LANGUAGE|ZNela 3% 101 &

UNIT 20: CODE

chm OPTIMIZATION

David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department ‘@ @@@\
Carlos 111 University of Madrid

Leganés (Spain)

Introduction

Code optimization
Basic Blocks
Where!?

Local Optimizations
Constant folding
Constant propagation
Algebraic simplification and re-association
Strength Reduction
Other Local Optimizations

Global optimizations

Live Variable Analysis

ucodm

David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Introduction

|deally, compilers should produce target code that is
good as can be written by hand, but rarely that is the
case.

OBJECTIVE: Transform a piece of code to make it
more efficient without changing its output (execution
speed and memory requirements).

One of the most interesting topics in compiler research.
Optimization should preserve the meaning of programs.

More an art than a science.

ucodm

3 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Principles of design:

» Correctness above all.

» Application: Intermediate or target code.
» Efficiency.

» Control-flow analysis.

-- ucadm

} 4 David Griol Barres Carlos Il University of Madrid dgriol@inf.uc3m.es

A basic block is a segment of the code that has exactly one
entry point and one exit point.

A basic block begins in one of several ways:
» The entry point into the function.
» The target of a branch (often a label).

» The instruction following a branch or a return.

A basic block ends in any of the following ways:
» A jump statement.
» A conditional or unconditional branch.

» A return statement.

} 5 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Local optimizations (within a basic block)

I. Constant folding

2. Constant propagation

3. Algebraic simplification and reassociation
4. Operator strength reduction

5. Copy propagation

6. Dead code elimination

7. Common subexpression elimination

o .

Global optimizations. Data flow analysis

} 6 David Griol Barres Carlos Il University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant folding
Expression: 3-(5+6)+4-A*10

Result: -4-(A*10) () (6) Fvaluation at

compile-time of
a expressions whose

operands are known

@ ° to be constant.
(A) @0

ucom

7 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

If a variable is assined a constant value:

» The subsequent uses of that variable can be replaced by the
constant as long as no intervening assighment has changed the
value of the variable.

} 8 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant propagation

b=5
c=4*b
c>b

£ t
d=b+2

e

e=-a+b

b=5 b=5
c=20 c=20
c>5 20>5

ucodm

David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Algebraic simplification
and re-association

An expression X OpP VY is redundant at a point p if it has already
been computed at some point(s) and no intervening
operations redefine X or V.

m = 2%y*z t0 = 2%y t0 = 2%y
m = t0*z m = t0*z
n = 3*y*z tl = 3*y tl = 3*y
n = tl*z n = tl*z
0O = y4 t2 :<:::>
o = t2-z o = 1t0-z
redundant

ucodm

10 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

Replaces an operator by a “less-expensive” one:
Example: Induction Variables in control loop iterations

t4 = 4*j
1 =1-1 1 =1-1
t4 = 4 * j t4 = t4 - 4
t5 = a[t4] t5 = a[t4]
iIfT t5 > v iIfT t5 > v

11 David Griol Barres Carlos 111 University of Madrid

ucodm

dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

while (1 <= Tlimit - 2) L1-
tl = limit — 2
if (i > tl) goto L2
body of loop

goto L1

L2:

t o=t -2 tl = limit — 2
while (I <= t) L1-

ifT (1 > tl1) goto L2
body of loop
goto L1

L2:

ucodm

12 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Copy Propagation: Generalization of the constant propagation.

Example:a=b = Replace the occurrences of a with b.

Dead Code elimination: Eliminate instructions that are never
used.

Common subexpression elimination: Instructions that
produce the same result (eliminate or unify code for not
computing again the same result).

} 13 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Global optimizations

Apply similar optimizations across basic blocks. Usually
one function at a time (Data-flow analysis).

Each block is a node in the flow graph of a program

ucodm

14 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Live Variable Analysis

A variable x is live at a point p if there is
some path from p where x is used
before it is defined. A\

Want to determine for some variable x / l N\
and point p whether the value of x
could be used along some path starting :

at p. \

ucodm

15 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

Global Live Variable Analysis

Code motion: Unify code common to one or more basic
blocks to reduce the code size and re-evaluations.

Machine optimizations: Take into account specific
machines features = code optimized for that machine.

Register allocation: Minimize traffic between registers
and memory > Register coloring.

ucodm

16 David Griol Barres Carlos 11 University of Madrid dgriol@inf.uc3m.es

	Número de diapositiva 1
	OUTLINE
	Introduction
	Code optimization
	Basic Blocks
	Where?
	Local Optimizations: Constant folding
	Local Optimizations: Constant propagation
	Local Optimizations: Constant propagation
	Local Optimizations: Algebraic simplification and re-association
	Local Optimizations: Strength Reduction
	Local Optimizations: Strength Reduction
	Other Local Optimizations
	Global optimizations
	Live Variable Analysis
	Global Live Variable Analysis

