

1 Juan Manuel Alonso Weber

Practical Exercise: Development of a Recursive Descent
Interpreter

In this guided practical exercise, we will approach the design of an Interpreter with basic
resources to review the main concepts of a Recursive Descent Parser. To avoid dealing
with a large and complicated grammar, we will restrict the domain to the typical arithmetic
expression calculator. This way, we can obtain results with a reduced number of
production rules.

We will begin with a very elementary approach, and complicate it in successive steps:

1. A parser for very simple operations.
2. A calculator for very simple operations (Parser + Semantic Routines).
3. Inclusion of expressions with parentheses.
4. Inclusion of operator precedence, and unary signs.

2. A calculator for very simple operations (Parser + Semantic Actions)

We now need to elaborate Parser Analyzer that is able to check the syntactic correction
of the input, and in addition, to evaluate the sequence and return the numeric value of
the expression.

Let's address a simple solution. It implies that some functions return a value, for example
ParseNumber, ParseTerm, ParseExpression, and that the latter one is able to operate
with these values. One complication is that Expressions are split in two (Expression and
ExpressionRest), and we have to operate with values obtained in both. So, we would
need a mechanism to transmit a value from the first function to the second one (for
example, passing arguments). This will be avoided with a design decision.

There will be no change in the initial code. The changes start in ParseNumber().
Specifically, its type is changed from void to int and at the end the value stored in the
global variable number is returned. This can be done if ParseNumber() verifies that there
is a current token T_Number. The same applies for ParseTerm().

int ParseNumber ()
{
 MatchSymbol (T_NUMBER) ;
 return number ;
}

int ParseTerm () { // T ::= N returns the numeric value of the Term
 int val ;

 rd_lex () ;
 val = ParseNumber () ;

 return val ;
}

2 Juan Manuel Alonso Weber

For ParseExpression() and ParseExpressionRest() we take the decision to integrate the
code of the second function into the first one (instead of making the call to the second).
The changes involve the management of the values returned by ParseTerm() and
ParseExpression(). In the case of lambda derivation, the value of the term read last must
be returned. It is also necessary to store the read operator so it can be used later to
operate. For this the variables val, val2 and operator are defined.

int ParseExpression () // E ::= TE' U E' ::= lambda | E
{ // returns the numeric value of the Expression
 int val , val2, operator ;

 val = ParseTerm () ;

// ParseExpressionRes t() ; // we expand this function into ParseExpression()

 rd_lex () ; // ExpressionRest is a nullable Non Terminal
 if (token == '\n') { // Therefore, we check FOLLOW(Expression)
 return val ; // This means that lambda has been derived
 }
 switch (token) { // ExpressionRest derives in alternatives
 case '+' : // requires checking FIRST(ExpressionRest))
 case '-' :
 case '*' :
 case '/' : operator = token ; // remember the operator for later
 break ;
 default : rd_syntax_error (token, 0, "Token %d was read, but an Operator was expected");
 break ;
 }

 val2 = ParseExpression () ; // At this point the input has been parsed correctly
. . .

At the point after:

 val2 = ParseExpression () ; // At this point the input has been parsed correctly

we know that the parsing has been satisfactory, with which we can proceed to calculate
the value of the expression. Therefore, the switch / case is repeated for calculating the
corresponding operations. The default option has been included to detect an "unlikely"
error.

. . .
 switch (operator) { // This part is for the Semantic actions
 case '+' : val += val2 ;
 break ;
 case '-' : val -= val2 ;
 break ;
 case '*' : val *= val2 ;
 break ;
 case '/' : val /= val2 ;
 break ;
 default : rd_syntax_error (operator, 0, "Unexpected error in ParseExpressionRest for
operator %c\n") ;
 break ;
 }

3 Juan Manuel Alonso Weber

 return val ;
}

A last minimal change corresponds to the main() function that will now print the value of
the evaluated expression:

int main (void) {

 while (1) {
 printf ("Value %d OK\n", ParseExpression ()) ;
 }

 system ("PAUSE") ;
}

Now we can test the program on the following sequences:

1+2*3
Value 7 OK
3*2+1
Value 9 OK
3
Value 3 OK

ERROR in line 5 token 10 expected, but 1001 was read

