
David Griol Barres
dgriol@inf.uc3m.es 

Computer Science Department
Carlos III University of Madrid 

Leganés (Spain)



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

OUTLINE
 Introduction
 Code optimization

 Basic Blocks
 Where?
 Local Optimizations
 Constant folding
 Constant propagation
 Algebraic simplification and re-association
 Strength Reduction
 Other Local Optimizations

 Global optimizations
 Live Variable Analysis

2



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Introduction

 Ideally, compilers should produce target code that is 
good as can be written by hand, but rarely that is the 
case.

 OBJECTIVE: Transform a piece of code to make it 
more efficient without changing its output (execution 
speed and memory requirements).

 One of the most interesting topics in compiler research.
 Optimization should preserve the meaning of programs.
 More an art than a science.

3



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Code optimization

 Principles of design:
 Correctness above all.
 Application:  Intermediate or target code.
 Efficiency.
 Control-flow analysis.

4



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Basic Blocks

 A basic block is a segment of the code that has exactly one 
entry point and one exit point.

 A basic block begins in one of several ways:
 The entry point into the function.
 The target of a branch (often a label).
 The instruction following a branch or a return.

 A basic block ends in any of the following ways:
 A jump statement.
 A conditional or unconditional branch.
 A return statement.

5



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Where?

 Local optimizations (within a basic block)
1. Constant folding
2. Constant propagation
3. Algebraic simplification and reassociation
4. Operator strength reduction
5. Copy propagation
6. Dead code elimination
7. Common subexpression elimination 
 …

 Global optimizations. Data flow analysis

6



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant folding
 Expression: 3-(5+6)+4-A*10

 Result: -4-(A*10)

-

*

A 10

+

3 +

5 6

- 4

-

*

A 10

-4

Evaluation at 
compile-time of  
expressions whose 
operands are known 
to be constant.

7



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant propagation

 If a variable is assined a constant value:
 The subsequent uses of that variable can be replaced by the 

constant as long as no intervening assignment has changed the 
value of the variable.

8



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

b = 5
c = 4*b
c > b

d = b + 2

e = a + b

b = 5
c = 20
c > 5

d = 7

e = a + 5e = a + b

tf tf

b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf

Local Optimizations: Constant propagation

9



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Algebraic simplification 
and re-association

An expression x op y is redundant at a point p if it has already 
been computed at some point(s) and no intervening 
operations redefine x or y.

m = 2*y*z t0 = 2*y t0 = 2*y
m = t0*z m = t0*z

n = 3*y*z t1 = 3*y t1 = 3*y
n = t1*z n = t1*z

o = 2*y–z t2 = 2*y
o = t2-z o = t0-z

redundant

10



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

 Replaces an operator by a “less-expensive” one:
 Example: Induction Variables in control loop iterations

j = j – 1
t4 = 4 * j
t5 = a[t4]
if t5 > v

j = j – 1
t4 = t4 - 4
t5 = a[t4]
if t5 > v

t4 = 4*j

11



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

while (i <=  limit - 2)

t := limit - 2
while (i <= t)

L1:
t1 = limit – 2
if (i > t1) goto L2
body of loop
goto L1

L2:

t1 = limit – 2
L1:

if (i > t1) goto L2
body of loop
goto L1

L2:

12



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Other Local Optimizations

 Copy Propagation: Generalization of the constant propagation. 
 Example: a=b  Replace the occurrences of a with b.

 Dead Code elimination: Eliminate instructions that are never 
used.

 Common subexpression elimination: Instructions that 
produce the same result (eliminate or unify code for not 
computing again the same result).

13



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Global optimizations

 Apply similar optimizations across basic blocks. Usually 
one function at a time (Data-flow analysis).

 Each block is a node in the flow graph of a program

14



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Live Variable Analysis

A variable x is live at a point p if there is 
some path from p where x is used 
before it is defined.

Want to determine for some variable x
and point p whether the value of x
could be used along some path starting 
at p.

is x live 
here?

15



David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Global Live Variable Analysis

 Code motion: Unify code common to one or more basic 
blocks to reduce the code size and re-evaluations.

 Machine optimizations: Take into account specific 
machines features  code optimized for that machine.

 Register allocation: Minimize traffic between registers 
and memory  Register coloring.

16


	Número de diapositiva 1
	OUTLINE
	Introduction
	Code optimization
	Basic Blocks
	Where?
	Local Optimizations: Constant folding
	Local Optimizations: Constant propagation
	Local Optimizations: Constant propagation
	Local Optimizations: Algebraic simplification and re-association
	Local Optimizations: Strength Reduction
	Local Optimizations: Strength Reduction
	Other Local Optimizations
	Global optimizations
	Live Variable Analysis
	Global Live Variable Analysis

