Session 18
Amplifiers with FET transistors - Exercises

Electronic Components and Circuits
Enrique San Millán / Celia López
FET transistor amplifier configurations

Goals:

• Analysis of small-signal circuits corresponding to single-stage FET amplifiers:
 – Common-Source.
 – Common-Drain.
 – Common-Gate.
Amplifiers characteristic parameters

- Voltage Gain, A_v and G_v

 \[
 A_v = \frac{V_o}{V_i} \quad G_v = \frac{V_o}{V_g} \quad A_i = \frac{i_o}{i_i}
 \]

- Current Gain, A_i

- Input resistance, R_{in}

 \[
 R_{in} = \frac{V_i}{i_i}
 \]

- Output resistance, R_{out}

 \[
 R_{out} = \frac{V_o}{i_o}
 \]
Measuring Input Resistance

\[R_{in} = \frac{V_t}{i_t} \]

\[R_i = \frac{V_t}{i_t} \bigg|_{R_L \to \infty} \]
Calculating Output Resistance

\[R_{out} = \frac{V_t}{i_t} \bigg|_{V_g=0} \]

\[R_o = \frac{V_t}{i_t} \bigg|_{V_t=0} \]
Small-signal equivalent circuit
(low and medium frequencies)

- With MOSFETs

\[g_m = \left. \frac{\partial i_D}{\partial V_{GS}} \right|_{v_{ds} = v_{DSQ}} = 2K(V_{GS} - V_t) \]

\[r_o = \frac{V_A}{I_D} \]

- With JFETs

\[g_m = \left. \frac{\partial i_D}{\partial V_{GS}} \right|_{v_{ds} = v_{DSQ}} = -2 \frac{I_{DSS}}{V_p} \left(1 - \frac{V_{GS}}{V_p} \right) \]
Analysis of small-signal amplifier circuits

METHODOLOGY

1. Analyze the biasing circuit (DC), removing all power sources (superposition) and considering the coupling and decoupling capacitors as open-circuits. Find the bias point.

2. Find the transistor small-signal parameters (from the bias point voltages and currents).

3. Represent the small-signal equivalent circuit of the devices and the external circuit, removing the DC sources (superposition) and considering the capacitors at medium frequencies.

4. Find the amplifier characteristics.
Single-stage MOS amplifiers

- Common-Source amplifier
- Common-Drain or Source-Follower configuration
- Common-Gate amplifier
Class exercise 1

Data:
$V_{CC} = 10V$
$R_{G1} = 100K\Omega,$
$R_{G2} = 100K\Omega,$
$R_S = 1k\Omega,$
$R_D = 330\Omega$
$R_L = 10k\Omega$
$R_f = 50\Omega$
$K = 1 \text{ mA/V}^2$
$|V_A| = \infty$
$|V_t| = 3V$

a) Find the bias-point values: I_D, V_G, V_S and V_D
b) Find the small-signal parameter g_m
c) Find R_i, R_o and A_{v_o} for this amplifier
d) Find the circuit gain A_v considering R_f and R_L
Class exercise 2

Data:
\(V_{CC} = 20\,V \)
\(R_{G1} = 39\,K\Omega, \)
\(R_{G2} = 160\,K\Omega, \)
\(R_{S} = 1\,K\Omega, \)
\(R_{D} = 1.1\,K\Omega \)
\(R_{L} = 1\,k\Omega \)
\(R_{f} = 50\,\Omega \)
\(|V_{p}| = 5\,V \)
\(|V_{A}| = \infty \)
\(I_{DSS} = 20\,mA \)

a) Find the bias-point values: \(I_{D}, V_{G}, V_{S} \) and \(V_{D} \)
b) Find the small-signal parameter \(g_{m} \)
c) Find \(R_{i}, R_{o} \) and \(A_{v_{o}} \) for this amplifier
d) Find the circuit gain \(A_{v} \) considering \(R_{f} \) and \(R_{L} \)