Memory consistency in C++ ARCOS —H_-'_'

| angeg gu

Memory consistency in C++
Computer Architecture

J. Daniel Garcia Sanchez (coordinator)
David Exposito Singh
Francisco Javier Garcia Blas

ARCOS Group
Computer Science and Engineering Department
University Carlos Ill of Madrid

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LMemory model

Memory model

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LMemory model "D‘D‘-‘j

C++ and memory consistency

m C++11 defines its own concurrency model as part of the
language.

m Goal: Avoid the need to write code in lower level languages
(C, assembiler, ...) to obtain better performance.

m Atomic types.
m Low level synchronization mechanisms.

m Allows to build lock free data structures.

@®@®E - Computer Architecture — ARCOS Group - htt

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LMemory model "D‘D‘-‘4

Objects and memory locations

m Obiject: Is a storage region.
m A sequence of one or more bytes.

m Memory location: Is an object of scalar type or a
sequence of contiguous bit fields.

m An object is stored in one or more memory locations.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LMemory model

Example

m Structure:

struct {
int i;
char c;
int d: 10;
int e: 16;
double f;

m Memory locations:

(> Jeo o]~
~o 0
o

@®®EG - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LMemory model

Rules

m Two threads may access to different memory locations
simultaneously.

m Two threads may access to the same memory locations
simultaneously if both accesses are for reading.

m If two threads try to access simultaneously to the same
memory location and any access is a write, there is a
potential race condition.

m Depends on whether an ordering between both accesses
is stablished.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LMemory model "D‘D‘-‘4

Ordering and race conditions

m Classic solution: Use synchronization mechanisms.

m Allow to guarantee mutual exclusion.
m Based on OS — Might be costly.

m Alternative: Use atomic operations to ensure ordering.

m If ordering between two accesses to a memory location is
not established,

m some of the accesses is not atomic,

m and at least one of the accesses is a write,

m those are a data race and program behavior is not
defined.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LMemory model "D‘D‘-‘j

Modification order

m Modification order: Sequence of writes on an object.

m If two threads see different modification orders on an object
there is a data race.

m Modifications do not need to be visible in the same instant
in all threads.

m A subsequent read to a write on the same thread observes
the written value or a subsequent value in its modification
order.

@®®E - Computer Architecture — ARCOS Group - ht

http://www.arcos.inf.uc3m.es

Memory consistency in C++

L Atomic types

Atomic types

@®©® - Computer Architecture ARCOS Gr

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

L Atomic types "D‘D‘-‘4

Atomic operations

m They are indivisible operations.

m If a thread performs an atomic read from a variable and
other thread performs an atomic write on the same
variable and there is no more threads accessing:

B The read returns the previous value to the write or the
written value.

m If any of the operations (read or write) is non atomic the
behavior is not defined.
H A value can be obtained that is not the previous or the
subsequent one.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LAtomic types "D‘D"‘j

Atomic types

m A generic type atomic<T> allows to define atomic

variables for type T, where T is:

m An integral type.

A pointer type.
Type bool.
It is undefined for real number types (float, double).
Also available for user defined types fulfilling some
constraints.

m All atomic types have a member is_lock_free().
m Determine if their implementation is lock-free.

m Additionally there is a type atomic_flag:
m The only type that is guaranteed to be lock-free.

@®®E - Computer Architecture - ARCOS Group - ht

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LAtomic types "D‘D"‘j

Operations on atomic types

m Operations on atomics may optionally specify a memory
order.

m By default memory_order_seq_cst.
m Store operations:

m memory_order_relaxed, memory_order_release,
memory_order_seq_cst.

m Read operations:
® memory_order_relaxed, memory_order_consume,
memory_order_acquire, memory_order_seq_cst
m Read-modify-write operations:
= memory_order_relaxed, memory_order_consume,
memory_order_acquire, memory_order_release,
memory_order_acq_rel, memory_order_seq_cst.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

L Atomic types "D‘D‘-‘4

atomic_flag

m Most simple possible atomic type.

m Two possible states: enabled o disabled.
m Itis always lock-free.

m Always must be explicitly initiated to disabled.
std ::atomic_flag f1 = ATOMIC_FLAG_INIT;

m Operations:
m Disable:

f1.clear();
m Enable and check previous value:

f1.test_and_set();

m May provide memory order for operation.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS j—i_-r'
L Atomic types | giligmy g

Example: A spin lock

m Lock not using OS services.
m Useful for very short lockings when you desire to avoid
context switching problems.

spin lock mutex

class spinlock_mutex {
private:
std ::atomic_flag f;
public:
spinlock_mutex() : f{ATOMIC_FLAG_INIT} {}

void lock() {
while (f.test_and_set()) {}

void unlock() {
flag.clear() ;

}

@®®E - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LAtomic types "D‘D":‘

atomic_ bool

More operations than atomic_flag.

Can be initiated and assigned with bools.
Cannot be copied from another atomic<bool>.
Modification: a.store(order)

Query: a.exchange(b, order)

Automatic conversion to bool (seq. consistency):
a.load(order).

Example

std :: atomic<bool> a;

bool x = a.load(std :: memory_order_acquire);
a.store(true);

x = a.exchange(false, std::memory_order_acq_rel);

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LAtomic types "D‘D"‘j

Compare and exchange

m Compares atomic value with an expected value.
m If both are equal, the desired value is stored in the atomic.
m If not equal, atomic is left unmodified.
m It always returns success/failure indication.

m Two versions:
a.compare_exchange_weak(e,d):
B Allows spurious failures (context switch) in some
architectures.
B May behave as if *this!=e even if they are equal.

a.compare_exchange_strong(e,d):
B Does not allow for spurious failures.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LAtomic types "D‘D"‘j

atomic_address

m Atomic access to a memory address.
m Cannot be copied.

m Can copy a (void*) pointer.
m Interface similar to atomic<bool>:

m is_lock_free(), load(), store(), exchange(),
compare_exchange weak(),
compare_exchange_strong().

m Additional operations.
m fetch_add(), fetch_sub().
m Allow for memory ordering specification.
B Return value previous to change.
B +=, -=.
m Return the value after the change.
m All operations allow byte arithmetic.

m Other arithmetics with atomic<T*>.

@®@®E - Computer Architecture — ARCOS Group - htt

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

L Atomic types "D‘D‘-‘j

atomic<integral>

m Can be applied to all integral types.
m General operations:

m is_lock_free(), load(), store(), exchange(),
compare_exchange weak(),
compare_exchange_strong().

m Arithmetic operations.

m fetch_add(), fetch_sub(), fetch_and(), fetch_or(),
fetch_xor().

B+, =, &=, =, =

B ++X, X4+, =X, X—

m There are no other arithmetic operations (*, /, %).

@®@®E - Computer Architecture — ARCOS Group - htt

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LOrdr—)ring relationships

Ordering relationships

@®©® - Computer Architecture ARCOS Gr

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | -

L Ordering relationships "D‘D‘-‘j

synchronizes-with relation

m Relationship between operations on atomic types.

m A write on an atomic value synchronizes-with a read on
that atomic value reading that value:

i Stored by that write.

i Stored by a subsequent write from the same thread that
performed the write.

iii Stored by a sequence of read-modify-write operations on
the value from any thread in which the first operation read
the value stored by the write.

@®®E - Computer Architecture - ARCOS Group - ht

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |
LOrdr—)ring relationships "D‘D"‘j

happens-before relationship

m Specified which operations see the effects from other
operations.

m Within a thread, an operation happens-before other
operation if it appears in a preceding sentence.
m There is no order between two operations from the
same sentence.

m Among two threads, an operation in one thread
happens-before other operation from other thread if:

i There is a synchronizes-with relationship among both
operations.

i There is a happens-before a synchronizes-with chain of
relationships among both operations.

@®®E - Computer Architecture — ARCOS Group - ht

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS j—i_-r'
L Ordering relationships | giligmy g

Ordering: Sequential consistency

v.push_back(1); f.load() false

f.load() true

std :: vector<int> v;

std ::atomic_bool f(false) ;

void writer () {
v.push_back(1); 7/ #1

f =true; / #2
}

void reader() { m Only possible result: v[0]
while(!f .load()) { / #3 ==1
std :: this_thread :: sleep()
std :: milliseconds(1)) ;

}
std ::cout << v[0] << std::endl; // #4
}

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

Consistency models

@®©® - Computer Architecture ARCOS Gr

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LConsistency models "D‘D"‘j

Sequential consistency

® memory_order_seq_cst.
m The program is consistent with a sequential view.

m [f all the operations on atomics are sequentially
consistent, multi-threaded program behavior is as if all the
operations would be performed in some particular order in
a single thread.

m There cannot be reorderings.
m |t is the simplest model to reason about.
m [t is the most costly model in terms of performance.

@®®E - Computer Architecture — ARCOS Group - ht

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

ARCOS | |

Access

std :: atomic<bool> x, y;
std :: atomic<int> z;

void f() {
x.store(true, std::memory_order_seq_cst);

}

void g() {
y.store(true, std::memory_order_seq_cst);

}

void h() {
while (!x.load(std :: memory_order_seq_cst)) {}
if (y.load(std::memory_order_seq_cst)) ++ z;
}

void i () {
while (!y.load(std :: memory_order_seq_cst)) {}
if (x.load(std::memory_order_seq_cst)) ++z;

Threads launching

int

}

main() {
x = false;
y = false;
z =0;

std ::
std ::
std ::
std ::

thread t1{f};
thread t2{g};
thread t3{h};
thread t4{i};

1. join ()
2. join ()
3. join ()
t4. join ()

assert(z.load() !=0);

return 0;

@O®6 -

Computer Architecture — ARCOS Group - htt

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

Sequential consistency: Analysis

x.load() | false | y.load() l false

x.store(true) y.store(true)

x.load() true y.load() true

yload() | false? x.load() | true

Z+4

@®® - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

Sequential consistency: Analysis

l x.store(true) l I x.load() I false l y.load() l false

y.store(true)

x.load() true y.load() true

y.load() true

Z4+4

false?

@®® - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LConsistency models "D‘D‘-‘4

Non-sequentially consistent orders

m There is no global order of events.
m Each thread may have a different view.
B Threads might not agree on the same order of events.
m But, ...

m All threads must agree in the modifications order for
each variable.

m Alternatives:

m relaxed ordering.
m release/acquire ordering.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |
LConsistency models "D‘D‘-‘j

Relaxed ordering

= memory_order_relaxed

m Relaxed operations on atomics do not participate in
synchronizes-with relationship.

m Operations on same variable in the same thread do fulfill
happens-before relationship.

m Accesses to an atomic variable within the same thread
cannot be reordered.

m Once a thread has seen a value from variable it cannot
see an older value of that variable.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

ARCOs [HJ
L consistency models [gnpay

Example

Data access

std :: atomic<bool> x, y; std:: atomic<int> z;

void () { x.store(true); l y.load() l false
x.store(true, std::memory_order_relaxed);
y.store(true, std::memory_order_relaxed);

1

void g() {
while (!y.load(std :: memory_order_relaxed)) {} yload() | true
if (x.load(std::memory_order_relaxed)) { ++z; }

}

int main() {

x=false; y=false; z=0;

std ::thread t1{f}; std::thread t2{g};
t1.join () ; t2.join ();

return 0;

}

x.load() ??

® - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LConsistency models "D‘D‘-‘4

Release/acquire ordering

® memory_order_acquire, memory_order_release,
memory_order_acq_rel.

m Intermediate level of synchronization.

m A release operation writing a value synchronizes-with
an acquire operation reading that value.

m Impact:

m Different threads may see different orders.
m Not all orders are possible.

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

Access

ARCOS | |

std :: atomic<bool> x, y;
std :: atomic<int> z;

void f() {
x.store(true, std::memory_order_release);

}

void g() {
y.store(true, std::memory_order_release);

}

void h() {
while (!x.load(std :: memory_order_acquire)) {}
if (y.load(std::memory_order_acquire)) ++ z;

void i () {
while (!y.load(std :: memory_order_acquire)) {}
if (x.load(std :: memory_order_acquire)) ++z;

Threads launching

int main() {
x = false;
y = false;
z =0;

std ::thread t1{f};
std ::thread t2{g};
std ::thread t3{h};
std ::thread t4{i };

1. join ()
2. join ()
3. join ()
t4. join ()

’
)
’
)

assert(z.load() !=0);
return O;

@®@®E - Computer Architecture — ARCOS Group - htt

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

L consistency models | giligmy g

Analysis

x.load(acquire) false { y.load(acquire)] false { y.store(true,release)]

—

l x.load(acquire) l true y.load(acquire) true

y.load(acquire) ? x.load(acquire) ?

x.store(true,release)

m multiple orders are possible as there is no relationship
acquire — release .

® - Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConsistency models

Combining orderings

ARCOS | |

[giging i

m An equivalent effect to sequential consistency can be

obtained with lower cost.

Access

std :: atomic<bool> x, y; std ::atomic<int> z;

void f() {
x.store(true, std::memory_order_relaxed);
y.store(true, std::memory_order_release);

}

void g() {
while (ly.load(std :: memory_order_acquire)) {}
if (x.load(std::memory_order_relaxed)) ++z;

int main() {
x = false; y = false; z = 0;
std ::thread t1{f}; std:thread t2{g};
t1.join (); t2.join ();
assert(z.load() !=0);

return 0;

[x.store(true,relaxed);) (y.load(acquire)] false

[y.store(true,release); J—» (y.load(acquire) J true

x.load(relaxed) true

®_

Computer Architecture — ARCOS Group

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LBarriers

Barriers

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS j—g
L Barriers | giligmy g

Barriers

m Force ordering without modifying data.

std :: atomic<bool> X, y; int main() {
std :: atomic<int> z; x = false;
y = false;
void () { z=0;
x.store(true, std::memory_order_relaxed);
std ::atomic_thread_fence(std::memory_order _release); std ::thread t1(f);
y.store(true, std::memory_order_relaxed); std ::thread t2(g);
} t1.join () ;
void g() { t2.join () ;
while (!y.load(std :: memory_order_relaxed)) {}
std :: atomic_thread_fence(std::memory_order_acquire); assert(z.load() !=0);
if (x.load(std::memory_order_relaxed)) ++z; : return 0;
}

@®®E - Computer Architecture - ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LBarriers

Barriers: Analysis

x.store(true,relaxed); l y.load(relaxed) l true
fence(release); l fence(acquire) l

y.store(true,relaxed); load() true

@®©® - Computer Architecture ARCOS Gr

http://www.arcos.inf.uc3m.es

Memory consistency in C++

LConclusion

A Conclusion

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS | |

LConclusion "D‘D":‘

Summary

m The C++ memory model defines the memory access rules
for a correct program.

m Allows portable programming with lock free data structures.
m Atomic types allow to perform memory operations
specifying an ordering.
m Default ordering is sequential consistency.
m Relationships synchronizes-with and happens-before
define constraints on operations ordering.

m Barriers allow to force orderings without modifying data.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LConclusion "D‘D‘-‘4

References

m C++ Concurrency in Action. Practical multithreading.
Anthony Williams.
Chapter 5.

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

Memory consistency in C++ ARCOS —H_-'_'

LConclusion "D‘D‘-‘4

Memory consistency in C++
Computer Architecture

J. Daniel Garcia Sanchez (coordinator)
David Exposito Singh
Francisco Javier Garcia Blas

ARCOS Group
Computer Science and Engineering Department
University Carlos Ill of Madrid

@®®E - Computer Architecture — ARCOS Group -

http://www.arcos.inf.uc3m.es

	Memory model
	Atomic types
	Ordering relationships
	Consistency models
	Barriers
	Conclusion

