequentially consistent if the result of any
execution is the same that would be obtained if operations from all processors
were executed in some sequential order, and operations from each individual
processor appear in that sequence in the order established by the program.

Leslie Lamport, 1979

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 7/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Sequential Consistency: Constraints

Program order.
Memory operations from a program must be made visible to
all processes in program order.

Atomicity.
Total execution order between processes must be
consistent requiring that all operations are atomic.

All the operations that a processor does after it has seen the
new value of a write are not visible to other processes until
they have seen the value from that write.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 8/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Atomicity

a=1 while(a==0) {}

b=1

while(b==0) {}

x=a

Non atomic writes:
Write on b could bypass to while loop and read from a
would bypass the write.

X=0.

Atomic writes:
Sequential consistency is preserved.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 9/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Sequential consistency constraints all memory
operations:

Write → Read.
Write → Write.
Read → Read, Read → Write.

Simple model to reason about parallel programs.
But, simple single processor reorderings may violate
sequential consistency model:

Hardware reordering to improve performance.
Write buffers, overlapped writes, . . .

Compiler optimizations apply transformations with
memory operations reordering.

Scalar replacement, register allocation, instruction
scheduling, . . .

Transformations by programmers, or refactoring tools
also modify program semantics.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 10/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Sequential consistency violation

flag1=0; flag2=0;

flag1=1;

if (flag2==0) {

critical section
}

flag2=1;

if (flag1==0) {

critical section
}

assert(p1!=0 || p2!=0);

If caches use a write
buffer:

Writes are delayed in
buffer.
Reads obtain the old
value.
Dekker Algorithm is no
longer valid.

Dekker algorithm is
the first known
solution to the mutual
exclusion problem.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 11/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Program order

flag1=0; flag2=0;

flag1=1;

if (flag2==0) {

critical section
}

flag2=1;

if (flag1==0) {

critical section
}

assert(p1!=0 || p2!=0);

Write flag1, 1

Read flag2← 0

Write flag2, 1

Read flag1← ¿0?

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 12/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Program order

flag=0;

A=42;

flag=1

while (flag!=1) {}

X=A;

Write flag, 42

Write flag, 1

Read flag← 0

Read flag← 1

Read A← ¿0?

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 13/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Sequential consistency

Conditions for sequential consistency

Sufficient conditions:
Each process issues memory operations in program
order.
After issuing a write, the process that performed the issue
waits for completions of write before issuing another
operation.
After issuing a read, the process that performed the issue
waits for completion of read and for completion of the
write of the value being read.

Wait for write propagation to all processes.

Very demanding conditions.
There might be necessary conditions that are less
demanding.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 14/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

1 Memory model

2 Sequential consistency

3 Other consistency models

4 Use case: Intel

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 15/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Optimizations

Models relaxing program execution order.
W → R.
W → W.
R → W, W → W.

Notation:
X → Y

Y bypasses X.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 16/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Reorderings

Processor R → R R → W W → R W → W
Alpha X X X X
PA-RISC X X X X
POWER X X X X
SPARC X
x86 X
AMD64 X
IA64 X X X X
zSeries X

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 17/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Reads bypass writes (W→R)

A read may execute before a preceding write.

Typical in systems with write buffer.
Check consistency with buffer.
Allow read buffer.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 18/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Other models

R → W, W → R.
Allow that writes may arrive into memory out of program
order.

R → W, W → R, R → R, W → W.
Avoid only data and control dependencies within processor.
Alternatives:

Weak consistency.
Release consistency.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 19/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Weak ordering

Divides memory operations into data operations and
synchronization operations.
Synchronization operations act as a barrier.

1 All preceding data operations in program order to a
synchronization must complete before synchronization is
executed.

2 All subsequent data operations in program order to a
synchronization operation must wait until synchronization
ins completed.

3 Synchronization are performed in program order.

Hardware implementation of barrier.
Processor keeps a counter:

Data operation issue ⇒ increment.
Data operation completed ⇒ decrement.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 20/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Other consistency models

Release/acquire consistency

More relaxed than weak consistency.
Synchronization accesses divided into:

Acquire.
Release.

Semantics:
Acquire

Must complete before all subsequent memory accesses.
Release

Must complete all previous memory accesses.
Subsequent memory accesses MAY initiate.
Operations following a release and must wait, must be
protected with an acquire.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 21/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

1 Memory model

2 Sequential consistency

3 Other consistency models

4 Use case: Intel

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 22/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

4 Use case: Intel
Consistency model
Examples
Model effects

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 23/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Memory consistency in Intel

Until 2005 hand not completely clarified its memory
consistency model.

Formalizing the model highly complex.
Problems for language implementations (Java, C++, . . .).

Currently the model is clarified and public.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 24/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Initial Intel model

i486 and Pentium:
Operations in program order.

Exception: Read misses bypass writes in write buffer only if
all writes are cache hits.
It is impossible that a read miss matches with a write.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 25/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Atomic operations

Since i486:
Read or write 1 byte.
Read or write a 16-bit aligned word.
Read or write a 32-bit aligned double word.

Since Pentium:
Read or write a 64-bit aligned quadword.
Non-cached memory access that fits in 32 bit data bus.

Since P6:
Non aligned access to data of 16, 32 or 64 bits that fit in a
cache line.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 26/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Bus blocking (I)

A processor may issue a signal to block the bus.
Other elements cannot access the bus.

Automatic bus blocking:
Instruction XCHG.
Updating segment descriptors, page directory, and page
table.
Interrupt acceptance.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 27/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Bus blocking (II)

Bus software blocking:
Use LOCK prefix in:

Instructions for bit checking and modification (BTS, BTR,
BTC).
Exchange instructions (XADD, CMPXCHG, CMPXCHG8B).
1 operand arithmetic instructions (INC, DEC, NOT, NEG).
2 operand arithmetic-logic instructions (ADD, ADC, SUB,
SBB, AND, OR, XOR).

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 28/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Barrier instructions

LFENCE:
Barrier for load operations.
Every load preceding a LFENCE is globally made visible
before any subsequent load.

SFENCE:
Barrier for store operations.
Every store preceding a SFENCE is globally visible
before any subsequent store.

MFENCE:
Barrier for load/store operations.
All load and store preceding a MFENCE are globally
visible before any subsequent load or store.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 29/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Current memory model within processor (I)

Reads do not bypass other reads (R → R).
Writes do not bypass reads (R → W).
Writes do not bypass writes (W → W).

There are exceptions for strings and non-temporal moves.

Reads bypass preceding writes (W → R) to different
addresses.
Reads/writes do not bypass I/O operations, locked
instructions, or serializing instructions.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 30/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Current memory model within processor (II)

Reads cannot bypass preceding LFENCE or MFENCE.
Reads cannot bypass preceding LFENCE, SFENCE, or
MFENCE.
LFENCE cannot bypass preceding read.
SFENCE cannot bypass preceding write.
MFENCE cannot bypass preceding read or write.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 31/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Consistency model

Multiprocessor memory model

Every processor is individually compliant with former rules.
Writes from a processor are observed in the same order by
all other processors.
Writes from a processor are NOT ordered with respect to
writes from other processors.
Memory ordering is transitive.
Two writes are viewed in a consistent order by any other
processor distinct from those two processors.
Lock instructions have a total order.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 32/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

4 Use case: Intel
Consistency model
Examples
Model effects

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 33/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Example: Write ordering

Processor A

write A.1
write A.2
write A.3

Processor B

write B.1
write B.2
write B.3

Processor C

write C.1
write C.2
write C.3

Writes from every
processor keep
order.

Possible order (I)

Write A.1
Write B.1
Write B.2
Write C.1
Write A.2

Possible order (II)

. . .
Write B.3
Write A.3
Write C.2
Write C.3

Order for every
process is kept.
No order is
guaranteed across
processes.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 34/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

No reordering R→R,W→W

Initial state

X=0, Y=0

Processor 1

MOV [_x], 1
MOV [_y], 1

Processor 2

MOV r1, [_y]
MOV r2, [_x]

State not allowed

r1=1 y r2=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 35/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

No reordering R→W

Initial state

X=0, Y=0

Processor 1

MOV r1, [_x]
MOV [_y], 1

Processor 2

MOV r2, [_x]
MOV [_x], 1

State not allowed

r1=1 y r2=1

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 36/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Reordering W(a)→R(b)

Initial state

X=0, Y=0

Processor 1

MOV [_x], 1
MOV r1, [_y]

Processor 2

MOV [_y], 1
MOV r2, [_x]

State allowed

r1=0 y r2=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 37/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

No reordering W→R

Initial state

X=0

Processor 1

MOV [_x], 1
MOV r1, [_x]

State not allowed

r1=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 38/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Write visibility from other processor

Initial state

X=0, Y=0

Processor 1

MOV [_x], 1
MOV r1, [_x]
MOV r2, [_y]

Processor 2

MOV [_y], 1
MOV r3, [_y]
MOV r4, [_x]

State allowed

r2=0 y r4=0

Writes may be perceived in different order by every processor.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 39/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Transitive visibility of writes

Initial state

X=0, Y=0

Processor 1

MOV [_x], 1

Processor 2

MOV r1, [_x]
MOV [_y], 1

Processor 3

MOV r2, [_y]
MOV r3, [_x]

State not allowed

r1=1 y r2=1 y r3=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 40/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Consistent order of writes for all processors

Initial state

X=0, Y=0

Processor 1

MOV [_x], 1

Processor 2

MOV [_y], 1

Processor 3

MOV r1, [_x]
MOV r2, [_y]

Processor 4

MOV r3, [_y]
MOV r4, [_x]

State not allowed

r1=1 y r2=0 y r3=1 y r4=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 41/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Locked instructions define total order

Initial state

r1=1, r2=1, X=0, Y=0

Processor 1

XCHG [_X], r1

Processor 2

XCHG [_y], r2

Processor 3

MOV r3, [_x]
MOV r4, [_y]

Processor 4

MOV r5, [_y]
MOV r6, [_x]

State not allowed

r1=1 y r2=0 y r3=1 y r4=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 42/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Reads not reordered with locks

Initial state

X=0, Y=0, r1=1, r3=1

Processor 1

XCHG [_x], r1
MOV r2, [_y]

Processor 2

XCHG [_y], r3
MOV r4, [_x]

State not allowed

r2=0 y r4=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 43/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Examples

Writes not reordered with locks

Initial state

X=0, Y=0, r1=1

Processor 1

XCHG [_x], r1
MOV [_y], r1

Processor 2

MOV r2, [_y]
MOV r3, [_x]

State not allowed

r2=1 y r3=0

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 44/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Model effects

4 Use case: Intel
Consistency model
Examples
Model effects

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 45/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Use case: Intel

Model effects

Consistency models in Intel

Sequential consistency
Load: mov reg, [mem]
Store: xchg [mem], reg

Relaxed consistency
Load: mov reg, [mem]
Store: mov [mem], reg

Release/acquire consistency
Load: mov reg, [mem]
Store: mov [mem], reg

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 46/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Conclusion

1 Memory model

2 Sequential consistency

3 Other consistency models

4 Use case: Intel

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 47/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Conclusion

Summary

Consistency memory model determines which
optimizations are valid.
Sequential consistency establishes as constraints
atomicity and program order.
More relaxed models than sequential consistency can be
used.

Weak consistency.
Release/acquire consistency

Intel memory model has evolved over last decade.
Formalized and publicly available.
Establishes what operations are atomic, when bus is
blocked, and how barriers are defined.
Defines the memory model within processor and between
different processors.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 48/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Conclusion

References

Computer Architecture. A Quantitative Approach.
5th Ed.
Hennessy and Patterson.
Sections: 5.6

Shared memory consistency models: A tutorial.
Adve, S. V., and Gharachorloo, K.
IEEE Computer 29, 12 (December 1996), 66-76.

Intel 64 and IA-32 Architectures Software Developer
Manuals.
Volume 3: Systems Programming Guide.
8.2: Memory Ordering

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 49/50

http://www.arcos.inf.uc3m.es

Memory consistency models

Conclusion

Memory consistency models
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 50/50

http://www.arcos.inf.uc3m.es

	Memory model
	Sequential consistency
	Other consistency models
	Use case: Intel
	Consistency model
	Examples
	Model effects

	Conclusion

