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Introduction

This chapter provides an introduction to the subject, covering the basic theoretical principles
used in the design and analysis of communication systems. The chapter begins by defining what
a communication system is, listing the basic functional elements, and briefly describing the main
function of each of them. Then, some general classifications of communication systems into dif-
ferent types are made, and various aspects related to the design and analysis of a communication
system are discussed, to conclude by presenting the objectives of the subject and its contents.

Definition of a communication system

The purpose of a communications system is the transmission of information between two points
separated by a distance but physically linked by some physical structure (natural or artificial)
that can be used for it.

Transmission can therefore be defined as the process of sending or transporting information from
one point (source) to another point (destination) through a channel or transmission medium, as
illustrated in Figure[]].

Transmitted Received
information information

s(t) r(t)
Source Transmission medium Destination

Figure 1: General representation of a commuunication system.

The transmission medium can be any element that allows information to be sent between a
source and a destination: a pair cable, a waveguide, a coaxial cable, an optical fiber, or the
atmosphere itself (using the entire radio spectrum) are some common examples. However, some
storage devices, such as CD-ROMs, DVDs, etc., that allow information to be transported between
two points, can also be considered transmission media.

In general, the physical manifestation of the information is not adequate to transmit it directly
through the transmission media. Typically, it is necessary to process the physical manifestation
of the source in order to efficiently introduce the information that it contains into the medium or
channel. Most transmission media are designed to transmit electrical or electromagnetic signals,
while the physical manifestation of the sources is in many cases not electrical in nature. To
take a simple example, in an audio source (voice, music, etc.), the physical manifestation of the
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information consists of acoustic pressure waves traveling through the air. In order to be able to
transmit this type of information, it is first necessary to convert the physical manifestation of the
information into an electrical signal on the source side. This is done using a transducer. The
classic example of a transducer for audio signals is a microphone, which converts acoustic pressure
waves into an electrical signal representing the variation of sound pressure over time. Figure
shows an example of an electrical signal associated with a voice signal.

Figure 2: Example of an electrical signal associated to a voice signal.

Once the physical manifestation of the information has been converted into an electrical signal
suitable to represent it, this electrical signal will be processed by the communications system, and
sent over a particular transmission medium. At the receiving end it is further processed to convert
the received electrical signal into the corresponding physical manifestation of the information.

Basic functional elements in a communication system

The previous section defined a communication system and briefly described the basic steps that
must be followed to transmit information between two points. In this section, these elemen-
tary steps will be specified in the definition of the basic functional elements that are part of a
communication system.

A communications system is made up of many elements, but from a functional point of view,
the basic elements are the five shown in Figure

e Source of information
e Transmitter

e Channel

e Receiver

e Destination of the information

Each of these functional elements is briefly described below.

Information Source

As its name implies, the information source generates the information to be transmitted to the
other end of the communication system. The message to be transmitted is the physical manifes-
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[Perturbations}
Channel

Figure 3: Functional block diagram of a communication system.

tation of the information produced by the source. As mentioned earlier, regardless of the type
of source, it is common for a transducer to convert the information into an electrical signal that
represents it (e.g., a microphone converts an acoustic signal into an electrical signal, or a video
camera converts a sequence of images into another electrical signal).

There are many kinds of information sources. If they are classified according to the format
in which the information is represented, they can be classified as analog or digital sources. An
analog source produces information that manifests itself in continuous variations of some kind
of physical quantity. Some examples would be the pressure in the air when you speak or the
continuous change in temperature of a thermometer over time. With this type of source, the
message to be transmitted is represented by a continuous waveform that represents the variation
of the corresponding physical quantity, as in the example of the voice signal in Figure 2] In a
digital source, on the other hand, the information is represented by a set of symbols belonging to
a finite alphabet, sent sequentially at discrete time intervals (a symbol is sent every 7' seconds).
Examples of this type of source would be text files, where the alphabet consists of the possible
characters that can appear in the text, or binary data systems, where the information is encoded
as a sequence of ones and zeros (binary alphabet, {0,1} or bits).

Transmitter

The function of the transmitter is to convert the information signal or message, regardless of
its format, into an electrical or electromagnetic signal suitable for transmission over the physical
medium used by the system to carry out the communication. This medium is usually referred
to generically as the communication channel. In order to perform this task efficiently, relative
knowledge of the channel is required: for example, it is necessary to know how much the medium
will attenuate the transmitted signal in order to amplify it sufficiently, or in which frequency range
the medium will allow the transmission to be performed with the least distortion. The transmitter
uses this relative knowledge of the channel to generate a signal that matches the characteristics
of the channel so that the signal suffers as little distortion as possible during transmission.

The process by which the transmitter adapts the signal to the characteristics of the channel is
generically called modulation. The process to be carried out depends on several factors, such as the
nature of the information source, the specific characteristics of the channel, the required features
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or the available resources, in particular the available energy at the transmitter and the available
bandwidth on the channel, but there are some general aspects that can be discussed at this time.
Regarding the frequency range of the signal to be transmitted, two different operating strategies
can be adopted: baseband transmission or bandpass transmission. In a baseband transmission,
the signal is transmitted in the same frequency band that it naturally occupies, which is usually
low frequencies. In a bandpass transmission, the frequency range occupied by the signal spectrum
is modified. The signal is processed so that its frequency response is transferred to another
frequency band centered around a certain center frequency (w. rad/s or f. Hz), which may be
more appropriate for transmission for various reasons.

Channel

The physical medium used to transmit the signal from the transmitter to the receiver is generally
referred to as a channel. There are several types of media that can be used to transport signals
in a communications system. The most common are cables of various types, such as pair cables
used in traditional telephone systems or coaxial cables used in television systems, waveguides, fiber
optics, and the radio spectrum, where the medium is the atmosphere itself and the electromagnetic
energy carrying the information is introduced or extracted from it through the use of antennas.
An important aspect to take into account in this last transmission medium is that the medium
is unique and therefore shared among all its potential users. This means that, in practice, it
is a scarce resource and that access to it is regulated by public administrations; otherwise, the
interferences between the different users trying to use it in an unregulated way would make its
efficient use impossible.

Each physical medium has its own characteristics, but regardless of the physical medium, a
communication channel will always introduce a series of perturbations or distortions on the signals
during their transmission. In the best case, in what could be considered an ideal scenario, the
channel will introduce two effects into the transmitted signals: a delay and an attenuation; both
effects are inherent to the transmission of electrical or electromagnetic signals over a medium:

e The signals suffer an attenuation when they propagate through any medium.

e [t takes a certain time for signals to travel a certain distance through any medium.

If only these two effects appear during transmission, the received signal r(¢) can be written in
terms of the transmitted signal s(t) as

r(t) = C s(t —to),

where the constant C' < 1 defines the attenuation and ¢, the delay. These two effects are inherent
to the transmission of electromagnetic signals and therefore unavoidable, but in most cases they
are not problematic. The attenuation can be compensated by amplification with a gain factor
of G = 1/C. As for delay, if it is within reasonable limits, it usually does not have a significant
effect, and given the speed of transmission of electromagnetic signals in most applications, it is
not a problem in practice. Therefore, a medium that includes only delay and attenuation could
be considered a system with ideal response.

However, in addition to these two effects, other types of undesirable effects will appear in
practice, mainly linear distortion, non-linear distortion and noise, especially thermal noise, which
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is always present in the transmission of electrical or electromagnetic signals due to the inherent
thermal motion of charge carriers (electrons, photons,...).

In this subject, due to its introductory nature, only linear distortions and thermal noise will be
considered, and nonlinear distortions will not be taken into account. In this case, the model to
be used for the linear distortion is a time-invariant model characterized by an impulse response
in the time domain, h(t), and the corresponding representation of this response in the frequency
domain, H(jw). The relationship between the response of the system in the time and frequency
domains is given by the Fourier transform

H(jw) = FT{h(1)} = /_ () e dt

h(t) = FT {H(jw)} = % /OO H(jw) e dw.

Considering the linear distortion and noise, the communication channel model will be the so-called
linear channel model, which is given by the relationship

r(t) = /OO s(1) h(t — 1) dr + n(t) = s(t) = h(t) + n(t),

o0

and that is shown conceptually in the block diagram of Figure |4} the channel output is the result
of a linear distortion given by h(t)/H (jw) and the sum of the noise n(t).

s(t) r(t)

I )/ H ) %

Figure 4: Usual channel model.

Note that the effect of delay and attenuation can be included in the impulse response of the
system. In particular, an ideal system without linear distortion of the signal and without noise,
which produces on the transmitted signal only an attenuation given by a factor C' < 1 and a delay
tg, so that the received signal

r(t) = C s(t —ty),

can be modeled by using a linear system with response

h(t) = C 6(t — to) + H(jw) = C e %%,

Receiver

The receiver must recover the original information signal (message) from the received signal.
Since this signal has undergone some distortion during transmission (in the channel model above,
linear distortion plus the effect of noise), it may not always be possible to accurately recover
the transmitted information signal. The receiver must be designed to recover the information
signal with the highest possible fidelity, given the distortions that the signal has undergone during
transmission. The way this fidelity is measured depends on the type of information signal being
transmitted. If the information being transmitted is in analog format, the goal is for the waveform

OCW Universidad Carlos III de Madrid 5 Marcelino Lazaro, 2023
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of the received signal to resemble that of the transmitted signal as closely as possible, and the
usual way to quantify this resemblance is by what is called the signal-to-noise ratio (SNR or S/N).
This ratio measures the ratio among the energy or power of the transmitted signal and the energy
or power of the difference between the transmitted and received signals (which is considered noise).
If the format of the information transmitted is digital, the objective is to receive the least number
of erroneous symbols that represent the information, so that the fidelity is quantified with an
error probability, of symbols or of bits in binary systems, BER of Bit Error Rate. In any case, the
receiver must generally perform the following tasks:

e Demodulate the signal, which means undoing all the transformations that were made in the
transmitter to condition the signal for its transmission through the communications channel,
such as returning the signal to its original frequency band if a bandpass transmission.

e Minimize the effect of noise on the information signal.

e Compensate, if possible, the linear distortions introduced by the channel.

As with the transmitter, the way these three tasks are performed depends on many factors, such
as the format of the information being transmitted or the bandwidth being used. Throughout the
course, we will see how these functions materialize for the different types of modulation.

Analog and digital communications systems

Similar to how information sources have been classified according to the format of the informa-
tion they produce, leading to the distinction between analog and digital sources, communication
systems can also be classified according to the format in which they transport information into
two broad types: analog systems and digital systems. An analog communication system sends
information encoded in a particular continuous waveform, while a digital system sends information
encoded in a sequence of symbols sent sequentially at a particular rate (Rs symbols per second).
The most common case is binary systems, where the information is contained in a sequence of
bits (ones and zeros) sent at a certain bit rate (R, bits per second).

It is important to note that an analog/digital communication system is not limited to trans-
mission from a source of the same type (analog/digital). In particular, an analog signal can be
digitized, converted to a sequence of bits at a given rate, and then converted back to analog
(analog-to-digital, or A/D, and digital-to-analog, or D/A, conversion processes). The analog-to-
digital conversion of a signal consists of two steps. An analog signal is continuous both in time and
in the range of possible amplitudes (there is continuity in the two axes of the time representation
of the signal, as shown in Figure . To convert it to digital format, the signal is discretized both
in time and in amplitude, as also shown in the figure:

e From continuous time to samples of the signal in discrete time through periodic sampling

sln] = s(1)] = s(nTn),

t=nTy, -

where T, is the sampling interval. If the signal s(¢) is band-limited, with a bandwidth of B
Hz, the well-known Nyquist theorem for sampling shows that there is no loss of information
in the sampling process; this means that it is possible to recover the original signal from
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its samples by interpolation with sinc-functions (which is equivalent to interpolation with
a low-pass filter of the bandwidth of the signal). To do this, it is only necessary to ensure
that the sampling interval 7,, is small enough to guarantee that its inverse, the sampling
frequency, is at least twice the bandwidth of the signal expressed in Hz.

1

7= fm samples/s > B Hz.

e After sampling, digitization is completed by quantizing each of the resulting samples with
n bits. The figure shows an example of a 3-bit quantization, in which the dynamic range of
the signal is divided into 8 possible values (since 3 bits allow the representation of 23 = 8
values). In this step, a distortion of the information signal occurs because the original values
of the signal in each sample (yellow circles in the figure) are passed to the closest quantized
value (blue circles in the figure). This effect is known as quantization noise.

The process of converting an analog signal to digital therefore produces a sequence of bits. The
rate of said sequence will be given by the product between the sampling rate and the number of
bits per sample

Ry, bits/s = f,, (samples/s) x n (bits/sample).

0 Ts 2Ty 3Ts AT 5T,  6Ts 7Ty 8T, 9T, 10Tt
= z[n] = z(nTs) ® = z4[n] = quant(z[n])
100
101
111
110 @
010
011
001 ? .
000 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 n

By[¢] =110 100 100 110 010 110 101 110 001 001 110 - - -

Figure 5: Analog-to-digital (A/D) conversion: from a signal to a bit sequence.

Although there is always some distortion of the information signal due to the quantization noise,
this distortion can be negligible in many cases. All you have to do is use a sufficient number of
bits per sample. If the number of bits is increased, the number of quantization levels will be
2" where the difference between levels within the range of the signal will progressively decrease
as n increases, arriving at a moment when the distortion due to quantization will be practically
negligible when reconstructing the signal in continuous time by interpolating with sincs (low-pass
filtering). The cost of reducing distortion by increasing the number of bits per sample is an
increase in the bit rate of the bit sequence resulting from the A/D conversion.

The current trend is for analog sources not to be transmitted using an analog communication
system, but to be converted to digital format, transmitted using a digital communication system,
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and finally converted back to analog format. This is because, although each type of system has
its advantages and disadvantages over the other, the advantages of digital systems generally out-
weigh their disadvantages for most applications. This means that digital communication systems
currently have a clear advantage over analog communication systems. The advantages of digital
systems over analog systems that have made them clearly dominant will be discussed in detail in
Chapter |3 which is devoted to the study of digital communication systems.

Although it is also possible to transmit digital information using analog communication systems,
this option is much less common, and in practice is limited to a few systems with very specific
requirements.

Design of a communications system

There are many factors to consider when designing a communications system. Some of the most
important are:

e Quality or services that are required.
e Use of resources.
e Economic cost.

e Technology that is available for the implementation.

Each of these factors will be briefly discussed below.

Required quality

Among the specifications of a communication system, one of the most important is the quality
required. The design of the system must be aimed at achieving the specified quality within the
constraints imposed by the available resources and at the lowest possible cost, without in any case
exceeding the maximum cost that can be assumed for the system. Of course, there is always a
compromise between these factors; the greater the resources available, the higher the quality that
can be achieved.

The way to specify the quality of a communication system is different depending on the type of
system. For analog communications systems, quality is tied to the fidelity of the received signal:
the received signal should be as close as possible to the originally transmitted signal. As discussed
earlier, the transmission process introduces distortion and interference, primarily thermal noise.
This assumes that the received signal will be different from the original signal. To measure how
faithful a signal is, the signal-to-noise (S/N) ratio is usually used as a figure of merit, which gives
us the relationship between the power of the signal and the noise.

In some cases, when using this measure, the combined effect of all the distortions that occur
on the transmitted signal is considered to be noise, i.e., the difference between the transmitted
signal and the received signal. In fact, it includes the effect of noise and other linear or nonlinear
distortions that occur. For this reason, it is also referred to as the signal to noise ratio. Obviously,
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the higher the value of this signal-to-noise (or distortion) ratio, the higher the quality of the
system.

On the other hand, in digital communication systems, since the information is contained in a
sequence of symbols of a finite alphabet (usually binary, ones and zeros), the figure of merit that
is usually used to quantify the quality of the system will be the error rate (or error probability) of
the symbols or bits (in this case it is commonly known by the acronym BER, from Bit Error Rate
or Bit Error Ratio). Obviously, the lower this error rate or probability, the higher the quality of
the digital system.

Available Resources

The resources available to the communications system are critical in limiting the maximum achiev-
able performance. Of the resources to consider, bandwidth and power are usually the most im-
portant.

Bandwidth will, in practice, be limited in most applications. Either due to physical limitations,
given the limited bandwidth of some of the common transmission media, such as cables, or due
to administrative limitations, basically when transmitting over the radioelectric spectrum, since
the use of this shared medium is completely regulated.

The bandwidth is related to the quality of the signal. In analog systems, more precise appli-
cations require more bandwidth. There are two main reasons for this. In some cases, the actual
bandwidth of analog signals may be greater than the bandwidth available for transmission, so
signals must be filtered to reduce their bandwidth before transmission. In this situation, the more
frequency components that are eliminated (as the bandwidth is reduced), the greater the distortion
of the information signal. In other cases, one of the ways to reduce the effect of noise is to spread
the spectrum of the signal so that there is some redundancy in the transmitted signal. The more
the bandwidth of the signal is increased, the greater the protection against noise that is obtained
during transmission. This will be seen in more detail when we analyze the benefits of what are
known as angle modulations, or phase and frequency modulations. In digital systems, bandwidth
refers to the maximum transmission rate that can be obtained with minimum characteristics, so
the greater the bandwidth, the greater the transmission capacity (transmission at a higher speed).

Cost of existing system and technologies

The cost of the system is another factor to consider when designing it, since there is usually a
target cost or a maximum cost that cannot be exceeded. This cost is related to the technologies
used in the implementation of the transmitters and receivers and in the choice of the transmission
medium to be used. Therefore, when deciding on some design options, knowledge of the possible
technologies to be used and their corresponding costs will be an important aspect.

Despite this importance, this subject will not deal with this aspect, as it is outside the objectives
of the subject, which, as we will see in the next section, is more theoretical than practical and will
focus on the basic theoretical aspects that govern the operation of a communication system.
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Objectives and organization of the course

After a brief introduction to communication systems, this final section of the chapter presents the
basic objectives of the subject and the organization of its content to achieve those objectives.

Course objectives

This subject attempts to establish the fundamental theoretical principles that are applied in the
design and analysis of communication systems, both analog and digital. For this purpose, the
mathematical characterization of a communication system and of the signals present in it, both
transmitted signals and interfering signals such as noise, will be essential. This characterization
will allow the analysis of a communication system and the derivation of the theoretical principles
that define the optimal design of each of the various functional elements that make it up. In
particular, the following fundamental objectives can be established

e To introduce the statistical characterization of signals related to communication systems,
information signals and, in particular, thermal noise, which is always present in the trans-
mission of an electromagnetic signal.

e To introduce the concept of modulation in analog communication systems and to study the
most common types of modulation: amplitude modulation and angle (phase and frequency)
modulation.

e To form the core knowledge base for digital communications, presenting in a simplified way
the concept of digital modulation, transmission over Gaussian channels, where the main
element of distortion is thermal noise, and studying the basic theoretical principles to design
a digital demodulator, applying the statistical principles of decision theory and the vectorial
representation of signals. Finally, information theory principles will be used to obtain some
of the fundamental limits that can be reached in a digital communication system.

Course organization

In order to meet the objectives presented in the previous section, after this brief introduction the
subject has been organized into the following chapters:

1. Noise in communication systems
This chapter presents the statistical characterization of the signals in a communications
system, and in particular the thermal noise signal, which is always present as a distortion
element in the transmission of electrical or electromagnetic signals. To carry out this char-
acterization, some basic concepts of random variables and random processes are reviewed in
order to present the statistical model commonly used to model thermal noise. This model
is used to calculate the signal-to-noise ratio in the transmission of an information signal.

2. Analog modulations
This chapter introduces various modulation techniques used in analog communication sys-
tems. In particular, the most common types of amplitude modulation and phase and fre-
quency angle modulation are introduced. For each type of modulation, its description in the
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time domain, its spectral characteristics, and its power requirements are presented. Finally,
the behavior of each modulation against noise is analyzed, evaluating the signal-to-noise
ratio obtained with each of them.

3. Modulation and detection in Gaussian channels
This chapter presents the basic principles that govern the design and analysis of a digital
communications system. It introduces the concept of digital modulation as a mechanism
for transmitting digital information over analog channels, and the concept of detection as a
mechanism for recovering the transmitted digital information from the analog signal received
over the communication channel. The simplest model of this channel is used: a Gaussian
additive channel.

4. Fundamental limits in digital communications systems
Finally, the last chapter presents some of the fundamental limits that can be reached with
a digital communication system. In particular, it examines how to calculate the maximum
amount of information that can be reliably transmitted by a digital communication system,
known as the channel capacity. Obtaining this limit is based on the application of information
theory and the use of quantitative information measures, which are presented in this chapter
as tools for the analysis of digital communication systems.

Recommended bibliography

There are excellent books on communication systems. For this course, only a small number of
them are recommended, which adequately cover all the contents of the course, in order to avoid
an excessive number of references for the student. Also with this objective, a distinction has been
made between what is called the basic bibliography, where there are two references that cover all
the contents of the subject, and what is called the supplementary bibliography, where texts are
cited that allow going deeper into some of the contents of the subject beyond its own objectives.
These bibliographical references are presented below, with a brief commentary on each one.

Basic bibliography

1. A. Artés et al. “Comunicaciones Digitales”, Pearson Education, 2007

Althought it is written in Spanish, the first basic reference is this excellent book, written by
several university professors, oriented towards its use as a learning manual, which is why it is
very appropriate as a reference for the subject. This book fundamentally deals with digital
communications systems with a clear focus on the contents usually covered in degrees related
to Telecommunications Engineering. Chapter 3 covers most of the contents of chapter 1 of
the course. Chapter 4 and Chapter 9 cover, respectively, all the contents of chapters 3 and
4 of the subject.

This book is available online through the website of its first author, Professor Antonio Artés
Rodriguez, from the Carlos III University of Madrid.

e Available online: [www.tsc.uc3m.es/~antonio/libro_comunicaciones|

2. J.G. Proakis and M. Salehi. “Communication Systems Engineering” (2nd Ed.), Prentice-
Hall, 1994
This is another excellent text on communications systems, both digital and analog. Its
compact notation and its modularity facilitate the task of monitoring the contents of the
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subject despite its different sequencing with respect to the one followed in the subject.
Chapters 4 covers the contents of chapter 1 of the subject; Chapters 3 and Chapter 5 cover
the contents of chapter 2 of the subject; and finally Chapter 6 and Chapter 9 do it with
those of chapter 4. Although Chapter 7 covers many of the contents of chapter 3 of the
subject, in this case the approach is slightly different from that followed in the subject.

Suplementary bibliography

1. A. Papoulis. “Probability, random variables, and stochastic processes”, (3rd Ed.), McGraw-
Hill, 1991
One of the reference books on the foundations of probability theory and stochastic processes.
An excellent reference for all the statistical concepts that are handled in the subject.

2. A.B. Carlson. “Communication Systems” (2nd Ed.), McGraw-Hill, 1986
Classic introductory text to analog and digital transmission. Basically, it consists of three
parts: the first introduces the basics of random signals and processes; the second covers
analog communications, while the third part is devoted to digital communications. The
development of analog communications is simple and intuitive and is illustrated with block
diagrams of systems and basic electrical circuits.

3. S. Haykin. “An Introduction to Analog and Digital Communications”, Willey, 1989
Another classic text that deals with analog and digital communication systems, although in
this case with a clear emphasis on the latter. It is an interesting book for the introductory
treatment of communication theory and the mathematical nature of its formulation.

4. B. Sklar. “Digital communications : fundamentals and applications”, Prentice Hall, 2001
Advanced book on digital communications, interesting for those students with a basic train-
ing in probability theory. It presents an excellent introduction to signal fundamentals, signal
spectrum, and baseband transmission. From this introduction, the book presents multiple
variants of modulations and modulation techniques that, although they go beyond the ob-
jectives of this subject, may be of interest to a student who has taken it.

5. T.M. Cover and J.A. Thomas. “Elements of Information Theory”. Wiley. 2006
Classic book on Information Theory, surely the most frequent reference in this field. The
most common quantitative measures of information are introduced, such as entropies or
mutual information, and some applications of them are presented.
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Chapter 1

Noise in the communication systems

In any communication system, there are several types of signals. Some signals are deterministic.
Others, however, are random in nature, since their specific value at a given time is not known a
priori, but only their statistical parameters. Examples of this type of signal are:

e The signals that carry the information to be transmitted. Every information signal has a
certain degree of uncertainty. If this were not the case, it would not really contain information
(e.g., if the receiver knew precisely the signal to be transmitted, it would not be necessary
to transmit it).

e The thermal noise that always appears in the transmission of electromagnetic signals.

Random processes are used to characterize signals of this type, where some of their statistical
properties are known, but not their specific values at a given time.

On the other hand, the information to be transmitted is, by its nature, also modeled by random
processes. This is because any information signal must have some degree of uncertainty. If it does
not, it contains no information.

For this reason, this chapter will use the theory of random processes to characterize communi-
cation signals and, in particular, thermal noise. Modeling this noise will be fundamental to the
design and analysis of communications systems, since thermal noise is one of the main sources of
distortion that occurs in any communications system. We will also analyze how linear systems
affect the statistical parameters that define a process, and finally we will study the signal-to-noise
ratio under different circumstances in a communications system.

Before turning to the use of random processes as a tool for characterizing signals in a commu-
nications system, we will briefly review some concepts related to probability, random variables,
and random processes. Although these concepts would be part of the previous topic of Statistics,
they are included here for completeness.

1.1 Probability

In this section, we will briefly review some of the basic concepts of probability theory. We will
focus on those aspects that are necessary for the treatment of random processes in the field of
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communications signal modeling.

Probability theory deals with mass phenomena. There are countless examples: games of chance,
the motion of electrons, birth and death rates, etc. Probability theory tries to establish averages
for such phenomena. In particular, its purpose is to describe and predict these averages in terms
of probabilities of events.

1.1.1 Probability space

Before we can define what a probability space is, it is necessary to make several definitions.

Random experiment

The fundamental concept upon which probability theory is based is the random experiment. A
random experiment is one whose outcome cannot be accurately predicted. Flipping a coin, rolling
a die, drawing a card from a deck, or measuring the voltage across a pair of copper wires are some
examples of random experiments.

Sample spaces

Every random experiment has certain output values, or possible outcomes of the experiment. In
the case of a coin toss, that the figure facing up is heads or tails, in the case of a die, that the
number of points on the face facing up is 1, 2, 3, 4, 5 or 6. The sample space is defined as the set
of all possible outputs of an experiment. It is usually denoted by the Greek letter omega, (2.

In nature, there are two types of sample spaces:

e Discrete, when the experiment has as possible outcomes a finite number of possible values,
or a contable infinite number of values.

e Non-discrete (or continuous), when the sample space corresponds to continuous sets of pos-
sible values (or in other words, the number of possible output values is uncountable infinite).

Examples of the former are the die or coin mentioned above. In that case the sample space is for
the coin heads and tails, in the case of the die, 1, 2, 3, 4, 5 and 6. An example of a random variable
with a continuous sample space is the value of the voltage across a resistor, which can take any
value within a range of voltage values. In this case the sample space is the entire continuous set
of possible values.

There are also mixed spaces, with part discrete sample space and part continuous, although
they will not be discussed in this chapter.

Events

An event is a subset of the sample space over which it is possible to define a probability. For this
probability measure to make sense, it must satisfy a number of conditions, which will be discussed
a little later. First, let us see what is meant by a probability.
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The probability of an event E is a number, P(E), non-negative, defined between 0 and 1
(0 < P(E) < 1), assigned to this event and describing how probable or improbable this event is.
This number can be interpreted as

If a given experiment is performed a number N of times (assuming N is sufficiently large), and
event A occurs N, times, then we can say that the probability will be fairly close to the ratio
N A / N:

Ny

P(A) ~ —=

(4) = —

This may be an intuitive definition of probability, i.e., a measure that tells us how often an event

occurs when a given experiment is performed.

In the case of discrete spaces, the idea is simple. What is the probability that a die will roll a 57
If the die is not tricked, this probability is 1/6. But in the case of continuous spaces, there is an
important nuance to keep in mind. For example, what is the probability that the voltage across
a resistor is 1 volt? The answer is 0. Although this may seem counterintuitive, the explanation
is that the set of values it can take is infinite, so the probability of having any of them is zero.
In short, it is not possible to define a probability for a particular value. What is possible is to
define the probability that the voltage value is in a certain interval, say between 0.99 and 1.01
volts. This event has a probability associated with it.

Thus, in experiments with discrete sample spaces, the events must consist of a subset of the
sample space, including single-element events. In the case of continuous sample spaces, each event
must have a probability, so an event must be a “region” of the sample space (not a single value).
The sigma field, denoted by B, is usually defined as the collection of subsets of €2, that is, the set
of all possible events.

Some definitions of events that may be useful are the following:

e Trivial event: it is the event that occurs in every experiment, i.e., its probability is 1.
e Null set (@): The one that does not have any element.
e Event union (F; U E5): it is the event that occurs when Ej, E; or both occur.

e Event intersection (E; N Ey): the event that occurs when events E; and Es occur at the
same time.

e Exclusive or disjunct events: those for which E; N Fy = &. For them it is satisfied that

e Complement of an event (E°€): the sample space minus the event itself, i.e., the one that
satisfies that
FUE‘=Q, ENE ' =02.

Probability space

The probability space is defined as the triplet (2,8,P); that is, the sample space, the space with
the different events and the probability measure that indicates the probability of each event. Some
of the properties that the probability measure on events must satisfy are the following:

OCW Universidad Carlos III de Madrid 15 Marcelino Lazaro, 2023



Universidad
Carlos I

de Madrid Communication Theory @020

ucdm

1. P(E°)=1- P(E).
2. P(@)=0.
3. P(E,UE,) = P(E\)+ P(E,) — P(E, N E,).

4. If By C E, then P(E;) < P(Ej).

1.1.2 Conditional probability

Suppose there are two events, F; and Fs, defined on the same probability space with corresponding
probabilities P(E;) and P(E;). These probabilities are sometimes referred to as the a priori
probabilities of each event. If one of the events is known to have occurred, say FEs, this can give us
some information about the other event, which changes its a priori probability (without knowing
that either event has occurred). This new probability is called the conditional probability. The
conditional probability of the event E; given the event Fs, denoted as P(E;|FEs) is defined as:

P(EL N Ey) P(Ey) £0
P(E\|E;) = P(Ey) 2
0, P(E;) =0

Example

A fair (unloaded) die is rolled, and the following events are defined

e Fi: the outcome is greater than 3

e F5: the outcome is an even number

The probabilities of each of these events are easily calculated by adding the probabilities of
each of the possible initial values of the sample space that are part of the event.

P(Ey) =P(4)+ P(5)+ P(6) =

N = N

P(E3) = P(2)+ P(4) + P(6) =

P(E10E2)=P(4)+P(6):%

The conditional probability Eq|FEs is

1/3 2
P(F1|Ey) = = =—
(EalB2) = 7 /23
It is checked whether the result obtained is consistent with the probability of having a 4
or a 6 if the sample space is the event F3. Knowing that the result is even changes the
probabilities of having a result greater than 3, compared with the situation where there is
no prior information.
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Statistically independent events

An important statistical definition follows from the conditional probability. If it happens that
P(E1|Ey) = P(FE;) this means that knowledge of E, does not provide information about FE;
and therefore does not change its probability with respect to the a priori probability (without
the knowledge that Fy has occurred). In this case, the two events are said to be statistically
independent.

Formally, two events are said to be statistically independent when the conditional probabilities
coincide with the a priori probabilities.

P<E1|E2) = P(El) and P(E2|E1> = P(El)

Given the relationship between a priori probabilities and conditional probabilities, through the
probability of intersection, the probability of the intersection of two statistically independent
events is equal to the product of the probabilities of each event.

P(EL N Ey) = P(E,) x P(E).

Law of total probability

If the events F;, with i = 1,..., N form a partition of the sample space €2, which means that the
following conditions are satisfied:

[ ] U’filEZ — Q,

o EszJZQfOIaHZ%‘],

that is, that the union of the events forms the whole sample space, being the events disjoint among
themselves, then, if for an event A the conditional probabilities P(A|E;) are available for all the
events that form the partition, ¢ = 1,..., N, the probability of event A, P(A), is obtained by
means of the Law of total probability.

P(A) = 3" P(A|E)P(E,),

i=1

Bayes rule

On the other hand, Bayes’ Rule (although its idea is due to Bayes, it was finally formulated by
Laplace) tells us that the conditional probabilities of the events of the partition given A, P(E;|A),
are obtained by the following expression:

P(A|E;)P(E;) _ P(A|E)P(E)
P4 X '
> P(A|E;)P(E;)

J=1

P(Ei’A) =
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1.2 Random variable

A random wvariable (r.v.) is a function that assigns a number to each of the possible outcomes of
a random experiment, that is, to each of the elements of the sample space. In this section, we will
focus on real random variables, for which the number assigned to each possible outcome of the
random experiment belongs to the set of real numbers.

Q— R
AeQ—=>XN)eR

Therefore, a (real) r.v. maps the results of a random experiment on the real line.

N

X)) X)) X(As) X(A) R

Figure 1.1: Random variable seen as a map from ) to IR.

For example, in the die toss experiment, an assignment is already implicit (the number of dots
on the up side). In other cases, such as flipping a coin, it is possible to assign one number to heads
and one to tails (e.g. heads = 0, tails = 1). Random variables are usually denoted by uppercase
X, Y, and the implicit dependence on the elements of the sample space of the random experiment,
Ai, is usually not expressed. Again, when classifying in terms of the type of values it can take, we
will have mainly two categories of random variables:

e Discrete: finite set of values.

e Continuous: continuous range of values (in one or several intervals).

As for the values into which the output of the random experiment is translated, the set of real
numbers that have an associated result of the sample space is called the range (or domain) of a
r.v:

Ax ={z € R : I\ € Q such that X(\) = z}.

In the case of discrete random variables, it is also sometimes referred to as the "alphabet” of the
random variable.

Probabilistically, a random variable is usually characterized by two functions (which are linked
to each other):

e Distribution function, Fx(z) (also known as cumulative distribution function).
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e Probability density function, fx(z).

Each of these functions is described below.

1.2.1 Cumulative distribution function (CDF)

The cumulative distribution function (CDF) of a random variable is defined as
Fx(z) = P(X <x),

i.e., as the probability that the random variable X takes a value less than or equal to the argument
x. The main properties of the distribution function are the following:

1. 0< Fy(z) < L.
2. 11 <x9 — Fx(x1) < Fx(x2) (Fx(x) is not decreasing).

3. Fx(—00) =0y Fx(oo)=1 ( lim Fx(z)=0and lim Fx(z)=1).

T—r—0Q T—00

4. Fx(z) = Fx(xz) (Fx(z) is continuous on the left side).

To calculate other probabilities including or not the extreme limits of the interval

P(GSXSb):Fx(b)—FX(G_
Pla < X <b) = Fx(
Pla <X <b) = Fx(

6. P(X =a)= Fx(a) — Fx(a™).

7. P(X >z)=1- Fx(z).

In the above expressions, the following notation has been used as notation

Fx(2F) = lim Fx(x £ ¢).
e—0
This distinction Fx(z%) is made to take into account the particular case of distribution functions
for a discrete r.v., for which Fy(z; ) # Fx(z;), where {x;}¥ | is the discrete set of values that form
the range of X. In general, for continuous random variables Fx(z) = Fx(z~), which implies that
the probability of taking a particular value is zero, P(X = a) = 0. In any case, for both discrete
and continuous variables, Fx(x) = Fx(z™") is satisfied (see property 4).

For discrete random variables F'y () is a step function, with discontinuities at the discrete values
that form the range of the random variable. For a continuous variable it has continuous variation.
Figure [I.2] shows examples of discrete distribution function, in this case the experiment throwing
a die, and continuous.
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1 — 1
0.666 —
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0.5 —
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0.333 —
0.166 { o—— 0.2
—t—F—F—+—+—= 1 @
1 2 3 4 5 6 -3 -2 -1 0 1 2 3
(a) Discrete (Die) (b) Continuous (Gaussian: N(0, 1))

Figure 1.2: Examples of the cumulative distribution function for discrete and continuous random
variables.

Frequency or probabilistic interpretation

To present an empirical, constructive interpretation of the distribution function, we can write:

n
Fx(z) = P(X <z)= lim —,
n—,oo M
where n is the number of realizations of the random experiment, and n, is the number of outcomes
for which X < z. Obviously, we can never do an infinite number of experiments, but we can make
an estimate from a limited number of experiments. Figure[L.3]shows 100 realizations of a Gaussian

random variable and the resulting estimate compared to the theoretical distribution function.

3w T T T T 71
2
. . e fos
11— - —
o. o ° o ’. o ° .: .:. 0.6
0 LY :Oo Tte, o ° .'.‘ 4 ® 5
. © e . {04
71 o > .. ° - e ©®
. ) 102
-2 -
_3 I I I ! , : : % % Fx
0 20 40 60 80 100 -3 —2 -1 0 1 2 3
Realizations Estimate for a Gaussian: N (0, 1)

Figure 1.3: Estimation of the distribution function by means of its frequency interpretation.

1.2.2 Probability density function

The other function used to characterize a random variable is the probability density function
(PDF), which is denoted as fx(x). The probability density function is defined as the derivative
of the distribution function q

fx(@) = —Fx(z).

This function indicates how the probability of the random variable is distributed. Its main
properties are the following:
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2. / fx(x)dx = 1.

bt
3. fx(z)dr = Pla < X <D).

at
4. In general, P(X € A) = / fx(z)dz.

A
xT

5. Fy(z) = / Fr(u)du.

In the case of continuous variables it has a continuous variation, and in the case of discrete
variables, the PDF includes pulses located at the discrete values that the variable can take (the
derivative of a function with steps). The value at each of these discrete values corresponds to the
probability that the random variable takes that value.

The nuance a™ is used to treat discrete signals. In this case, the impulse is located at a, and
integrating from a* does not include it. For continuous variables we can use a directly.

In the case of a discrete variable, its alphabet reduces to a set of finite values {z;}}¥,. In this
case, sometimes instead of working with the PDF, one works with the probability mass function,
or sometimes the so-called mass points. In this case, the probability mass function or mass points
is defined as the set of values {p;}}¥, such that

which of course meet the following conditions

L. pi > 0.

N

i=1
The difference with the PDF is that it is usually represented as a function of ¢ instead of with

respect to z;, but conceptually there is no difference between both representations.

On other occasions, for discrete random variables, once the sample space {x;}, is known, the
probabilities of each of the values in that space are denoted as px(z;).

In this course, we will generally work with the PDF, but when working with discrete random
variables, we will frequently use the px(x;) notation instead of the fx(x) notation.

Frequency or probabilistic interpretation

To give an empirical interpretation of the PDF, we can define the probability density function as

Px <X <z+A,)

Jx(x) = Alggo A, ’
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ie.
_ Probability in an interval

fx(z) =

when the length of the interval is taken to the infinitesimal limit. Using the frequency definition
of probability,

= Probability Densit
Length of the interval robability Density,

fx(z) = lim {i lim —},

Az—0

where n is the number of realizations of the randomized experiment, and n, is the number of
outcomes for which r < X <z + A,.

This is equivalent to making a histogram, which consists of dividing the real line into intervals
of width A, and raising a vertical bar with the relative frequency of each interval. In this case,
it can be seen that a histogram tends to the probability density function when the number of
realizations increases and the interval length decreases. Figure|l.4]shows a histogram with a value
A, = 1.0 made from 100 realizations.

3@ T T T T

2

1k . . L. .

. .« : . o

0 ° :'o e .. .'5 ° - o
_1 ° o‘. °® 2 o - - e
) —
_3 I I I I

0 20 40 60 80

Realizations Histogram

Figure 1.4: Approximation of the PDF by a histogram.

Figure[l.5[shows a histogram with a value A, = 0.2 made from 10000 realizations, and compares
the normalized histogram with the theoretical probability density function.

o~

Figure 1.5: Approximation of the PDF by a histogram using 10000 realizations.

1.2.3 Random variables of interest

The following are the most common random variables used in communications.

OCW Universidad Carlos III de Madrid 22 Marcelino Lazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

Bernoulli

The Bernouilli random variable is a discrete random variable that takes two values, 1 and 0, with
probabilities

e P(1)=np,
e P(0)=1-p,
respectively.

Figure 1.6: fx(z) for a Bernoulli random variable.

This is a distribution with one parameter, in this case p. Its probability density function is,
obviously:

1—p, 2=0
fx(x) = p, z=1
0, in other case

A Bernoulli random variable is a good model for, e.g.

e Binary data generator. In this case, it is normal that the parameter p is 1/2; that is, that
the 1’s and 0’s are equiprobable.

e FError model. Errors will occur in any transmission over a communications channel. An
error can be modeled as the sum modulo-2 (XOR) of the input bit with a 1 (in the sequence
modeling errors, a 1 is indicating an error, and a 0 is indicating a correct bit). Therefore,
this type of variables can also be used to model errors. In this case, the parameter p is
precisely the bit error rate.

Binomial

It is also a discrete random variable. This variable models the number of 1’s in a sequence of
n independent Bernoulli experiments, so it has two parameters, n and p. Its probability density
function is as follows:

(Z)pw(l —p)"* 0<z<nandzx€Z
0, in other case

This variable can be used, for example, to model the total number of bits received with error
when a sequence of n bits is transmitted over a channel with bit error rate p.
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Example: n =5, p=10.25

0.3955

0.2373 0.2637

T T T 0.0’879 0.0146 0.0010

w w ! ! ’ ? v
o 1 2 3 4 5

Figure 1.7: fx(z) for a binomial random variable.
Uniform

This is a continuous random variable of two parameters, a and b, which takes values in the interval
(a,b) with the same probability for intervals of equal length. Its probability density function is

1
oy o a<z<b
Jx (@)= { 0, in other case
fx(z) =U(a,b) X
L a<z<b b—a
fX(x) — b—a
0, else

Figure 1.8: fx(z) for a uniform random variable.

Sometimes the notation U(a,b) is used to denote a uniform distribution between a and b. This
model is used for continuous variables with known range for which nothing else is known. For
example, to model a random phase in a sinusoid, a uniform r.v. between 0 and 27 is usually used.

Gaussian (Normal)

It is a continuous random variable with two parameters, p and o. Its probability density function
is a Gaussian with mean p and variance o2 (or what is the same, standard deviation o),
1 _e-w?

fx(2) = ——e %
2ro

It is sometimes denoted as N (i, 0?). The Gaussian is the most important and undoubtedly the
most widely used r.v. in communications. The main reason is that thermal noise, which is the
major source of noise in communications systems, has a Gaussian distribution.

The distribution function, Fx(x), for a Gaussian r.v. of zero mean and unit variance is commonly
denoted as ®(z).

O(z)=P(X <z)= /_z \/12_7Tez22 dz.

A function related to this distribution function, which is very often used, is the Q(z) function,
which is defined from the distribution function as

Qz)=1—-(z) = P(X > x)
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Figure 1.9: Probability density function of a Gaussian (Normal) random variable.

which gives the probability that the Gaussian random variable of zero mean and unit variance
takes values greater than the argument of the function. This function, formally defined as

+oo +oo 1

Q= | = [

has no analytical solution (®(x) does not either). However, it can be calculated numerically and
is usually tabulated for its positive values, as shown in Table in Appendix [A] Figure [I.10
shows the graphical interpretation of the value of this function as the area under the curve of the
Gaussian distribution A(0, 1) for positive and negative values of the argument x.

v |

Figure 1.10: Graphical interpretation of Q(z) for positive and negative arguments .

2
_Z
e 2 dz

From this figure it is easy to extract some of the properties properties of this function

1 Q0) =3

2. Q(+00) =0.

3. Q(—1) = 1- Q(a).
Due to the symmetry Q(—x) = 1 — Q(x), tables of this function are usually presented only for

positive values of the argument of the function, since for negative values it can be obtained from
that relation.

For a distribution with mean p and variance o2, i.e. N'(u, 0?), a simple change of variable serves
to estimate P(X > z) via the Q(x) function as

P(X>;1;):Q(x_u>.

o

The function @Q(x) is of great interest in this course because it will be used, as we will see,
to evaluate error probabilities in digital communications systems. Given its importance in the
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subject, some examples of how this function can be used to obtain probabilities that a random
variable with a given mean p and variance o can take values in certain ranges will be illustrated
below. From its definition, it is evident how probabilities that a random variable will take values
greater than a certain threshold z can be calculated. Figure [1.11] shows some of the symmetries
of the function Q(x) that also allow to obtain probabilities that the Gaussian random variable
takes values smaller than a certain argument (on the right side of the figures), from an equivalent
problem on the very definition of the function Q(X) (on the left side). And in Figure an
example of how to calculate the probability that the random variable takes values in an interval
between two thresholds is illustrated. Such a problem can be solved by reformulating it as the
difference between two problems with a single threshold.

Q) =Q(-3)=1-Q(3)
N(p, %) . .
T I I x

Figure 1.11: Symmetries of Q(z).

Figure 1.12: Computation of the probability of a Gaussian random variable taking values in a
given interval using Q(x).
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1.2.4 Functions of a random variable

A function of a random variable Y = ¢(X) is itself a random variable. To find its distribution
function we can start from the definition of Fy (y):

Fy(y) = P(Y <y)=P(9(X) <vy)

This probability is
Fy(y) = P(z € Bx(y)),
where BY%(y) is the set of values for X such that g(x) <y, i.e.

B%(y) ={z € R:g(z) < y}.
Example

For the transformation Y = —2X, we want to calculate Fy (y).
In this case, it is straightforward to calculate B (y),
BYy) = {r € R: ~20 <y} — {a > —y/2).
and therefore
Fy(y) =P(Y <y) = P(X > —y/2).
This probability for a certain random variable X can be calculated when Fx(z) or fx(x)
are known.

On the other hand, the probability density function of the random variable Y can be calculated,
from fx(z) and the transformation g(z), as follows

F=3 (; )f(f;"))',

where N, and {z;}Y7, are the number of solutions and the solutions themselves of the equation
y = g(z), respectively. The function ¢'(z) is the derivative of g(z). In order to obtain this
expression it is necessary that the equation has a finite number of solutions, that for all of these
solutions the derivative ¢'(x;) exists and that the derivative at the solutions is not zero.

Example

We have a Gaussian random variable X with zero mean and unit variance, i.e. u = 0 and
o = 1. We want to find the probability density function of the random variable

Y =aX+0b.
In this case g(z) = ax + b, and the derivative is ¢’(z) = a. Equation y = ax + b has a single
solution
y—2>b
Tr1 =
a

Using this information

—b
fx <y7> 1 _ (.117?2

fY (y) = = (& 2a
|al V27 |al
It can be seen that this distribution is a Gaussian distribution of mean b and variance a?,

i.e.

Iy (y) = N(b, a2).
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An important conclusion can be drawn from this example: a linear function of a Gaussian
random variable is also a Gaussian random variable.

1.2.5 Statistic moments

We will now see how to compute some statistical moments associated with a random variable.
Remember that a random variable is the result of a random experiment. If the PDF is known,
it is possible to obtain some statistics about it, which is equivalent to saying the statistics of the
random experiment.

Expected value (Mean)

The expected value (mathematical expectation) of a random variable is equivalent to its (arith-
metic) mean, and is often denoted as my. The expected value measures the mean value obtained
when the number of experiments is sufficiently large. This expected value is defined as

my = E[X] = /_OO z fx(z) du.

o0

Expected value of a function of X.

The expected value of a function of a random variable, Y = g(X), is obtained as

ElgC0) = [ gle) fx(o) do.

[e.9]

Moment of order n

In general, the moment of order n is the expected value (the mean) of X" and is defined as

o0

mg?) :/_ " fx(z) dx.

[e.9]

It can be seen as the expected value of a function of X, in this case the function g(x) = ™.

Therefore, the mean is the first order moment.

Variance

The variance can be viewed as the expected value for the particular case of the function

g(z) = (z — mx)*.

Therefore,

ox =FE[(X - mx)ﬂ = / (x —mx)? fx(z) dx.

—00

OCW Universidad Carlos III de Madrid 28 Marcelino Lazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

03 is the variance of the random variable and ox is the standard deviation. These parameters

give us an idea of the variability of the random variable. Interestingly, the mean and the variance
have the following relationship (by means of the second order moment):

0% = E[(X - E(X))*] = E [X?] — (B[X])*.
2)

ok =F[(X - mX)Z} = mg( — (mx)*.

Properties

Below, some of the properties of these statistics are shown. In this list of properties, ¢ denotes an
arbitrary constant.

1. E[X +Y] = E[X] + E[Y] = my + my (Linearity)
2. Eld =c

3. Elc X] = ¢ E[X]

4. EIX +c=FE[X]+c

5. Var(c) =0

6. Var(c X) = ¢? Var(X)

7. Var(X + ¢) =Var(X)

1.2.6 Multidimensional (multiple) random variables

When two random variables are defined on the same sample space €2, it is possible to work with
them jointly. This case can be posed as a multidimensional problem, or also as a problem of
vectors of random variables. We will follow the first alternative.

Joint probability density and distribution functions

For two random variables X and Y, their joint distribution function is defined as
Fxy(z,y) =P(X <z,Y <y).

The joint probability density function is

2

Ifxy(z,y) = axayFX,Y(% Y).

These two functions have the following properties (most of them are extension of the properties
of CDF and PDF for a single random variable):

1. FX(CL’) = vay([)’}, OO)
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2. Fy(y) = Fxy(oo,y).

3. fx(x) = /_OO fxy(z,y) dy.

4. fy(y) = /00 fxy(z,y) dz.

s [ ey dedy =1

6. P(X,Y)e A) = //( - fxy(z,y) dz dy.

z oy
7. Fxy(z,y) = / / fxy(u,v) du dv.

Conditional probability density function

As in the case of events, knowing the outcome of a random variable can condition the knowledge
about the other. The probability density function of the variable Y conditioned by X = x is

defined as (
Ix,v(zy)
frix(ylz) =4 Fx@ > fx(x) #0 ‘
0, in other case

The definition of statistically independent random variables rises from this definition. If knowledge
of X contributes nothing to knowledge of Y and vice versa, then

frix(ylr) = fy(y), and also fxy(z|y) = fx(x).

Therefore, two random variables are independent if their conditional distributions are equal to the
marginal distributions. From this definition of independency, an implication naturally appears:
for independent random variables, the joint distribution is equal to the product of the marginal
distributions

fxy(z,y) = fx(x) x fy(y).

Statistic moments

The expected value of a function g(X,Y) of the random variables X and Y is obtained as

Eg(X,Y)] = /Oo /oo g(z,y) fxy(z,y) dz dy.

It is interesting to highlight the following particular cases:

e If g(X,Y) = X XY, the expectation of the product of the two random variables is obtained,
which is called the correlation between X and Y.

e For the case g(X,Y) = (X —myx) x (Y —my), the so called covariance is obtained.
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The normalized version of the covariance is what is known as the correlation coefficient, pxy,

which is defined as

Ox0Oy
The range for this coefficient is 0 < |pxy| < 1, or equivalently

—1<pxy <+1
Some particular values of this coefficient give us special information about the involved random

variables.

e The value pxy = 0 means that the variables are incorrelated. If two random variables
are independent, then they are always incorrelated. However, the converse is not true:
uncorrelation does not imply independence.

e On the other hand pxy = %1 indicates a linear relationship between the random variables,
i.e. Y = aX +0b. In this case, pxy = +1 indicates a positive value of a, while pxy = —1
indicates that a is negative.

It is common to use the notation p, without referring to the random variables involved when they
are implicit.

Intuitively, the correlation will indicate the degree of statistical relationship between the two
random variables. In general, a high correlation indicates a high relationship, and a low correlation
usually indicates a low relationship.

Functions of multidimensional random variables

For multidimensional (or multiple) random variables, as for one-dimensional ones, functions can
be defined on the variables X and Y’

{ Z =g(X,Y)
W = h(X,Y)

To obtain Fzw (z,w) the procedure is similar to the unidimensional case:
Fzw(z,w) = P(Z < 2,W < w) = P((z,y) € By (z,w)),

where now
B (2, w) = {(2,y) € R? : g(x,y) < 2, h(z,y) < w}.

As in the case of a single r.v., if the roots (solutions) {x;,y;} of the equations

{ oo

Y

are know, then the joint PDF of the new variables is obtained as follows

fXY xz,yl
Jaw(zw) Z |detd (2, y;)|
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where detJ denotes the determinant of the Jacobian matrix J. It is necessary that the number
of solutions is finite and that the Jacobian is not zero. The Jacobian is defined as

0z(zy)  Oz(z.y)
oz 0
J(SL’, y) = | ow(zy) 8w(z,y) )
or dy

Most of the previous definitions and results for two random variables can be immediately ex-
tended to a larger number of random variables.

Jointly Gaussian (normal) random variables

Jointly Gaussian random variables are also sometimes called multidimensional Gaussian random
variables. Due to its importance for this subject, some of its properties are presented below.
First, they are defined probabilistically. Two jointly Gaussian random variables X and Y are
characterized by a joint probability density function that is a two-dimensional Gaussian

B 1 (z — MX)2 (y — MY)2 p(r — ) (y — pry)
p?)

1 (1-— 20% - 202 ox0y

x,y) = e
Jxx(z,y) 2moxoy ﬂ

When X and Y have this type of jointly Gaussian distribution, not only are X and Y have
individually a Gaussian distribution (each one is a Gaussian r.v.) but the conditional probabilities
are Gaussian as well. This is the main difference between two random variables that each have
a Gaussian distribution and two random variables with a jointly Gaussian distribution. With a
jointly Gaussian distribution, the individual random variables are as follows: X is Gaussian with
mean jx and variance 0%, Y is Gaussian with mean py and variance 0%, and also its correlation
coefficient is p.

This concept can be extended to an arbitrary number n of random variables, arriving at the
expression for the distribution of a n-dimensional Gaussian, parameterized by a vector of means
and a matrix of covariances

1
1 —5x—p)C 7 (x—p)"
fX(.Tl,J:Q,...,xn): € 2 .
(2m)ndet(C)
where X is the vector of the random variables, X = (X, Xs,...,X,), X = [x1, 22, ...,2,]7, and
the vector of means is p = [u1, fi2, - - - , fin)T . Finally, C is the covariance matrix that contains in

the i-th row and j-th column the covariance among the i-th and the j-th variables:

Ci,j = COV(Xi, Xj) = piJ‘O'iCTj,

ie.,
2
01 P1,20102 ... P1p010p
2

P1,20109 03 cer P2,n020p

C= . .

2

P1,n010n P2,020n ... Oy,

The main properties of jointly Gaussian random variables are:
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1. Jointly Gaussian random variables are completely characterized by their vector of means p
and their covariance matrix C. These two parameters are called second-order statistics, and
they fully describe these random variables.

2. If n random variables are jointly Gaussian, then any subset is also jointly Gaussian dis-
tributed. In particular, all individual variables are Gaussian.

3. Any subset of jointly Gaussian r.v.(s), conditioned on another subset of the same original
jointly Gaussian variables, has a jointly Gaussian distribution (the parameters, means and
covariances, can be modified in this case).

4. Any set of random variables obtained as linear combinations of (X, Xs,..., X,,)
Y 1,1 dir2 ... Q1pn X1 by
Y, G271 QA22 ... dzp X by
= . . . + )
Yn an,l an,Z an,n Xn bn

are jointly Gaussian. In particular, individually any linear combination Y; is Gaussian.

5. Two uncorrelated jointly Gaussian random variables are independent. Therefore, for jointly
Gaussian random variables, independence and uncorrelation are equivalent. This is not true
in general for other types of rvariables)

6. If the variables are uncorrelated, p; ; = 0 Vi # j, that is, C' is a diagonal matrix.

Sum of random variables

Given a sequence of random variables, (X, X, ..., X,,), which basically have the same properties,
it seems logical to think that the behavior of their average,

1 n
YzE;Xi,

be, so to speak, “less random”. The Law of large numbers and the Central limit theorem rigorously
state this intuition.

Law of Large Numbers (weak) This law states that if the random variables (X7, Xs,..., X},)
are uncorrelated and all have the same mean mx and variance 0% < oo, regardless of their

distribution, for any ¢ > 0,
lim P(]Y —mx| >¢) =0.

n—oo

This means that the average (Y) converges, in probability, to the mean of the variables, my. In
other words, the more variables we add, the more their combination resembles the mean (the lower
their variance).
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Central Limit Theorem This theorem goes further than the Law of Large Numbers. Not
only does it say that the average of random variables converges to the mean, but it also tells us
what their distribution is like. Specifically, the theorem states that: if (X;, Xs,...,X,) are n
independent random variables with means my,ma, ..., m,, and variances 0%, 03,...,02, then the

distribution of
y=—y 2
\/ﬁ ; ag;

converges to a normal distribution, with zero mean and unit variance, N'(0, 1).

In the particular case that they are independent and identically distributed (i.i.d), that is, that
they all have the same distribution with the same mean m and the same variance o2, the average

1 n
YZEZ;X“

converges to a normal distribution N (m, "72) This occurs even if the original distribution is not
Gaussian.

Remark: It should be noted that the Law of Large Numbers is valid for uncorrelated random
variables while the Central Limit Theorem requires independence between random variables, which
is a stronger constraint.
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1.3 Random processes

A random process, or stochastic process, is the natural extension of the concept of random variable
to work with signals. Communication systems work with signals, which are time functions. As
has already been mentioned several times, sometimes it is possible to characterize these signals
deterministically, and in other times it will be necessary to treat them as random signals: the
clearer examples are the thermal noise in any device, or the information signals themselves. These
signals will be characterized as random processes.

Perhaps the most intuitive way to see what a random process is is to think of it as a set of time
signals corresponding to each of the possible outcomes of a random experiment. Each output of an
experiment has a time function associated with it. A real random variable assigns a real value to
each value in the sample space (2 — IR), that is, \; € Q@ — X (\;) € IR. A stochastic process can
be interpreted as a situation in which the assignment of values from the sample space to the real
line varies with time X (¢, A). From this point of view, each output of the experiment is associated
with a time function that specifies its actual value assigned at a time ¢t. Below are some examples
of random processes.

Below are several examples of random processes.

Example

Random experiment: throwing a dice, with 6 possible outcomes
A€ {1, A2, A3, A4, A5, A6

The random process is defined by selecting the 6 signals associated with each possible outcome
of the experiment.

1
X(t, )\2) = 5 + sin(wot — Oz)

27

0, =(—1)—

con (i )6
para i € {1,2,3,4,5,6}

From now on we will call this example Fzample I, and the 6 functions that make up the
process are shown in Figure|1.13

Example

Same random experiment: throwing a dice, with 6 possible outcomes
A S {)\17 )\27 >\3) )‘47 >\57 )‘6}

The random process is defined by defining each of the 6 signals associated with each possible
output of the experiment, which are now

1 1
X(t,\) = 5 sin(wot — 6;) + 3 cos(wot)

2
with 0; = (i — 1)~

forie {1,2,3,4,5,6}

From now on we will call this example Ezample I, and the 6 functions that define the process
are shown in Figure [1.14
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Figure 1.13: Example I: Signals associated to each outcome in (2.
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Figure 1.14: Example II: Signals for each outcome in 2.
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In view of the previous examples, and taking into account that a random process has two
arguments, the time index and the result of the random experiment, the following values or
functions can be identified for a process:

e X(t;,\;), the case in which the values of the two arguments are fixed, is an individual
outcome of the experiment at a given moment, which gives rise to a real value.

e X(t,);), when the result of the random experiment is fixed, it is a time signal that indicates
the real number assigned at each instant to a possible output, \;, of the sample space. To
simplify the notation, it will sometimes also be denoted as z;(t).

e X(¢;,A), when a time instant is fixed, it is a set of numbers, each one associated with each
possible outcome of the random experiment. It is therefore a random variable (X). Thus,
at any fixed time instant t;, a random process is a random variable.

There are, as we have seen, several ways of interpreting a random process: as a set of signals, or
as an indexed set of random variables, where the index is a time index, either in continuous time
or in discrete time.

(X (1), X (ta), ...}, or {X[n], X[na],...},

or in general as

{X(t), t € R}, or {X[n], n € Z}.

Therefore, a random process can be defined as a set of random variables indexed by a certain time
index (continuous or discrete).

e If the index is ¢, taking values in the continuous set of real numbers ¢ € IR, the process is a
continuous-time random process

e If the index is the discrete set of values n, with n € Z, the process is a discrete-time random
process.

For this reason, the notation often ignores the dependency on the output of the random experiment
A, starting to use the notation X (¢) or X[n].

Next, random processes in continuous time will be studied, and later the main results will be
extended, in a trivial way, to discrete time processes.

1.3.1 Description of a random process

A random process can be described by two types of descriptions:

e Analytical

e Statistical

The analytical description uses a compact analytical expression of the process. In this expression,
the time index is included along with a set of random variables

X(t) = f(¢,0).
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The vector @ = {6,0,...,0,} is a vector that includes the random variables.

The analytic description includes the analytic expression involving the time index and the ran-
dom variables, and the statistical description of the random variables included in 6.

Example

o X(t) = Acos(2mfot + 6), where A and fj are two constant values and 6 is a uniform
random variable in [0, 27r). This is an analytical description of a continuous-time random
process that could, for example, be used to model the output of an oscillator in a
communications system (by assigning A and fj the values of the voltage amplitude and
the oscillator frequency, respectively).

e X|[n] = Af, where A is a constant value and 6 is Bernoulli variable with p = 0.5. This
is an analytical description of a discrete-time random process that can for example be

used to statistically represent the transmission of a sequence of bits (by making the
constant A = 1) with equiprobable ones and zeros.

The analytical description provides intuitive information about the random process, because it
describes its performance in an analytical way. However, it is not always possible to have this
type of description in real applications. In this case, an statistical description can be used. There
are several types of statistical description. The most common are described below.

Statistical description

A (complete) statistical description of a random process X (t) consists in knowing for any set of
n time instants {t1,%s,...,¢,}, for any value of n, the joint probability density function of the
n random variables resulting from the evaluation of the random process at the n specified time
instants, {X (t1), X (t2),..., X (tn)}

Ix )X ta), X (t) (X1, T2y oo, Ty).

M-th order statistical description

This is a description similar to the previous one in which the maximum value of n is limited. In
particular, this description consists of knowing, for every n < M and every set of n instants of
time {¢1,ts,...,t,}, the joint probability density function of {X(¢1), X (¢2),..., X (t,)}.

In the analysis and design of communication systems, is common to use second order descrip-
tions, M = 2, where the distribution is known for any pair of time instants (¢, t5)

Ix ), x () (1, 2).
Example

For a process X (t), for any n and any (¢1,te,...,t,) € IR", the PDF of the random variables
{X(t;)}!_, is a jointly Gaussian distribution, with zero mean and the followint covariance
matrix

CZ'J‘ = COV(X(tZ'),X(tj)) = 0‘2 min(ti,tj).

This is a complete statistical description of X (t).
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In this last example, although a complete statistical description of the process is provided, there
is little information on how each realization of the process is. That is why in many cases a set of
statistical averages is obtained to give us that information.

1.3.2 Statistic averages

As we saw for random variables, for random processes some statistical averages can be calculated
based on expected values. In particular, the two most important statistics in the time domain
are:

e Mean of the random process, my(t).

e Autocorrelation function of the random process, Rx (t1,t2).

Mean of a random process

The mean or expectation (mathematical expectation) of a random process X (t) is a deterministic
time function, mx(t). For each time instant ¢, the mean of the process is the mean of the random
variable X (t)

mx(t) = E[X(t)).
If the statistical description of the process is available, and if for any instant ¢ the PDF fx(x)
is defined, this function can be computed from it as

o0

mlt) = X = [ o f(@) do.

—00

Autocorrelation function of a random process

Another important statistical average of a random process is the autocorrelation function. This
function is important because, as will be seen later, it is related to the frequency domain description
of the random process, and to the power of the process. It is a second order statistic, as it depends
on two time instants. Sometimes it is denoted as Ry x(?1,%2), although the usual notation is

Rx (t1,t2).

The autocorrelation function is defined as the mathematical expectation of the product of the
random process evaluated at the two instants that are the arguments of the function, with the
second random variable conjugated for complex processes

Rx(t1,t2) = E[X () X" (2)],

Again, if the statistical description of the random process is available, the autocorrelation func-
tion can be obtained through the joint probability density function of the process at two instants
as

o oo
Rx(t1,t3) = / / T1 Ty [x(e),x(t)(T1, T2) dy das.

In summary, two methods have been seen to describe random processes: analytical description
and statistical description. In this case, you can have a complete or a M-th order statistical
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description. It is common in communication systems to have a second-order description. This
description is sometimes impractical in the sense that it does not give a clear idea of how the real-
izations of the process are. In this case, statistics are used that give averages over the executions.
In particular, the mean and the autocorrelation function are interesting. As we will see later, in
some cases the mean and the autocorrelation function provide a complete statistical description
of the random process (this will be the case for Gaussian random processes).

Time autocorrelation function of a deterministic function

Due to the similarity of the names, the autocorrelation function of a random process is sometimes
confused with the temporal autocorrelation function of a deterministic signal. The first is a
statistical average that provides information about the statistics of a random process. The second
is a deterministic function, applied to a deterministic signal, so the nature of these two functions is
completely different, and it is important to understand the difference between them. As it will be
useful later, the time autocorrelation function, also called the time ambiguity function, is defined
below. For a given deterministic function z(t), its time autocorrelation function is denoted as
r.(t), and is defined as the convolution of that signal, x(¢), with its matched signal, 2*(—t)

r(t) = z(t) x x*(—1).
For real signals, obviously, the complex conjugate operator is irrelevant, and therefore
r.(t) = x(t) * x(—t).

In the frequency domain, if the Fourier transform of x(¢) is X (jw), and taking into account that,
due to the properties of the Fourier transform, the transform of the matched signal is X*(jw), the
Fourier transform of the time autocorrelation function is

Ry(jw) = | X (jw)|*.

The function r,(¢) has some interesting properties, which will be used later. Some of them are:

e It is a hermitian function (symmetric for real signals), whose maximum is at zero.

e Allows us to calculate the energy of the signal z(¢), both in the time domain and in the
frequency domain

E{x(t)} = ry(0) = — /OO Ro(jw) dw

= % .
This property is evident considering the definition of energy (Parseval’s relation)

ot} = [ TPdi= 2 [ XG0P d

2 J_ o

and the properties of the Fourier transform: by its own definition, the value at zero in one
domain is equal to the integral in the other domain.

e [t is a translation invariant function of x(¢), i.e.

y(t) = a(t =to) = ry(t) = r2(t).

Figure shows an example of some of these properties on a rectangular signal of duration T’
seconds.
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x(f) + A
E{x(D)} = f x(r)|? dr = AT
| — 00
S

* —
| | | | | } |
—T 0 +T t —T 0 +T ¢t —T 0 +T t

t A —t t
(1) y(—1) A ry(1) E0()} = AT
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—T 0 +T t —T 0 +T t —T 0 +T t

Figure 1.15: Example of the time autocorrelation function for a rectangular signal of duration T’
seconds, illustrating some of its properties.

1.3.3 Stationarity and ciclostationarity

The joint PDF of {X(¢1), X(t2),..., X (t,)} is
X)X (t2),, X (80) (T1, Ty - -, T0)
for any set of n time instants {t1, s, ...,¢,} and for any value of n.

In general, this joint distribution depends on the choice of the time reference. But there is a
very important class of random processes in which that function is independent of the time, i.e.
these processes have statistical properties that do not vary over time. These processes are called
stationary processes.

There are two definitions of stationarity, in the strict sense and in the broad sense. Each of the
definitions is shown below.

Strict sense stationarity

A process is strict sense stationary if for any set of n time instants {t1, s, ..., t,}, for any integer
value n, and any value A

fX(tl),X(tQ),...,X(tn)(Ib Ty ... ,xn) = fX(t1+A),X(t2+A),...,X(tn+A) (xh Lo, .. 7$n)-

The PDF of the random process in any set of n time instants does not depend on the specifit time
intants but only on the relative difference among these n time instants {t;}%;.
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When this is only true for n < M, then the process is said to be stationary of order M.

Strict sense stationarity is a very strong constraint that very few real processes can meet. For
this reason, a less restrictive definition of stationarity is often used.

Wide sense stationarity

A random process X (t) is wide sense stationary (WSS) if the following conditions are satisfied:

1. The mean is a constant value that does not depend on time.

2. The autocorrelation function does not depend explicitly on each of the two values of time,
t; and t9, but only on their difference

Rx(t1,t2) = Rx(t1 —t2) = Rx(7)

This expression emphasizes the fact that it depends only on the difference of time instants,
the parameterization t; =t + 7 and t, =t is often used, so that it can be written as

RX(t+T, t) = Rx(T).

From now on, when we talk about stationarity, we will refer to wide sense stationarity.

Autocorrelation function of stationary processes

The autocorrelation function of a real stationary process X (t), Rx(7), has the following properties:

1. Rx(—7) = Rx(7). It is an even function.
Rx(r) = E[X(0)X(t —7)] = E[X(t = 7)X(1)] = Rx(-7).
2. |Rx(7)|] € Rx(0). The maximum in module is obtained in 7 = 0.

B[(X() £ X(t—7))] >0
Expanding this result

E[X?*(t)] + E[X?*(t — 1) £ 2E[X () X (t — 7)] > 0.
Rx(0) + Rx(0) £ 2Rx(7) > 0 — Rx(0) > £Rx (1) — Rx(0) > |Rx(7)|.
3. If for some T, Rx(T,) = Rx(0) holds, then for every integer k
Rx(kT,) = Rx(0).
The proof by induction can be found in [Proakis and Salehi, 2002].
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4. Tt is a positive semidefinite function. Formally, this means that, for any function g¢(t), it is
true that

/:O /:O g(t) Rx(t — s) g(s) dt ds > 0.

This property has an important practical implication, which is that the Fourier transform
of the autocorrelation function is non-negative (it only takes values greater than or equal
to zero, but never negative values). The proof of this property will be seen in a trivial way
later, when the representation in the frequency domain of a random process is studied.

Ciclostationary processes

There is a special class of non-stationary processes that are closely related to stationary processes,
the so-called cyclostationary processes. In this case, the statistical properties are not constant
over time, they vary over time, but these variations are periodic in time. The definition of
cyclostationarity of a random process (in the wide sense) reduces again to conditions on the
mean and the autocorrelation function of the process. Specifically, a random process X(t) is
cyclostationary (in the wide sense) if its mean and its autocorrelation function are periodic with
a certain period Ty, i.e., if it is satisfied that

1. mx(t +Tp) = mx(t).

2. Rx(t+ 7+ To,t+To) = Rx(t+ 7,t), for all t and 7.

In the previous examples of random processes, the Ezample I corresponds to a stationary process,
while the Fxample II corresponds to a cyclostationary process. The analytical expressions for the
statistical parameters of the Fxample I are

for the mean, which takes a constant value, and

1 1
Rx(t17t2) == Z + 5 COS(Wo(tl — tg))
for the autocorrelation function. If instead of parameterizing using two different instants ¢; and
to we use a parameterization with two time instants with a separation 7 seconds, i.e. t; =t + 7
and t, = t, the resulting expression is

1 1
Rx(t+1,t) = 1 + 5 cos(woT),
where it can now be clearly seen that this function depends only on the separation between the
time instants, 7, and not on the concrete instants (it does not depend on t). Therefore, it can
be assured that the Fxample I is a stationary random process. Figure shows the mean and
autocorrelation function of this process.

In Figure [1.17|it can be seen that for a certain value of the difference between instants, 7, the
different values of ¢ are located in the plane t; vs ¢y along a straight line parallel to the straight
line t; = ty (which is the particular case for a separation 7 = 0). In the case of the autocorrelation
function of the Fxample I, it takes constant values along each of the straight lines that determines
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Figure 1.17: Example I: Autocorrelation function and illustration of the values for different sepa-
rations between the time instants.
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Figure 1.18: Example I: Autocorrelation function as a function of the difference between the two
instants of time (parameter 7).

each value of 7, having only a dependence on the separation variable 7. Specifically, regardless of
the value of ¢ the autocorrelation function has a sinusoidal variation with the difference between
the two time instants, 7, as shown in Figure [1.18§

In the case of Ezample-II, the mean of the process is
mx(t) = 5 cos(wot)
which now depends on time, and the autocorrelation function is

1 1
Rx(tl, tg) = Z COS(Wo(tl - tg)) + Z COS(W()(tl + tg))

which, parameterized as a function of the difference between the two temporary arguments, is
written as

1 1
Rx(t+7,t) = 1 cos(woT) + 2 cos(wo(2t + 7)).

Figure [1.19 shows the mean and the autocorrelation function of Ezample II. The autocorrelation
function, like the mean, now depends on time ¢, although in both cases the dependency is periodic.
Specifically, the autocorrelation function has a sinusoidal variation with the difference between the
two time instants, 7, but that variation is different for different values of ¢, as shown in Figure
[1.20] Therefore, it can be ensured that Ezample-II is a cyclostationary process.

The random processes in these two examples are one stationary, and the other cyclostationary.
Naturally, there are also random processes that are neither stationary nor cyclostationary. Below
is a very simple example.

Example

Random experiment: throwing a dice, with 6 possible outcomes
A€ {1, A2, A3, Aq, A5, A6 )

The random process is defined by defining each of the 6 signals associated with each possible
output of the experiment.

1 1
X(t,Al) = Z’ X(t7)\2) == _Z

1, sit>2
0, sit<?2

X(t,\3) = u(t —2) = {
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Figure 1.19: Example II: Mean and autocorrelation function.
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Figure 1.20: Example II: Autocorrelation function as a function of the difference between the two

instants of time (parameter 7).
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t
X(t,)\4):1—5

X(t,\s) = e, X (t, \g) = sin(mnt)
From now on we will call this example Ezample III, and the 6 functions that make up the
process are shown in Figure together with the mean of the process. It is clear that the

mean of the process depends on time, but it is not a periodic function, so it is a random
process that is neither stationary nor cyclostationary.

—_— X(t, A1) — X(1, \2) — X(t, A3) — X(t, Xg)
1

0,5 -

—0,5 +

myx (1)

’0 "/\)/\/\/\V/\\/t

—0,5 +

Figure 1.21: Example III: Signals and mean of the random process.

1.3.4 Ergodicity

To see what an ergodic process is, a simple example will be used. Suppose we have a process X ()
that is stationary, and we have the various time functions of the process, X (¢, \;) = x;(t).

It is possible to calculate the mean of the process at an instant f, and at another instant ¢;.
Since the process is stationary both values coincide

mx(to) = mx(tl) =mx.

Suppose now that the time average of the realization of index i, x;(t), is denoted as m;. If the
value of this average for any realization coincides with my, that is, mx = m; Vi, the process
is an ergodic process in the mean. This idea can be extended to other statistics of the random
process. Therefore, an ergodic process allows calculating statistical averages over performances
of the random process from the time average of a single performance. Statistical averages are
replaced by time averages.

Below is the formal definition of ergodicity.
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Ergodic process

For a stationary random process X (t) and for any function g(z) two types of averages can be
defined

1. For an instant ¢ and different realizations of the process we have a random variable X(t)
with probability density function fx)(x) independent of ¢, since the process is stationary.
The statistical expectation (statistical average) of the function g(X) can be computed as

.mmxawy—/fgu»ﬁmedx

This value is independent of ¢ if the process is stationary.

2. If an individual realization of the process is taken, we have a deterministic time function
x(t, A;). We can compute the time ezpectation (or time average) of that function

T

< g(x) >= Tlim %/2 g(X(t, \;)) dt.

—00 T
2
This value < g(x) >; does not depend on t but in general it depends on the realization,
so that for each \; in general a different value for < g(z) >; is possible. If < g(z) >; is
independent of 7, that is, it is the same for all 7 and also

the process is ergodic.

Therefore, a stationary random process X (), is ergodic if for any function g(x) and for any A; € Q

Jmn [ g(X(0 ) d = Bl(X (0)]

N

This means that if all the time averages are equal to the statistical averages, the stationary process
is ergodic.

Therefore, to estimate the statistics, mean and autocorrelation, of an ergodic stationary process,
it is enough to have a single realization of it. From this realization, it is possible to obtain the sta-
tistical averages of interest through the time averages. For example, the mean and autocorrelation
of the signal can be calculated using the appropriate g(z) functions.

1.3.5 Power and energy of random processes

Two types of deterministic signals had been defined, power signals and energy signals. These
definitions can be extended for realizations of random processes. If there is a realization X (¢, \;),
which can be denoted as x;(t), the energy and power of the realization are defined respectively as

Bi= [ ol

[e.9]
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and

T
.
P — lim f/f (0 dt.

T—o00

Nl

For each \; € () there is a real number E; and another P; that denote energy and power respectively.
Consequently, both energy and power are random variables that are denoted as £x and Px
respectively.

Statistical averages can be defined on these random variables that will give an idea of the energy
or power of the process. The averages that are usually defined are

e Energy of the random process X (t): Ex.

e Power of the random process X (¢): Px.

These averages are defined as

Ex = E[&x]
Px = E[Px]
where -
exc= [ IXOP at
and

In this case, as for deterministic signals

e A random process is energy-type if Ex < oo

e A random process is power-type if 0 < Px < 00

Taking these definitions into account, the energy of the process is obtained as

Ex=E UOO X (1) dt]

[e.e]

= [ Blx0P @

—00

— /OO Rx (t,t) dt.

Px=F

T

2

1 /%
:T@;T/g Ry (t,t) dt
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It can be observed that in both cases, the result depends on the autocorrelation function of the
process, evaluated at the same instant of time, that is, Rx(t,1).

For stationary random processes Rx (t,t) = Rx(0), is independent of ¢, and hence
Py = Rx(0),

and

Ex = /OO Rx(0) dt.

o0

For the process to be energy-type, Fx < oo must be fulfilled. This is only possible for the case
Rx(0) = E[X?(t)] = 0, which means that for all ¢ and for any realization X (¢) = 0. Thus, for the
case of stationary random processes, only the power-type processes are of practical interest, and
in that case the power of the random process can be obtained by evaluating the autocorrelation
function, Rx(7) at zero (1 = 0).

Finally, if the process is, in addition to being stationary, ergodic, then P is no longer really a
random variable, since all realizations have the same power, which is precisely the power of the
process

P, = Px = Rx(0).

1.3.6 Multidimensional (multiple) random processes

As in the case of random variables, it is possible to work with several random (stochastic) processes,
defined on the same probability space, simultaneously. Also, when working with communications
systems, this comes naturally. For example, when the input of a system is modeled with a random
process X (t), we have its output associated with the system, passing through an LTI system.
Each realization X (¢, \;) has an associated output

This can be interpreted as that for each \; € Q there are associated two temporary signals X (¢, \;)
and Y (¢, \;): these are two random processes defined on the same probability space.

Independence and uncorrelation of random processes

are independent if for any pair of time instants, ¢; and to,
are independent.

Two random processes X (t) and Y (¢
the random variables X (¢1) and Y (o

~— —

Similarly, two random processes X (t) and Y (t) are uncorrelated if for any pair of time instants,
t1 and ty, the random variables X (¢1) and Y (t3) are uncorrelated.

As for random variables, independence implies uncorrelation, but the reverse is not true: un-
correlation does not imply independence in general.

Cross-correlation

The cross-correlation function between two random processes X (t) and Y (¢) is defined as

Rxy(ti,t2) = E[X(t1) Y*(t2)].
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In general, by the very definition of the cross-correlation function, we have the following relation-
ship between the cross-correlation functions

RX,Y(tla t2) = R;X (t2v tl)-

For real random processes
Rxy(ti,t2) = Ry x(t2, t1).

Jointly stationarity

Two random processes X (t) and Y (t) are jointly stationary (in the wide sense) if the following
conditions hold:

a) X (t) and Y (¢) are both individually stationary.

b) The cross-correlation function Rxy(t1,%2), depends only on the difference between the two
time instants, 7 = t; — t5, and can be therefore denoted as

Rxy(ti,t2) = Rxy(t1 —t2) = Rxy(7T),

As in the case of stationarity, this condition is sometimes written using the parameterization
ty =t+ 71 and ty = t, such that

vay(t + T, t) = nyy(’r).

1.3.7 Random processes in the frequency domain

The usefulness of the frequency representation of signals in systems analysis is well known, since
the relationships between signals are in many cases simpler in the frequency domain than in the
time domain.

When looking for a suitable frequency representation for random processes, one might first
think of trying to define the Fourier transform for each time function of the process, X (t, );), and
redefining the process by a function that depends on frequency w instead of ¢, resulting in a set

of frequency domain transforms associated with each possible outcome of the random experiment
X (jw, \;), where

X(jw, Ni) = FT{X(t, \i)},
and FT{-} represents the Fourier transform.

One of the potential problems of this frequency representation of the process is that it is possible
that not all of the time functions that are part of the process, X (t,);), have a defined Fourier
transform.

In this section, we will see how to apply frequency domain analysis techniques to work with
random processes, to eventually arrive at an appropriate frequency domain representation for
random processes, called the Power Spectral Density (PSD).
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Power spectral density of random processes

The power spectral density of a random process is a natural extension of the definition of power
spectral density for deterministic signals.

To define the power spectral density, the power spectral density of each process signal, X (¢, \;),
is first defined and then averaged for all signals. To ensure the existence of the Fourier transform,
the truncated functions of duration 7" seconds are defined

X(t,N), [t <T)/2
(7] ) = o
XEE, ) { 0, in other case

Y

or by extending the use of the compact notation x;(t) = X (¢, \;),

)

[T](t) _ { zi(t), [t] <T/2

0, in other case

In this way it is guaranteed that the truncated signals are energy signals, as they have a limited
duration and therefore their squared modulus is integrable. Therefore, they have a well-defined
Fourier transform, which is denoted

X0 =77 (o0} = [

—0o0

9) T/2

:UET] (t) et dt = / xi(t) e dt.
~T/2
2

For energy signals, the energy-spectral density is \XZ»[T] (jw)|?. We can then define the power spectral

density as the energy-spectral density per time unit

2
X[ Gw)

T

Finally, increasing T' arbitrarily, we have the power spectral density of each signal that is part of
the random process.

X Gw) 2
Sx,(jw) = lim M
T—o0
For each frequency w there is a random variable, since there is a value for each possible outcome
of the random experiment. It therefore seems logical to define the power spectral density of the
process as the average of these random variables

sty 1 [ O B x|

—00 T—o00 T

This definition allows us to have an intuitive notion of the meaning of the representation, i.e., the
mean value of the squared modulus of the frequency responses of all the signals in the process.
However, the literal application of this definition to the calculation of the power spectral density
is, in most cases, rather involved.

Fortunately, there is a theorem that relates the power spectral density to the autocorrelation
function of the random process, which greatly simplifies obtaining these densities.
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Wiener-Khinchin Theorem

If for any finite value 7 and any interval A, of length |7|, the autocorrelation of the random process
satisfies

/ Rx(t—i-T,t)dt‘ < 00,
A

then the power spectral density of X (¢) is the Fourier transform of the time average of the auto-
correlation function, that is

Sx(jw) = FT{< Rx(t+7', t) >}7

where the time average of the autocorrelation function is

T/2

1
< Rx(t+T t) >_ lim — Rx(t+T,t)dt.

The proof, which can be found for example in [Proakis and Salehi, 2002], p. 179, is reproduced
below.

Taking into account that
E[| X7 (jw)|?

)
T—o00

and that

T

XTGwy = [ X(t) et dt,

r
2

introducing this expression, we have

r

’ X(s) e7I5 ds i X(t) eti2mft dt]

_T r
2 2

1

T—o0

= lim —/ / Rx(s,t)e 2= qtds.
T—oo T

Now, the inverse Fourier transform is obtained to show that it is precisely < Rx(t + 7,t) >

T T
11 [ .. 2 [z ,
FT 1 {Sx(jw)} = lim —— eﬂ‘”/2 /2 Rx(s,t) e dt ds dw
T T
273

T—oo T 27

2L  wlr—(s—0)
711—I>I()10T27T/ /ERXStdet/—ooe dw.

Given that the inverse Fourier transform of a constant is a delta
1 o

- ==y = §(1 — 5 + 1),

and including this result in the previous expression, we have

FT~ {SX(jw}—hm—/ / Rx(s,t) 0(T — s +1t) ds dt.
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Taking into account that
T
2 Rx(t+7t), —L<t+7<Z
/ZRX(s,t)é(T—s—l—t)ds: x(4ml), = <i+r<3
-z 0, otherwise
then .
_ . 1 (2 [Rx(t+7t), -L<t+r<i
FT1{s w:hm—/ Y 2 25 dt
{Sx(jw)} T—oo T -z {0, otherwise
This expression can be rewritten as
T
1 [f277
lim —/ Rx(t+1,t)dt, >0
1 . T—o0 1’ T
FT{Sx(jw)} = 1 il
Tlggof/:gTRX(t+T’t) dt, 7<0
or equivalently
3 3
lim — Rx(t—l-T,t)dt— Rx(t—i-T,t) dt] > T>0
. T—oo T T T__
FT  {Sx(jw)} = %2 2 T .
lim — / RX(t—I—T,t)dt—/ RX(t—I—T,t)dt], T<0
T T
-7 -3

Since the integral in a segment of length 7 is bounded (it is the condition of the statement of

T

the theorem), when 7" — oo the second term is negligible, and therefore

which concludes the proof.

e
lim f/z’ Rx(t+7.1) dt

T—o0 T
2

The theorem also includes a couple of corollaries that simplify the calculation of Sx(jw) for

stationary and cyclostationary random processes.

If X (t) is a stationary process and 7Rx(7) < oo for all 7 < oo, then

Corolary 1
Sx(jW) = fT{Rx<T)}

The proof is immediate, since Rx(7) only depends on 7. In this case

< Rx(t+7,t) >= Rx(7).

Corolary 2 If X(t) is cyclostationary and if
To
/ Rx(t+ T, t)dt‘ < 00,
0

then B
Sx(jw) = FT{Rx (1)},
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where Ry (7) is the one-period time average the autocorrelation function
_ 1 [To/2
Rx(T):—/ Rx(t—l—T,t) dt.
TO —To/2

Ty is the period of the cyclostationary process. The proof is immediate, because the autocorrelation
in periodic.
1 [T 1 [To/2
lim —/ Rtt+rt)di=— [ Rylt+r1)dr
T—oo —T/2 To J -1y )2

Apart from these two corollaries, the following properties can be extracted from the Wiener-
Khinchin theorem:

(1) The power of the random process can be obtained by integrating the power spectral density,

1 [ ,
Px = %/—ooSX(jW) dw.

This result matches the previous expression obtained from the autocorrelation function

T—00

T
1 %
Px = lim —/2 Rx(t,t) dt.
T ) o

2

It must be taken into account that the power can also be calculated in the time domain from
the autocorrelation function.

e For stationary processes
Px = Rx(0).

e For cyclostationary processes B
Px = Rx(0).

These conditions are given by the definition of the Fourier transform. For stationary pro-
cesses, the inverse Fourier transform of the power spectral density is the autocorrelation

function . -
Rx (1) = —/ Sx (jw) €7 dw,
27 J_o
that evaluated at 7 =0 is
1 & )
Rx(0) = %/_OO Sx(jw) dw.

The same applies in the case of cyclostationary processes to R x(0).

(2) For stationary and ergodic processes, the power spectral density of each signal is equal to the
power spectral density of the random process. In this case, the power spectral density of each
signal is the Fourier transform of the autocorrelation of that signal, which is defined as

L
Rovio(7) = lim ~ / ()it — 7).

Therefore
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As the process is ergodic, the statistical average coincides with the temporary one and therefore
1 [T/2
fim - [ a(t)a(t = )it = R(r),
which means that
Sx(jw) = FT{Rx(1)} = Sz, (jw).
(3) The power spectral density was initially defined as

(T](i.,)]2
L BIXT )]
T—o0 T

From this definition it is obvious that Sx(jw) is an even function of w, real and nonnegative:
Rx (1) is real and even, as we already knew that it happened for stationary processes. Fur-
thermore we have that it is nonnegative and this implies that the autocorrelation is positive
semidefinite, i.e., to say that

f: /Z o(t) R(t — 5) g(s) dt ds > 0,

for any function g(x). So these features of the power spectral density come from the properties
of the autocorrelation function of a stationary processes.

1.3.8 Stationary random processes and linear systems

In Section it has been seen that the output of a time invariant linear system whose input is
a random process is itself a random process, as shown in Figure [1.22

Figure 1.22: A random process is filtered with a time-invariant linear system.

Next, we will analyze the properties of the output process, Y (), based on the knowledge of
the input process, X (¢). It is assumed that the input process is real and stationary and that
the system is a real linear and time invariant system. In particular, the following questions are
considered:

1. Under what conditions is the output process stationary?
2. Under what conditions are the input and output processes jointly stationary?

3. How can the mean and autocorrelation of the output process and the cross-correlation be-
tween the input and output processes be obtained?

The following theorem answers these questions.
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Theorem: A random process, X (t), is stationary, with mean mx and autocorrelation function
Rx (7). The process passes through a linear and time invariant system with impulse response h(t).
In this case, the input and output processes, X (t) and Y (t), are jointly stationary, and

my = mx/ h(t)dt,

Ry(T) :Rx(T)*h(T)*h<—T) :Rx(T)*T‘h<T)
nyy(T) = RX(’T) * h(—T).
RyJ((T) = R)Qy(—T) = Rx(T) * h(T)

In the expression for the autocorrelation function of the output process, r1,(t) denotes the temporal
ambiguity function (also called the temporal autocorrelation function) of the channel impulse

response
rn(t) = h(t) * h(—t).

From the previous expressions it can be seen that the relations

Ry(T) = RX,y(T) * h(T) = Rva(T) * h(—T).

Proof: Tt follows from the convolution expression, which relates the input and output of a linear

system
/ X(s)h(t — s) ds

o] fTxea-0a].

_ / E[X(s)]h(t — s) ds,

Therefore

= mxh(t — s) ds,
=" mx/ h(u) du

On the other hand, the cross-correlation between X (¢) and Y'(¢) is

Rxy(ti,t2) = E[X(t1)

_El tl/ X (s)h(ty — s) ds|,

_ /_ E[X (1) X (s)|h(ts — 5) ds,
_ /Oo Ruc(ty — $)h(ts — s) ds,
=" /°° Rx(t1 —ty — u)h(—u) du,

/RXT—u( u) du,
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Similarly, the cross-correlation between Y (¢) and X (¢) is

Ry x(t1,t2) = E[Y (t1) X (t2)]

:E{ ZX Bty — 5) ds X(t)
:/ZE X(t2)] hlts — s) ds
—/OORX (s —t3) h(ty — s) ds

Finally, using the previous result

Ry (t1,t2) = E[Y (t1)Y (t2)],

Equivalent expressions in the frequency domain

Previously we have seen what happens for the statistical averages of the output process of a linear
and time invariant system when there is a stationary process at its input. Next, the relationships
between the input and output process statistics in the frequency domain are analyzed. To do
this, it is only necessary to transfer the expressions from the time domain (obtained above) to the
frequency domain. The relation is obtained immediately if it is taken into account that

FT{h(—1)} = H*(ju), and / h(t) dt = H(0).
The second expression is obvious if we take into account that
H(jw) - / B(t) e i “=° / h(t)dt = H(0).

Thus, the relations of the statistics in the frequency domain are
my = mx H(O),
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for the mean, and applying the Fourier transform to the expression relating autocorrelations of
the input and output processes, the power spectral density of the output process is

Sy (jw) = Sx (jw) [H (jw)[*.

The first equation says that the average is only affected by the continuous response of the system,
that is, by the component of w = 0, H(0). And the second one says that, regarding the power
spectral density, the phase of the system is irrelevant and only its module matters.

It is also possible to define a frequency domain relationship for cross-correlation. Define the
cross-spectral density, Sxy(jw) as

S)Qy(jw) déf ./—‘.T{RXQ/(T)}.
In this case,
Sxy(jw) = Sx(jw) H*(jw),

and taking into account that Ry x(7) = Rxy(—7)

Syx(jw) = Sk y(jw) = Sx(jw) H(jw).

It is interesting to note that although the spectral densities of the processes X and Y, Sx (jw)
and Sy (jw), are non-negative real functions, the cross-spectral densities Sy y (jw) and Sy x (jw)
can be, in general, complex functions. Figure represents by means of block diagrams the
relationship between the different frequency representations.

X(t) h) Y(t)
SXY W
(o) |20
Sx(jw) H(jw) Sy x (jw)
Sy ")
()

Figure 1.23: Schematic representation of input/output relationships for power spectral densities
and cross-spectral densities.

Extension of the previous results to cyclostationary processes

If the random process at the input of a linear and time invariant system is cyclostationary, some
of the previous results can be easily extended. In particular it is trivial to do the extension

my (£) = mx(t) / T R(t) dt = mec(t) H(O).

—00

From the definition of the power spectral density, it is also trivial to obtain the relation
. . N
Sy (jw) = Sx(jw) [H(jw)[".
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Given the relationship of the power spectral density to the average over one period of the auto-
correlation function, the relationship is also evident

éy(T) = éx(T) x h(7) x h(—7).

The relationship between autocorrelation functions is a bit more complex, but from simple calcu-
lations it is possible to arrive at the expression

Ry(tl,tg)—/_oo /_Oo Ra(s,u) bty — 5) hts — u) ds du.

1.3.9 Sum of random processes

In practice, the sum of two random processes is often encountered. For example, in the case of a
communications system, noise is added to the communications signal.

Suppose we have a random process Z(t) = X(¢) + Y (t), where X (¢) and Y (¢) are jointly
stationary. The mean, autocorrelation and power spectral density for Z(t) are obtained below.

The mean of process Z(t) is obtained as follows

mz = E[Z(t)] = BIX() + Y (0] = ELX(0)] + E[Y (0] = mx + my.

The autocorrelation of the random process Z(t) is

E[Z(t+71)Z(t)]
El(X{t+7)+Y({t+7)(X(t)+Y(t
EX(t+7)X(@)]+ E[X({t+1)Y(¢)
Rx(7) + Rxy(7) + Ryx(7) + Ry (

Rz(t + T,t)

)]
|+ EY(t+7)X@)]+ E[Y(t+71)Y (1))

7).

As can be seen, the process is stationary, since the mean is constant, and the autocorrelation
function depends only on the difference between tht time instants. Rearranging terms, the above
expression becomes

Rz(T) = Rx(T) + Ry(T) + nyy(T) + RyJ((T).

The autocorrelation function of the sum process is equal to the sum of the autocorrelation functions
of the two processes plus the two crossed-correlations.

The power spectral density is obtained by the Fourier transform of the autocorrelation function.
Taking the Fourier transform on both sides of the above expression

Sz(jw) = Sx(jw) + Sy (jw) + Sxy (Jw) + Sy.x (jw),
and taking into account that Sy x(jw) = 5%y (jw)
Sz(jw) = Sx(jw) + Sy (jw) + 2Re[Sx,y (jw)].

Thus, the power spectral density is the sum of the power spectral densities of each individual
process plus a third term that depends on the cross-spectral density of the two processes.

When the processes are uncorrelated, taking into account that the The relationship between
covariance and autocorrelation is,

Cov(X(t+71),Y(t)) = E[(X(t+7)—mx) (Y(t) —my)] = Rxy (1) — mx my,
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and that for uncorrelated processes the covariance is null, it is clear that
RX,Y(T) = mMmxmMmy.

In this case, if at least one of the two processes has zero mean, Rxy = 0, which implies that
Sx,y(jw) = 0 and therefore
Rz(T) = Rx(T) + Ry(T),

and

Sz(jw) = Sx (jw) + Sy (jw).

In the case of the sum of the signal and noise, typically the noise is uncorrelated with the signal
and has zero mean. In this case, this relation can be applied.

1.4 Thermal noise model: white and Gaussian processes

Gaussian processes and white processes play a very important role in communication systems.
Because of their relevante, these processes are introduced in this section.

Gaussian processes are important for two reasons:

1. Thermal noise, produced by the random movement of electrons due to thermal agitation,
presents a Gaussian distribution. This type of noise is present in any electronic device and
is the most important in many communication systems.

The explanation about why thermal noise is Gaussian can be found in the central limit
theorem. Thermal noise is due to the random motion of electrons, and current is the sum
of multiple electrons. If it is assumed that each electron behaves independently, we have

the sum of a number of random variables i.i.d., with which, in the end, its distribution is
2
. ag
Gaussian, N (mx, =X).
2. Gaussian processes provide a good model for some sources of information, so Gaussian

processes make their analysis possible.
Therefore, the analysis of Gaussian processes will allow us to analyze the effect of thermal noise
and the characteristics of some sources of information.

White processes are also important in the modeling of noise in a communications system, since,
as will be seen later, the spectral characteristics of thermal noise are very similar to those of a
white process.

1.4.1 Gaussian random processes

A random process X (t) is a Gaussian process if for every set of n time instants {¢,t,...,¢,} and
for any value of n, the n random variables resulting from evaluating the process in those n time
instants {X (¢;)}7,, have a jointly Gaussian distribution.

This means that for any time instant ¢, the random variable X (¢y) is Gaussian and for each pair
of instants t; and ¢, the random variables (X (¢;), X (t2) have a jointly Gaussian distribution.
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One of the characteristics of Gaussian processes is that their full statistical description depends
only on the vector of means p and the covariance matrix C'. Because of this, the following theorem
can be formulated.

Theorem: For Gaussian processes, the knowledge of the mean, mx(t), and of the autocorrela-
tion function, Rx(t1,ts), provides a complete statistical description of the process.

This theorem implies that it is not necessary to know the vector p or the matrix C' for every n
and every set of times {¢;} ;, but it is enough to know mx (t) and Rx(t1,?2). It is always possible
to construct g and C' from these for any set of time instants {¢;}7 ;.

e For X(tl), = U; = mx(tz)
e For (X(tl), X(tj)), = C@j :COV(X(tZ>,X(t])):Rx<tZ, tj> — mX(tl)mX(tj)
Another advantage of Gaussian processes is their behavior in linear systems. The following
theorem describes this behavior which is of great importance.

Theorem: If a Gaussian process X (t) goes over a linear and time invariant (LTI) system, the
resulting system, Y'(¢), is also a Gaussian process.

To prove it, we use one of the properties of jointly Gaussian processes. The aim is to prove that
for all n, the random variables (X (t1), X (t2), ..., X (¢,)) are jointly Gaussian. In general, for anny
time instant ¢;

Y(t;) = /OO X(7)h(t; — 7)dr.

This integral can be interpreted as a sum taken to the limit, where X (¢) is multiplied by the
different values of the impulse response h(t). Specifically, this integral is equal to

Y(t;) = lim lim Y X(kA)h(t; — kA).

N—o00 A—0

This expression can be seen as a linear combination of a set of jointly Gaussian random variables,
{X(kA)}Y__ . Therefore, now

( N
Y(t) = lim lim > X(kA)h(ty — kA)
k=—N
N
Y(ty) = lim Jlim > X(kA)h(ty — kA)
k=—N
N
\ Y(t,) = zx}gréoilino 2 X(EA)h(t, — EA)

This expression states the linear combination of the random variables { X (kA)}Y_, which form
Y (t) are jointly Gaussian. And it has been seen in Section any linear combination of jointly
Gaussian random variables forms a set of jointly Gaussian random variables.

This property of Gaussian processes is very important as it means that the type of process that
is at the output of a system when the input is Gaussian is known. For any other type of process,
in general, it can be very difficult to know this.
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All definitions made so far are for Gaussian processes in general. Below are some conditions for
stationary processes.

Theorem: For Gaussian processes, stationarity in the strict sense and in the wide sense are
equivalent.

This property is due to the fact that Gaussian processes have a complete statistical description
that only depends on the mean mx(¢) and the autocorrelation function Rx (1, t2).

Theorem: For Gaussian, stationary, and zero-mean processes, a sufficient condition for the
ergodicity of the process X (t) is

/_OO |Rx(7)|dr < oo.

o0

This is something that simplifies the ergodicity analysis of this type of process.

Jointly Gaussian random processes

The processes X (t) and Y (t) are jointly Gaussian, if for any value of n and m, and any pair of
sets of time instants {¢,ts,...,¢,} and {7, 7, ..., 7.}, the n +m random variables

{X(t1), X(t2),..., X (tn),Y (1), Y(72),...,Y(7m)},
they have a jointly Gaussian distribution (of dimension n + m).

Jointly Gaussian random processes have a very important property that is stated in the following
theorem.

Theorem: For jointly Gaussian processes, uncorrelation and independence are equivalent.

1.4.2 White random processes

A white process is a random process that has equal power for all frequencies. The term refers to
the analogy with the case of white light, which is made up of the sum of all colors.

By definition, a random proces is white if it has a constant (flat) power spectral density
Sx(jw) = C.
Therefore, the autocorrelation function for a stationary white process is
Rx(r)=FT '{C} =C (7).

This means that for any 7 # 0 Rx(7) = 0. And that implies that the random variables X (¢)
and X (ts), Vt; # to, are uncorrelated. If additionally, the process is Gaussian, which as will be
seen later is the case of the usual statistical model for thermal noise, this means that the random
variables are also independent. Figure shows the power spectral density of a white process,
and the autocorrelation function for a stationary white process.

From the definition of a white random process, its power is infinite, since

1 [e.9] o0

Sx(jw) dw = — C dw = 0

P =
X 2m J_ o

:g N
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Sx(jw)

C RX(T)fC

w 1 T

Figure 1.24: Power spectral density of a white process, and autocorrelation function for a station-
ary white process.

or if it is calculated in the time domain for a stationary random process

Filtering a white process

It has been seen that when a Gaussian process is transmitted over a linear and time-invariant
system, the resulting process is still Gaussian. However, the same is not true for the “white”
condition. When a white process is transmitted over a linear and time-invariant system, the
resulting process is generally not white. Specifically, the power spectral density is determined by
the frequency response of the system

Sy (jw) = Sx(jw) [H(jw)|* = C' [H (jw)|*.

Except in the case of a trivial all-pass filter (h(t) = «ad(t), or H(jw) = «, i.e., an amplifier or
attenuator), this response will not be constant, so the process Y (¢) will not be white.

The autocorrelation function of the filtered process is
Ry (7) = Rx(7) * h(7) * h(—7) = Rx(7) * (1),

where 7, (7) is the time ambiguity function of h(7). Considering the form of Rx(7) for a white

process,
Ry(T) = C Th(T).

This means that the power of the process is
Py = Ry(O) =C ’/‘h(O).

Taking into account that the value of the time ambiguity function of a signal at zero provides the
energy of the signal

Py = C E{h(t)}.

Therefore, the power of a filtered white process is no longer infinite, but is related to the energy
of the filter.

1.4.3 Thermal noise model

The usual model for thermal noise is that of a stationary, ergodic, white, Gaussian random process.
Generally the noise will be denoted as n(t), so the notation R,(7) and S,(jw) will be used to
represent the autocorrelation function and the power spectral density of the noise process. In the
case of thermal noise, the constant C' that defines the value of the power spectral density is usually
denoted as Ny/2, as shown in the Figure |1.25]
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Figure 1.25: Power spectral density and autocorrelation function of a stationary white process
modeling thermal noise.

Obviously, no physical process can have infinite power. Therefore, a white process does not exist
as such. The importance of white processes in practice is due to thermal noise being modeled as
a white process for a wide range of frequencies. Quantum mechanical analysis of thermal noise
says that the power spectral density of white noise is

hw
Sn W) = e
(j ) 477(@27}:1@ — )

h: Planck constant (6.6x10734 Jules x second).

k: Boltzmann constant (1.38x10723 Jules/%Kelvin).

T: Temperature in Kelvin degrees.

w: Angle frequency, in radians/s (27 times the linear frequency).

where

This power spectral density has its maximum at w = 0, where it takes the value k7'/2, and
tends to zero as w tends to infinity. However, the descent is very slow. For example, at T" = 290
Kelvin degrees, S, (jw) drops to about 90% of its maximum for w ~ 27 (2 x 10'?) rad/s, which
is above the frequencies commonly used by communications systems. Figure m plots S, (jw),
with a zoom (right figure) in the range of 200 GHz.

kT® . kT .
T Sn(iw) T3 | Sn(jw)
4\ 08k€a 1
0.622% + 0.652% +
0.45L% L 0.4KL% L
kT | kT* |
0.2%5 © (GHz) 0.2%5 “ (GHz)
—2000—1500—1000 —500 500 1000 1500 2000 —200 —150 —100 —50 50 100 150 200

Figure 1.26: Power spectral density of thermal noise.

For this reason, thermal noise is modeled as a white process with C' = %, with Ny = kT
Watts/Hz.

From now on, the model for the thermal noise is a random process with the following charac-
teristics:

e Stationary.
e Ergodic.
e Zero mean, m, = 0.

e Autocorrelation function
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e Power spectral density
: No

NOTE: It is easy to see that a Gaussian stationary process with such an autocorrelation function

is ergodic, since
o N,
/ |R,(7)| dr = 70.

o0

1.4.4 Filtered noise and noise equivalent bandwidth

As seen above, the power of a white random process is infinite. In the case of thermal noise,
although it is not infinite, it is relatively high. This power is limited by filtering. Denoting by
Z(t) the random process resulting from filtering the thermal noise process with a linear time-
invariant filter h(t), the power spectral density of this process is

S2(j6) = 5.(70) [HG)P = 22 [H(jw)

The power of Z(t) can be obtained by integrating Sz(jw)

o0

1 ee Ny 1 e° N,
Pr= [ Syw) do="0 —/ H (o) deo =~ £{h(1)}

—00

£{h(t)}

The frequency responses of ideal filters with bandwidth B Hz (or W = 27 B rad/s), either low-pass
filters or band-pass filters with central frequency f. Hz (or w. = 27 f. rad/s), are shown in Figure
.27

H(jw)

H(jw)
W =2rB W =2nB
1 ‘(—) }L 1 —>
| w | | | w
—W +W —We —H"}C
Low Pass Filter (LPF) Band Pass Filter (BPF) with center freq. w. rad/s

Figure 1.27: Frequency response of ideal filters, low pass and band pass.

For both low pass and bandpass ideal filters, it is easy to check that

E(h()} = — /OO |H(jw)[? dw = 2B.

2m J_
Therefore the power of the filtered noise Z(t) is

P; =Ny B.

If the ideal filters do not have unit gain, but power gain G, their frequency response is that of
Figure [1.28
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Figure 1.28: Frequency response of ideal filters, low pass and band pass, with a power gain G
(voltage gain vG).

In that case, the energy of the filters is

et} =5 [ " |H(jw)|? dw = 2BG.

2r ) _o
and therefore the power of the filtered noise is
P; =Ny BG.

Both with unit gain and with an arbitrary power gain G, the power of the filtered noise is calculated
very easily from the previous expressions.

When non-ideal filters are used, it is in many cases impractical for users of a certain system to
have to measure the energy of the filter (theoretically, by integrating the squared modulus of the
filter response, or using equipment). It would be much more convenient to be able to apply an
expression similar to the one that is used with ideal filters. For this reason, the so-called noise-
equivalent bandwidth of a system is used. The noise-equivalent bandwidth, which is denoted as
B.,, is used to obtain the noise power as

PZ - NO Beq Geqa

where G, = H2,,., and H,,,, is the maximum value of H(jw). Thus, G, denotes the equivalent
gain of the filter. Given the equivalent noise bandwidth of the filter, B.,, and its equivalent gain
G g, it is very simple Calculate the noise power at the output of the system. Usually, manufacturers

measure these values and publish them in the data sheets so that it can be used by users.

Comparing the expressions for the filtered noise power given by B, and by E{h(t)},
N.
72 E{h(t)} = No Beg Geq

it is straightforward to obtain the noise-equivalent bandwidth as

1 [ o
_ (b} 2m / [H (je)|* duw

Bey = = — Hz.
1T 2 G, 2 Gey ‘

Bearing in mind that the frequency response of real systems is symmetric with respect to the
origin, it follows that

| HGE do=2 [T G do.

(e 9]
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and the equivalent noise bandwidth can also be calculated as

1 [ 2
> | H{w)|" dw
_ 21 Jo

Hz.
Gy g

B,

The interpretation of the noise-equivalent bandwidth would be that an ideal low-pass filter, of
amplitude H,,,, and bandwidth B,, Hz, allows to pass the same noise power than the characterized
system. Figure [1.29)illustrates this interpretation.

Hmay \

21 Beg

H(jw)

Figure 1.29: Tllustration of the meaning of the equivalent noise bandwidth of a system.

Example

Calculate the noise-equivalent bandwidth of a filter with the following frequency response

1+%, i —W<w<0
[H (jw)| = w
1_W’ Ho<w<W
0, in other case,

where W is the bandwidth in rad/s, i.e., W = 27 B, where B is the bandwidth in Hz.

In this case, the squared modulus of the frequency response of the filter is a triangle between

-W and W,
w
1+ —, if —WL 0
o 3 —|—W, 1 Sfw<
[H (jw)] :A<ﬁ): 1—%, FO<w<W
0, in other case.

It is straightforward to obtain H,,q, = max |H (jw)|?> = 1, the value for w = 0. On the other
hand, taking into account the symmetry of the filter response

1 [ 1 [
o | 1HGP do = [T HG)P do
2 J_ T Jo
1 (W w
=— 1——d
77/0 w
= l X K = B.
T 2
Therefore,
By = B = — Hz.
2x1
Example
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Calculate the noise-equivalent bandwidth of a low pass RC filter.

The frequency response of an RC filter is

B 1
14 jwr’

H(jw)

where the constant 7 is equal to 7 = RC'. The module of this answer is

1
H(jw)| = ———.
In this case it is clear that H,,q. = 1, for w = 0. Regarding the energy of the filter
1 & 1 [ 1 [ 1
o | WGP do = [ TGP do = o [T e
21 J_ o T Jo mJo 14 w?T?

u—_wl/oo L du
N m™Jo 1+U2 T

1 [ 1 1
= — 5 du=— arctg(u)| = —
T Jo 1+u T 0 T
N———
g
Finally,
1
5= 1 1
Beyy=2-=—=—Hz

1.4.5 Signal to noise ratio

We have already seen how to calculate the power of random processes. A particular case is the case
in which there is the signal plus a noise component and both signals are modeled with different
processes. In this case it is useful to calculate the signal to noise ratio

S Power of the signal
N Power of the noise

In many cases this ratio is expressed in decibels.

S S
N<dB) = 10log;, N

If a signal is modeled with a process X (t¢), and thermal noise is added to it, as has been said
before, at the input of any receiver a filter is used to limit the noise power. The filtered signal is
denoted as Y (¢) and the filtered noise is Z(t), as illustrated in Figure [1.30]

X(t) +n(t) ho) V() +2Z(t)  v()=X(t)

Figure 1.30: Filtering of a signal to which thermal noise has been added.

In this situation, it is possible to define two signal-to-noise rations: one at the input of the filter,
and the other at the output of the filter, although as we will see now only one of them really
makes sense. Before filtering, the signal to noise ratio it is

Px S

P’ N

P
(dB) = 101log,, FX dB,

n

n
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and after filtering it is

Py

Py

The power of the signal at the input of the filter can be calculated in several ways, for example
by integrating its power spectral density

Y )
Py = %/_Oo Sx (jw) dw.

The power of thermal noise, as previously seen, is infinite.

N,
—Odw:oo,

1 [~ ,
Pn:%/oosn(]w) dw = 5

—0oQ
so the signal-to-noise ratio at the input is zero, or equivalently, —oco dB

S|P _Px_, S
N|l. P, oo ' N

P
(dB) = 101log,, FX = —oc0 dB.

in n

This result makes evident the need to filter to limit the power of thermal noise. At the output of
the filter, the power of the signal can be obtained by integrating its power spectral density

1 [~ . 1 [ . NS
Py = %/Oo Sy (jw) dw = %/OO Sx(jw) |H(jw)|* dw.

For noise, depending on the type of filter, the power can be calculated in several ways. If it is an
ideal filter with bandwidth B Hz
PZ = NO Ba

being Ny = K T. If the ideal filter has a power gain G then
P, =Ny BG.

On the other hand, if we have a non-ideal filter whose noise-equivalent bandwidth and its (equiv-
alent) gain are known, the power of the filtered noise is

Pz = Ny Bey Geg.

Finally, if we have a non-ideal filter and its noise-equivalent bandwidth is unknown, the noise
power can be calculated (if its response is known) as

N L[ Ny [, Ny
Pr= 5 [ 1HGoRde =T [ at= 3 o)

—00

In any case, this power P, will be finite, which gives rise to a non-zero signal-to-noise ratio.

1.5 Sampling of band-limited random processes

The definition of a band-limited random process is the natural extension of the definition of a
band-limited signal. A random process of bandwidth B Hz has the property

Sx(jw) =0, V|w| >2r B.
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As already seen, for band-limited signals the sampling theorem allows a signal to be sampled
without information loss. This theorem says that to be able to perfectly reconstruct the original
signal, the sampling frequency must be at least twice the bandwidth of the signal

meQB%Tm:fLmS%.
In this case the signal is reconstructed as
x(t) = 2BT,, i z(kT,,) sinc(2B(t — kT},)).
k=—o0
For T,, = %, this expression can be simplified as
x(t) = i z(kT,,) sinc(2B(t — kT},)).
k=—o0

It makes sense to think that the sampling theorem can be extended to random processes. The
following theorem justifies this intuition.

Theorem: If X(¢) is a band-limited process, with Sx(jw) = 0 for w > W = 27 B, taking a

sampling interval T,, = 55 = &

E (X(t)— f: X (KT, sinc(QB(t—k:Tm))> ~ 0.

k=—o00

To prove this, we expand this expression

E (X(t) — i": X(kTy) sinc(ZB(t—k:Tm)))

—E[X2(t)] - 2 i E[X(t) X (KT,,)] sinc(2B(t — kT,,))

+ i i E[X (kT,) X (uTy,)] sinc(2B(t — kT,,)) sinc(2B(t — uT},))

k=—o00 u=—00

=Rx(0) —2 f: Rx(t — kT,,) sinc(2B(t — kT,,))

k=—o00

+ > > Rx((k—u)Ty) sinc(2B(t — kT,)) sinc(2B(t — uT},)).

k=—o00 u=—00

For the last term, we can make the change of variable m = u — k and it remains

i i Rx(mT,,) sinc(2B(t — kT,,)) sinc(2B(t — kT,, — mT,,))

= Y sinc(2B(t — kT,,)) i Rx(mT,,) sinc(2B(t — kT,, — mT,,)),

k=—o00 m=—00
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where the property Rx(—mT,,) = Rx(mT,,) has been used.

Since X (t) is band limited, its autocorrelation is also band limited, so that

Rx(t) = i Rx(kT,,) sinc(2B(t — kT,,)),

k=—o00

and therefore

i Rx(mT,,) sinc(2B(t — kT,,, —mT,,)) = Rx(t — kT,,).

m=—0o0

Substituting this expression, we get

E <X(t) — i X (kT,,) sinc(QB(t—kTm))>

k=—o00

= Rx(0) — f: Rx(t — kT,,) sinc(2B(t — kT,,)).

And it can be checked that the last term is Rx(0), which completes the proof.

Since it is the expectation of the square error that vanishes, in this case it is said that the
sampling theorem holds in the mean square sense, or that X (¢) is equal in the mean square sense
(MSS) to the expression of the sampling theorem for X (k7,,)

X() " i X (kT)n) sinc(2B(t — kT},)).

k=—00

Another interesting property is that the samples of the random process are only uncorrelated if
the process has a constant (flat) power spectral density in the band, that is, if

O w<W
Sx(jw) = { 0, in other case
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Chapter 2

Analog Modulations

This chapter introduces the most commonly used analog modulations: amplitude modulations
and phase modulations. Their main characteristics in both the time and frequency domains are
presented, and the effect of noise on each modulation is analyzed.

2.1 Introduction to the concept of modulation

An analog signal is a continuous-time signal with a continuous range of possible values (continuous-
time continuous signal). The output of most information sources corresponds to this type of signal.
Voice and video are two important examples of analog sources. Figure [2.1] shows a voice signal.
With this type of signal, the information is stored in the waveform of the signal itself. Therefore,
an analog communication system must attempt to transmit this waveform as faithfully as possible
to the system endpoint.

m(t)

Figure 2.1: Example of a voice signal.

The general trend consists of sampling and quantizing the signals (analog-to-digital conversion,
or A/D conversion) and transmitting them through a digital communications system, in order to
reconstruct them at the receiver (digital-to-analog conversion, or D/A conversion). However, some
analog communication systems still exist today, and they are still usefull in some applications with
specific requirements. Therefore, it is necessary to analyze these systems.

The transmission of analog signals can be carried out basically in two different ways:

1. Baseband or unmodulated transmission: The information signal is transmitted directly,
without any modification.
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2. Modulated transmission: The information signal is modified, the spectrum of the signal is
shifted, it will be centered around a certain center or carrier frequency w, rad/s. The shape
of the spectrum or the bandwidth of the signal may or may not be modified, as shown in
Figure in examples A and B, respectively.

M (jw)
yany
4 Ww (rad/s)
[Modulated signal (Example A)] S(jw)
—we — W —we —we + W we =W We we+ W w (rad/s)
[Modulated signal (Example BD S(jw)
—we We w (rad/s)

Figure 2.2: Different modes of transmission of analog information (frequency domain view).

The most frequent option is the transmission of a modulated signal. The process of modifying the
information signal to produce another signal with different spectral characteristics but containing
the same information is generally called modulation. The new generated signal is called the
modulated signal, while the information signal is called the modulating signal. Usually, the
transmission is done by modulating a signal called carrier. In general, the analog information signal
is stored in the amplitude, frequency, or phase of a sinusoidal carrier. This is called amplitude,
frequency, or phase modulation.

The modulation of an analog signal serves one of the following purposes:

1. To shift the spectrum of the original signal to adapt it to the channel characteristics, that
is, to bring it into the region of the spectrum (frequency band) where the channel behaves
better (ideally, in such a way that a distortionless transmission is produced; in practice,
where the distortion is as small as possible).

2. To expand the bandwidth of the transmitted signal to reduce the effect of the noise during
the transmission.

3. To accommodate the simultaneous transmission of different signals or sources of informa-
tion on the same channel, which is called multiplexing or multiple-access, depending on the
scenario. The spectrum of the different signals can be modulated to shift their spectrum
into non-overlapping frequency bands. This type of simultaneous transmission is called Fre-
quency Division Multiplexing (FDM), or Frequency Division Multiple-Access (FDMA). The
basic idea of an FDM system is illustrated in Figure [2.3]

In this example, there are three signals that share the same frequency band. If the three
signals are transmitted directly over the same medium, it would not be possible to separate
them later. On the other hand, if the frequency range of each signal is shifted by modulation
and the spectrum of each of them is moved to a frequency band in such a way that there is no
overlap between the spectrum of the three modulated signals, the simultaneous transmission
of the three signals is possible. At the receiver, after filtering each of the three signals, and
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My (jw)

-w W w (rad/s)
: M; (jw)

Baseband signals /——\

—-Ww W w (rad/s)

T M3 (jw)
—_—
-w W w (rad/s)
(FDM modulated signals) SFPM () [ N A ¥
' " | .
—We 1 —We 2 —We 3 We,3 We,2 We,1 w (rad/s)

Figure 2.3: Simple example of multiplexing three signals by frequency division.

restoring the spectrum of each signal to its original frequency range, each of the three
signals can be recovered separately (demultiplexing), as illustrated in Figure . A classic
example of the application of FDM is commercial radio broadcasting, where every radio
station has assigned a specific frequency band. All stations transmit simultaneously in
their non-overlapping frequency bands, and a user can tune a given station by selecting
its corresponding reference frequency, as shown in Figure 2.5] to filter and demodulate the
signal that is transmitted in its assigned frequency band.

(FDM modulated signal SFDM (i) [

—We, 1 —Wwe2 —We,3 We,3 We 2 We 1

) |

VARNE

—W W w (rad/s)
: My (juw)
Baseband signals /——\;
Y
—-Ww

W w (rad/s)
1+ M3 (jw)

w (rad/s)

B e
—-W W w (rad/s)

Figure 2.4: Demultiplexing three signals in an FDM transmission scheme.

The first and third purposes are achieved with the three types of modulations mentioned above
(amplitude, frequency or phase), while the second is only produced with the so-called angle mod-
ulations, which are phase and frequency modulations.
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KBBL-FM K-Billy
Springfield Los Angeles
KBHR Radio Tokyo 4M Radio
91.7 101.7
Cicely, Alaska | — ! ] — : I MHz
& Hvre B 87 90 95 100 105 108
. K-Billy KBHR  KBBL-FM
4M Radio 90.9 97.1 102.5
Radio Tokyo
Carriazo Korea (MASH)

L ST S J TR I

Figure 2.5: Commercial radio broadcasting as a classic example of FDM.

2.1.1 Basic notation and modulating signal models

In this section we will establish some aspects of the notation that will be used throughout the
chapter.

The analog information signal to be transmitted, or modulating signal, will be denoted alter-
natively as m(t) or M(t): in the presentation and the analysis of the different modulations, in
some cases a deterministic signal m(t) is assumed; in other cases, it is considered a random signal
whose statistical parameters are known, which is modeled with a random process M ().

In the first case, a deterministic modulating signal, the following characteristics are assumed:
1. It is a baseband signal with bandwidth B Hz or W = 27 B rad/s; that is, its Fourier
transform, M (jw), is zero, M (jw) = 0 for |w| > W rad/s.

2. It is a power-type signal with power

When considering a random modulating signal, this signal will be characterized by a stationary
random process M (t) with the following characteristics:
1. Tt is a Wide Sense Stationary (WSS) random process.
2. It has a known autocorrelation function R/ (7).

3. The power spectral density is Sy/(jw) (related to the autocorrelation function via the Fourier
transform).

OCW Universidad Carlos III de Madrid 78 Marcelino Lazaro, 2023



Universidad

Carlos I . .
de Madrid Communication Theory @020

ucdm

4. Tt is a baseband and band-limited random process, with bandwidth B Hz or W = 27 B
rad/s; that is, Sy(jw) = 0 for |w| > W rad/s.

5. It is a power-type process with power Pj;, which can be obtained from the above functions
as

1 oo .
Par = Rus(0) = %/ i) dw.

The signal is transmitted through a communications channel by storing it on a sinosoidal carrier
c(t) = Accos(2mfet + @) = A cos(wet + @),

where A, is the amplitude, f. is the frequency in Hz (w, is the frequency in rad/s) and ¢, is the
phase of the carrier signal.

The modulating signal, m(¢), is said to modulate the carrier signal in amplitude, frequency,
or phase, if the amplitude, frequency, or phase depends on m(t). In any case, the effect of
the modulation is to convert the baseband modulating signal, m(t), into a band-pass signal whose
spectrum is around the frequency of the carrier signal, f. Hz. Summarizing, there are the following
types of analog modulations:

1. Amplitude Modulations (AM)
The carrier amplitude varies in time as a function of the modulating signal.

Ae = Ac(t) = f(m(1)).

2. Angle modulations
The angle value of the carrier varies in time as a function of the modulating signal

a) Phase Modulation (PM)
The phase of the carrier varies in time as a function of the modulating signal.

P = Gc(t) = f(m(t)).

b) Frequency Modulation (FM)
The instantaneous frequency of the carrier varies in time as a function of the modulating
signal

fi(t) = fe = fit) = f(m(t)).

fi(t): instantaneous frequency of the carrier signal at instant t.

2.2 Amplitude Modulations (AM)

In an amplitude modulation the modulating signal m(t) is stored on the amplitude of the sinusoidal
carrier ¢(t), which instead of having a constant value A, will vary in time as a function of m(t).
There are different variants of amplitude modulations. In this chapter we will analyze the following:

1. AM: Conventional AM modulation (or double sideband AM modulation with carrier).
2. DSB: Double SideBand modulation (without carrier).

3. SSB: Single SideBand modulation.

4. VSB: Vestigial SideBand modulation.
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2.2.1 Conventional AM

A conventional AM signal consists of the sum of two components: the carrier signal and a double
sidedband signal, which consists of the product between the modulating signal and the carrier.
The general analytical expression for the modulated signal is therefore

s(t) = Accos(wet + ¢¢) + m(t) x A.cos(wet + ¢),

~
Carrier c(t) Double SideBand (DSB): m/(t) xc(t)

which can also be written as
s(t) = Ac [1+m(t)] cos(wet + ¢c). (2.1)

The new varying amplitude of the sinusoidal carrier is A, [1 + m(t)]. In most cases it is useful to
impose the constraint |m(t)| < 1 such that this amplitude A.[1 4+ m(t)] is always positive, since in
that case the modulating signal m(t) is directly reflected in the envelope of the modulated signal,
and the demodulation of the signal will be easier. If for some value of ¢ the modulating signal is
m(t) < —1, the modulated signal is overmodulated, and the necessary process for demodulation
becomes more complicated, since in the intervals in which m(t) < —1 the envelope becomes

proportional to —m(t) (see Figure [2.6)).

To avoid overmodulation m(t) can be scaled so that the amplitude is always less than unity.
The most common way to do it is by introducing a normalization and the so-called modulation
index.

Taking into account the dynamic range of the modulating signal, and assuming that —Cj; <
m(t) < 4+Chy, the normalized modulating signal m,(t) is defined as

m(t)  mi)
max [m(t)]  Cuy

my(t) =

From this normalized signal, the modulating signal with modulation index a is defined as
mq(t) = a x my(t).

The scale factor a is called modulation indez, and it is a positive value. Now, the modulated signal
AM with a modulation index a is defined by replacing in the expression (2.1) the modulating signal
m(t) by the modulating signal with modulation index a, m,(t), i.e.

s(t) = c(t) + my(t) X c(t) = Ae [1 4+ my(t)] cos(wet + ¢.).
To avoid overmodulation, the modulation index is in the range

0<a<l.

Figure shows an example of the waveform for a modulation index a = % You can see how
the information signal is printed in the envelope of the modulated signal, and how its amplitude
varies between A.(1 — a) and A.(1+ a), in this case between 4¢ and 24<.

If the modulation index is modified for the same modulating signal, and a = % is used, the

resulting modulated signal is the one shown in Figure . Again the modulating signal (informa-
tion) is printed in the signal envelope, but now the amplitude of the signal varies in a larger range,
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Envelope

Overmodulation

—A.[1 + m(1)]

Figure 2.6: Example of modulating signal, m(t), carrier signal, ¢(¢), and modulated signal, s(t),
for a conventional AM without (above) and with (below) overmodulation.
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b c(t)

b s(t)

Ac(l+a)

Acll 4+ a my(t)]
Ac B

| A AN A A NAT

Figure 2.7: Example of a conventional AM signal with modulation index a = %

bos(t)

Ac(l+a)

Ac[l + a mp(t)]

Ac B

At ANANENA AWAWAWAW N

Figure 2.8: Example of a conventional AM signal with modulation index a = %.
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between % and 7TAC. With respect to the previous case, now the smallest values of the envelope

are closer to zero.

If the modulation index were to take a value greater than 1, for example a = %, now the

amplitude term A.[1 + m,(t)] can take negative values. the resulting modulated signal is the one
shown in Figure 2.9} It can be seen that now the signal envelope no longer contains the shape of
the modulating signal (information), and that where the amplitude term A.[1 + m,(t)] < 0 there
is a 180° phase shift in the sinusoid of the modulated signal, and the envelope is proportional to
—m(t). This makes impossible to demodulate the signal from the envelope in this case.

b s(t)

Ac(l+a)

- /AN U A= VA

Figure 2.9: Example of a conventional AM signal with modulation index a = 1.5.

Spectrum of the conventional AM signal - Deterministic case

In this section, the frequency response of the modulated signal will be obtained when considering

a deterministic modulating signal m(t) with Fourier transform M (jw). The signal is bandlimited,

with M (jw) = 0 for |w| > W = 27B rad/s. It is convenient to remember that m,(t) = a my(t),
1

with m,(¢) = z- m(t). In the frequency domain this means that M,(jw) = a M,(jw) =

o M(jw). Consi{dering that the modulated signal is
s(t) = Accos(wet + @) +mg(t) X A cos(wet + @)

applying the basic property of the Fourier transform that a product of signals in time becomes
a convolution of their Fourier transforms in the frequency domain, and taking into account that
the Fourier transform of a sinusoid is two deltas, and that the phase term in the sinusoid implies
a complex exponential in the frequency domain, the Fourier transform of the modulated signal is

S(jw) =FT{Acos(wet + dc) } + % FT{ma(t)} * FT{A. cos(wet + o)}
=A. T [§(w — we) €% + §(w + w,) e7I]

A, . . , . . .
+ 57 Maljw — jwe) % + Ma(jw + jwc) €%
N e’ N—————
C(JIVI M (jw—jwe) CLM M (jwtjwe)

If this expression is analyzed, the following conclusions are reached
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e Modulus of the Fourier transform S(jw)

— Two deltas, in —w. and in +w,
x Amplitude A.7

— Replicas of the shape of M (jw) shifted —w. and 4w,

aA.
2Cm

* Scale factor
e Phase of the Fourier transform

— The carrier phase introduces the term e=7%

x Constant phase term

e Bandwidth of the modulated signal

Wap =2 W rad/s, Bay =2 B Hz

One of the most important characteristics of the conventional AM modulation is that its band-
with is twice the bandwidth of the modulating signal. Figures and show two examples of
the Fourier transform of the modulated signal, S(jw), for two particular cases of frequency response
of the modulating signal, M (jw). It can be easily seen that for a modulating signal of bandwidth
W rad/s, the replica of M (jw) that is shifted to w. in the modulated signal, M (jw — jw,), has a
support of 2WW rad/s, independently of the shape of M (jw).

M (juw)]
Am
W = 27 B (rad/s)
W W w (rad/s)
—>
w
S (jew)]
Acm™ +
Ac a
Am 2Cy |
\ 4
(4
—we —W —we —we+ W We —/ w We CUc\+ w w (I'ad/S)
N

[ 4
Wapy =2 W

Figure 2.10: An example of the Fourier transform of a conventional AM modulated signal.

Statistical analysis of conventional AM modulation

We now consider that the modulating signal is a random signal whose statistics are known, which
is modeled by a stationary random process, M (t), with the characteristics defined in Section m

M(t), stationary, with my; =0, Ry (7), Sy(jw), and power Pyy.
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M (jw)|
Am
W = 27 B (rad/s)
-w | W w (rad/s)
w
|S(jw)]
A, ™ +
Ap 222 L
/\ 2 Cu W{} >W
f T 1 T T T
—we—W —we —we+W we=W W we+W  w(radls)
S Wy =2w

Figure 2.11: Another example of the Fourier transform of the conventional AM modulated signal.

Firstly, the statistical parameters of the random process that models the modulated signal will
be obtained. It is defined as

S(t) = Al + My (t)] cos(wet + ),

where the random process M, (t) models the modulating signal with modulation index a, which is
given by My(t) = a My (t) = &= M(t). The mean of this random process S(t) is

mg(t) =E[S(t)] = Ac[l + E[M,(t)]] cos(wet + ¢c) = A. cos(wet + @),
since E[M,(t)] is the mean of M,(t), and if M,(t) = a My (t) = g M(t), then the mean of M,(t)
is E[M,y(t)] = g E[M(t)] = 0.

The autocorrelation function is

Rs(t+7,t) =E[S(t + 1) x S(t)]

=A2F I+ My(t+7))(1+ My(t)) | cos(we(t +7) + @) cos(wel + ¢c)

1+ Mg (t)+Mq (t+;)r+Ma (t+7) X Mq(t)

AQ
T2

We have taken into account the linearity of the mathematical expectation operator, that E[1] = 1,
and the fact that since M,(t) is a stationary random process, E [M,(t)] = E [M,(t + 7)] = 0, and
that £ [M,(t) x M,(t + 7)] is the definition of the autocorrelation function of the random process
M,(t), i.e, Ry, (7). Moreover, the following trigonometric equality has been used

S [1+ R, (7)] [cos(wer) + cos(we(2t + 7) + 2¢.)] .

1 1
cos(a) X cos(b) = 3 cos(a — b) + 2 cos(a + b).

Clearly, both the mean and the autocorrelation are periodic functions of period 7;, = Z—’r = fi
27

for the mean and Tk = 57~ = # for the autocorrelation function. The common period is T' = T,,.
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Therefore the process is a cyclostationary random process with period 1. Thus, to characterize
it, it is necessary to calculate the time average of the autocorrelation over a period, which is

~ 1 [T/2 A?
Rs(7) :f/ R(t+7,1) dit = == [14 Rag, (7)] cos(wer)
~T/2
A? a?
== [1 + @RM(T)] cos(w,T).

In this case, it has been taken into account that the integral over the variable ¢ in the cosine of
frequency 2w, rad/s is made over 2 complete periods of the sinusoid, and therefore it is zero. Also

keep in mind that if M,(t) = a My(t) = - M(¢), then Ry, (1) = a’? Ry, (1) = % Ry (7).

Therefore, Sy, (jw) = & Su(jw) ¥ P, = & Pur.
M M
Now the power spectral density is the Fourier transform of this time average of the autocorre-
lation function
2
C

Ss(jw) = FT{RS(T)} :A T [0(w—we) + d(w + we)]

2
AQ
+ 58 [Su, (oo = ) + S, (o + o)
AQ
:7" T [§(w—we) + d(w + we)]
A% [ a? . : a? . .
+ 1 {@ Su(jw — jwe) + @ Sm(jw + jwe)
And the power of the process can be calculated as
~ 1 o0 )
PS :Rs(O) = 2—/ Sg(jw) dw
™ —0oQ
A2
0
a2 2L

Analyzing these expressions, the following conclusions are reached:

e Bandwidth of the conventional AM signal
WAM:2Wrad/s, BAMZQBHZ
The power spectral density is composed of

— Two deltas, located at —w,. and at +w,
x Amplitude %27

— Two replicas of Sy(jw), shifted —w. and 4w,

x Scale factor (“AC )2

2Cm
e Power of conventional AM modulation
~ A2 A2 A2 2
Ps =Rs(0) = 70 14+ Ry, (0)] = 78 14 Py, = 7‘3 [1 + — PM]

Two components can be distinguished:
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. A2
— Power of the carrier: =

A2 42

— Power of the double sideband component: (70—2> X Py
M

The carrier power is not useful power from the point of view of information transmission (although
it is useful because, as we will see, it allows the use of a simple receiver).

Figures and show two examples of power spectral density of the modulated signal, for
two particular cases of the power spectral density of the modulating signal.

Sy (jw)
Ay
W = 2xB (rad/s)
-w | W w (rad/s)
w
Sg(jw)
Az |
N
Ac a A
/\ ) <2CM> j 4 S -:
—we =W —we —we+W we—=W W we+W o w(rad/s)
S Wy =2W

Figure 2.12: An example of power spectral density of the conventional AM modulated signal.

Su (jw)
M
W = 2xB (rad/s)
4 | W w (rad/s)
w
Ss(jw)
A2
C T T
2

w ()
JAVAN JAVAN

we—W  We we + W w(rad/s)

A ) L4

Wiy =2 W

Figure 2.13: Another example of power spectral density of the conventional AM modulated signal.
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It can be easily seen that the bandwidth of the modulated signal is twice the bandwidth of the
modulating signal, independently of the shape of the power spectral density of the modulating
signal.

Demodulation of conventional AM modulation
The most important advantage of this modulation lies in how it can be demodulated:

1. Since the envelope is proportional to the modulating signal, a simple envelope detector allows
to recover the information.

2. Tt does not need a synchronous or coherent demodulator, although it can be used as well
(this receiver will be seen later, when discussing the double sideband modulation).

Since |mg(t)| < 1, the envelope is proportional to 1 + m,(t) > 0, and therefore proportional
to m(t). This allows the receiver to be implemented by means of a simple envelope detector,
which can be implemented by means of a rectifier and a low-pass filter with the cut-off frequency
matched to the signal bandwidth, B Hz.

@ N L ]
7(t) R=— ——C d(t)

Figure 2.14: Envelope detection of a conventional AM signal.

This demodulator recovers the signal with a gain factor and with a DC term that can be easily
removed.

d(t) ~ A, {1 + %m(zﬁ)} .

The simplicity of this demodulator makes this modulation the one used for AM radio broad-
casting. This is because
1. Receivers are very simple, and there are millions of them.
2. Although it is not efficient in terms of transmitted power, there are few transmitters, which
limits this problem in practice.

As a summary of the characteristics of this modulation, the following aspects could be cited:

e Drawbacks of the conventional AM modulation:

— Low power efficiency:

« Power is spent in the transmission of the carrier (which does not contain informa-
tion by itself).
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— Low spectral efficiency:

x The bandwidth of the modulated signal is twice the bandwidth of the modulating
signal.
e Fundamental advantage of the conventional AM modulation
— If a < 1, there is no overmodulation and the signal envelope is proportional to 1 +
mq(t) > 0, from which m(t) can be extracted:

*x Mean removal and scaling.

— Simple receiver: envelope detector:

* No need for a synchronous demodulator.

2.2.2 Double Sideband (DSB), no carrier

This technique suppresses the carrier of the conventional AM modulation so that the problem of
power efficiency thereof is eliminated. Its mathematical expression is

s(t) =m(t) x c(t) = m(t) X A.cos(2m fot + Pe).

Removing the carrier causes the signal envelope to no longer contain the waveform of the mod-
ulating signal. As we will see later, the demodulation requires a more complex receiver. Figure
shows an example of a modulated signal.

bm(t)

7\
\/ \/\/t

b e(t)

bos(t)

FA.m(t) —Acm(t)

Figure 2.15: Example of a double sideband modulated signal.
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DSB spectrum - Deterministic case

A deterministic signal m(t) with Fourier transform M (jw) is considered. The spectrum of the
DSB modulated signal is

S(jw) :% FT{m()} + FT{A. cos(wet + 6.)}

A. : ,
=57 [M(jw = jewe) &% + M(jw + juc) e,

With respect to conventional AM modulation, it can be seen that:

e The deltas of conventional AM modulation disappear.

e The scaling of the replicas of M (t) is different, since there is no normalization in this case,
so that the factors a and C); disappear.

The name of the modulation refers to the fact that two sidebands appear in the signal spectrum,
lower (|w| < w,) and upper (Jw| > w,), each of them being symmetric with respect to the other:

1. |w| > w.: Upper sideband

2. |w| < w.: Lower sideband

Figures ans show two examples of Fourier transform of the modulated signal, for two
particular cases of the frequency response of the modulating signal.

M (jw)|
Am
W = 2nB (rad/s)
-W W w (rad/s)
w
IS Gw)|
Am &
‘ w w \
—We — W —We —We + W We > W We wc& W w (rad/S)

A

Wpsg =2 W i’

Figure 2.16: An example of a Fourier transform of the double sideband modulated signal.

Clearly, the spectrum of the DSB signal occupies twice the bandwidth of the modulating signal.
Wpsp = 2W rad/s, or alternatively Bpsp = 2B Hz.

Therefore, spectrally the DSB is still just as inefficient as the conventional AM modulation. DSB
spectrum also contains two sidebands. It should be noted that each one of the sidebands contains
all the information of the signal, it has all the frequency components of it.

With respect to the power, the carrier has been suppressed, so the deltas in +f. do not appear,
and power is not wasted in a non informative component.
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M (jw)|
Am
W = 27B (rad/s)
T ‘ T
-W W w(rad/s
: i (rad/s)
w
1S(jw)|
Ap A
///\\\ 2 %4>W
—we =W —we —w.+W | we - W W w+W w(rad/s)
S Wpss=2W

Figure 2.17: Another example of a Fourier transform of the double sideband modulated signal.
Statistical analysis of double sideband modulation

To carry out this analysis, stochastic processes are used again. The message, or modulating signal,
is modeled as a wide sense stationary stochastic process M (t), with the characteristics described
in Section [2.1.1] The modulated signal is modeled by the random process defined as

S(t) = M(t) x c(t) = AM(t) cos(wet + ¢o).

The mean of the modulated signal is
mg(t) = E[S(t)] = A. E[M(t)] cos(w.t + ¢.) = 0.
And the autocorrelation function

Rs(t+71,t) =A2 EIM(t +71) M(t)] cos(we(t +7) + ¢.) cos(w.t + ¢.)
:% Ry (1) [cos(wer) + cos(we(2t + 7) + 2¢.)] .

Although the mean is constant, the autocorrelation function is periodic with period T = 2} .

Therefore the process is a cyclostationary random process. Thus, to characterize it, it is necessary
to calculate the time average (in one cycle) of the autocorrelation function

- 1 [T/2 A2
Rgs(7) =7 /T/2 Rs(t+ 7,t) dt = 7‘3 Ry(7) cos(wer).

Again it has been taken into account that the integral in a cycle of a sinusoid is zero. The power
spectral density is obtained through the Fourier transform

. ~ A? . . : :
Ss(jw) = fT{RS(T)} =7 [Sy(jw — jwe) + Sy (jw + Jw)] .
The power of the modulated signal is

. A2 A2
Ps = Rs(0) = £ Ru(0) = - Pur.
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Now there is no longer a power term associated with the carrier, so this modulation is more
efficient than conventional AM modulation in terms of power.

Figures and show two examples of power spectral density of the modulated signal, for
two particular cases of power spectral density of the modulating signal.

Sy (jw)
A
W = 2nB (rad/s)
L | Il
-W W w (rad/s
E ; ( )
w
Ss(jw)
AZ
SN0 7R
—we—W —we —we+W | we -, W W w+W w(rad/s)

hY r
Wpsp =2 W

Figure 2.18: An example of the power spectral density of a double sideband modulated signal.

Sy (jw)
W = 2nB (rad/s)
-W W w (rad/s)
w
Ss(jw)
Al
TC

T T 1 T T

—we—W —we —w.+W we W W w.+W w(rad/s)

Vi

hY [4
Wpsg =2 W

Figure 2.19: Another example of double sideband modulated signal power spectral density.

Demodulation of DSB signals

The suppression of the carrier, as said above, and as it can be seen for instance in Figure [2.15],
makes the shape of the signal envelope no longer proportional to the modulating signal, so it is
not possible to use an envelope detector. In this case it is necessary to use a synchronous receiver
or coherent receiver. This type of receiver is shown in Figure [2.20] where the abbreviation LPF
stands for Low Pass Filter. In this case the filter has a bandwidth of B Hz.
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Figure 2.20: Synchronous or coherent demodulator for a double sideband signal.

Optimum performance is obtained with a synchronous or coherent receiver, which means that
the carrier phase of the receiver is the same as the carrier phase that was used in the transmitter
(in the generation of the modulated signal), i.e

¢ = Qe

As we will see later, if this condition is not satisfied (non-synchronous or non-coherent receiver),
there is an attenuation of the received signal and therefore a loss of signal-to-noise ratio and
performance.

Next, we will proceed to the analysis of the operation of the receiver. Initially, it is assumed
that the signal does not suffer any distortion during its transmission (ideal situation), so that the
received signal is equal to the transmitted modulated signal.

r(t) = s(t) = Aem(t) cos(wet + ¢.).
The demodulated signal before filtering, x(t), is

x(t) =r(t) x cos(wt + @)
=Acm(t) cos(wet + @) cos(wet + @)
A

:76 m(t) [cos(p — ¢c) + cos(2w.t + ¢ + @)].

The low-pass filter removes high-frequency components, these component located arround 2w, so
the filtered output is

Figure shows a frequency interpretation of the demodulation process. Bearing in mind that
the product with a sinusoid produces two replicas of the spectrum (each with half the amplitude
of the sinusoid), one shifted w. to the right, and another w. to the left

, 1. . 1. .
X(jw) = 5R(w = juwe) + 3R + o),

the contribution of both terms reconstructs the spectrum of the signal and adds a high-frequency
component (centered at 2w, that is removed with low-pass filtering).

As the goal is to recover a signal proportional to m(t) with the highest possible amplitude,
obviously the best option is to use a coherent receiver (¢ = ¢.). In this case, the output of the
coherent receiver is

d(t) = % m(t).

In case of using a non-coherent receiver, a factor cos(¢.— ¢) appears multiplying the desired signal.
This term is an attenuation term. Multiple values can be given for the angle difference. Some
illustrative cases are:
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M(jw)
Am
W = 27B (rad/s)
| I
—w W “
R(jw) = S(jw) A
Am 5 1
Am % 1
1 . . — W We w
3 R(jw + juwe) A
C
Am T
A
T\ " N
w
—2w —w,e We 2w,
‘ A ¢ 1 R(jw — jwe)
C
Am 7 T
Amﬁc/\ P
—2w, —Wwe We 2w, “
A
X(jw) = } R(jw +jwe) + § R(jw — juwe) Am AT —_— 2m(i)
PN - AN o
T } | : T
—2we —we We 2we «

Figure 2.21: Frequency interpretation of the demodulation process of a double sideband signal.

1. ¢ = ¢.. This is the ideal case, in which the cosine is equal to 1.

2. ¢, — ¢ = 45°. The amplitude is reduced by a factor v/2, which means that the power is cut
in half.

3. ¢ — ¢ = 90° The modulating signal m(t) disappears.

This indicates the need to have a synchronous demodulation or coherent demodulation or simply
coherent.

To generate a sinusoidal at the receiver that is locked in phase with the carrier that was used
to generate the received signal, there are two options

1. To transmit a pilot tone (a low amplitude carrier). This tone is extracted at the receiver
with a narrow band filter tuned to frequency w.. This option has the disadvantage that
power efficiency is lost, since a part of the power of the transmitted signal is used in the
generation of the pilot, which does not actually contain information.

2. To introduce a Phase-Locked Loop (PLL), a device that makes it possible to recover the
phase of the carrier from the received signal. This alternative makes the receiver more
complex and with a higher cost.
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2.2.3 Single Sideband (SSB) modulation

In double-sideband modulation and conventional AM, both sidebands are present, each of which
contains all the information of the transmitted or modulated signal due to the symmetry property
of the frequency response of real signals. The use of both bands is redundant and wastes an
important resource such as bandwidth. Single-sideband modulation transmits a single sideband,
halving the bandwidth of conventional AM and double-sideband modulation.

Wssp = W rad/s, Bgsp = B Hz.

In this case, the bandwidth of the modulated signal coincides with the bandwidth of the modu-
lating signal.

Figure shows the frequency response of this type of modulation and the corresponding
bandwidth.

M (jw)
(Modulating signal) A
m
A W = 278 (rad/s)
—W | iW w (rad/s)
w
upper sideband Sush (Jw)
/ - T l\
—we—W —we —we+W | we — W w.:i Wci+ W w(rad/s)
: _ Wssg = W
lower sideband Sisp (jw)
I\A o T A
—we — W —we —we+W we,W W w.+W w(rad/s)

>
Wssg = W

Figure 2.22: Spectrum and bandwidth of single sideband: upper sideband and lower sideband
signals.

The simplest option for the generation of this type of signals is through direct filtering; in this
case a double sideband signal is generated, and then one of the two sidebands is filtered out:

e SSB upper Sideband (USB): frequencies |w| < w, are removed

e SSB lower sideband (LSB): frequencies |w| > w. are removed

The scheme of this SSB signal generation method is shown in Figure [2.23] Note that the inter-
mediate signal sp(t) is a double sideband signal but with double amplitude (with respect to the
DSB).
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m(f) BPF
B Hz

2><c()—2A cos(w,t)

Figure 2.23: Generation of a single sideband (SSB) signal by direct filtering.

The generic frequency response of the single sideband, upper sideband, and lower sideband filters
will be
1, if |w| > w.
0, if |w| < we

0, if |w|>w.
1, if |w| < w.

Husb(jw) - { and Hlsb(jw) = {

Figure [2.24] shows the frequency response of the signals generated with this option.

M (jw)
(Modulating signal) A
/ \ W = 2B (rad/s)
—W - W w(rad/s)
(Double Sideband (x2)) Sp(jw)
/\ Am Ae T /\
—We — W —We —We + W We — W We We + W w (I’ad/S)

upper sideband Susb (jw)

/ "

—we—W —we —w.+W we—W W w.+W  w(rad/s)

lower sideband) Sisp (jw)

N A

T I T

—We — W —We —We + W We — W We We + W w (I’ad/S)

Figure 2.24: Spectrum example of the single sideband modulation: upper sideband (sup) and
lower sideband (inf) signals, and the intermediate double sideband signal that is generated before
filtering.

There is another alternative for the generation of the single sideband signal. As we will demon-
strate below, the SSB signal has the analytical expression
s(t) = Acm(t) cos(wet + ¢c) F Ae m(t) sin(wet + @),

where the negative sign corresponds to the upper sideband, the positive sign to the lower sideband,
and m(t) is the Hilbert transform of the signal m(t).

The Hilbert transform of a signal is the signal obtained by filtering the original signal with a
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Hilbert transformer
m(t> - m(t) * hHilbert<t)7

where a Hilbert transformer is a linear filter with impulse response

1
hitpert (t) = purs
and frequency response
-7, w>0
Hyitpert(Jw) = § +j, w<0.
0, w=0

This allows signal generation using a Hilbert transformer and two quadrature oscillators (90 de-
grees phase shift, such as a cosine and a sine). This scheme for generation, shown in Figure [2.25]
is called the Hartley modulator.

m(t) )

A, cos(wet + )
S oscillator s(1)
lnper
B o7 o

X/

Figure 2.25: Generation of a single sideband (SSB) signal using a Hilbert transformer and two
quadrature carriers (Hartley modulator).

Analytical Expression of the Modulated Signal - Upper Sideband

Figure [2.26| shows the frequency response of the signals generated with this option. In this case
it can be seen that the frequency response of the single sideband filter for upper sideband can be
written as a function of the step function u(z), specifically:

Hyo(jw) = u(w — we) + u(—(w + we))
The frequency response of the DSB signal with double amplitude, sp(t), is
Sp(jw) = Ac [M(jw — jwe) + M (jw + jw,)]
Looking at Figure [2.26] the frequency response of the upper sideband signal can be written as

Susb(jw> :SD(jw) HUSb(jw)
:ACM(]W) U(w)’w:W—wc + ACM(]W) u(_w)lw:w—i-wca

that is, the sum of two terms: the product of the frequency response of the modulating signal and
a step function, shifted to +w,., and the product of the frequency response and the modulating
signal and a frequency reversed step function, shifted to —w,, in both cases with the scale factor
A..
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M (jw)
(Modulating signal) A,
/ \ W = 278 (rad/s)
-W - W w(rad/s)
(Double Sideband (x2)) | Sp()
—We  —wp —|— w we—W W w.+W w(rad/s)

[Upper Sideband Filter . Hyep (jw)

—we =W —we —w.+W we—W W w4+ W w(rad/s)
upper sideband Sush (jw)

T T T 1 T

—we =W —we —w.+W we—W W w+W w(rad/s)

Figure 2.26: Representation of the generation of an upper sideband signal in the frequency domain.

To obtain the response in the time domain, all we have to do is to calculate the inverse Fourier
transform, for which the following expressions (properties of the Fourier transform and Euler’s
formulas for sinusoids) will be useful:

}"7'{%6( )+ L} u(w),

27t

{30} o

2mt
]-"T{x(t) ejw@t} = X(jw — jw,)

etiwet + e Jwet

cos(w.t) = 5

- =7
27 2

sin(w.t) =

Taking these relationships into account, it is easy to calculate the inverse Fourier transform of
Susb(jw)

Susp(t) =Ae m(t) * {—5@) + QLM] e/t + A, mft) * Ea(t) - i} e et
= ) (0] €+ 5 ) — )]

=A. m(t) cos(w.t) — A, m(t) sin(w,t).
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Analytical Expression of the Modulated Signal - Lower Sideband

In this case, the above procedure could be repeated by changing the expression of the single-
sideband filter to use the lower-sideband one. But it is easier take into account that the sum of
the lower-sideband and upper-sideband signals gives rise to the double-amplitude double-sideband
signal.

sp(t) =2 A. m(t) cos(wet) = Sush(t) + sisp(t)

as can be seen in Figure Taking this into account

Slsb(t) :SD(t) — Susb(t)
=A. m(t) cos(wct) + A. m(t) sin(w,t).

The result is extended straightforward to consider a generic phase term ¢, in both the cosine
and the sine function.

Power Spectral Density

Taking into account that the signals can be obtained from the filtering of a double-amplitude
double-sideband signal, it is trivial to obtain the expressions of the power spectral density of a
single-sideband signal from the expressions obtained for double sideband modulation, just taking
into account the scaling factor introducing by the double amplitude of the carrier in this case (a
factor 2 in the power spectral density):

e Upper sideband

Se. (i) — { A2 TG = o) + S+l e >
Susb 0, lw| < we

e Lower sideband

0, lw| > w.
Ag [SM<jW - jWC) + SM(jW +jw0)]7 |w| < We

Sstb (]w) = {

An illustrative example of the power spectral density of single sideband modulation is shown in

Figure 2.27]

The power can be calculated by the integral of the power spectral density. From Figure [2.27] it
is obvious that the integral is equal than the integral for Sy (jw), up to a factor A2. Therefore,
for both variants the power is

1 o0
Ps = —/ Ss(jw) dw = AgPM
2r J_o

Demodulation of SSB signals

For optimal demodulation of single-sideband signals, it is necessary to use a synchronous or co-
herent demodulator, such as the one shown in the diagram in Figure 2.20], where ¢ = ¢.. Again
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/\ W = 27B (rad/s)
-W | W w (rad/s)
w
upper sideband 85,5 (i)
/I “ l\
e =W —we —we+ W we — W wci wc!+ W w(rad/s)

Wssg = W

lower sideband S, (fw)

I\ " /‘

—we—W —we —w+W we — W wi c we + W w (rad/S)
Wssp = W

Figure 2.27: Power spectral density of signals modulated with single-sideband: upper-sideband,
and lower-sideband amplitude modulation.

an ideal transmission is assumed without any distortion, in which case the received signal matches
the modulated signal being transmitted.

r(t) = s(t) = A. m(t) cos(wt + ¢.) F A m(t) sin(wet + ¢).
The modulated signal before filtering, x(t), is

z(t) =r(t) x cos(wt + @)
=[A. m(t) cos(wet 4+ @) F A m(t) sin(wet + ¢.)] X cos(wet + @)

A. Ae :
A 1) costo — 60) = 2 ) sino - 6
+ % m(t) cos(2wet + ¢ + ¢.) F % m(t) sin(2wet + ¢ + ¢c).

The filtering removes the high frequency components (terms in 2w,), so that the filtered demod-
ulated signal is

) = 2 () cos(6 — 6,) = 2 () sin(o — 0,)

Now, the effect of the phase error is, on the one hand, to reduce the amplitude of the received
signal, which can even disappear, as it happened for a double sideband modulation. And on the
other hand (second term), an unwanted signal, m(t), is added to the received signal, which can be
interpreted as a distortion term that is proportional to the Hilbert transform of the modulating

signal. Therefore, the use of a coherent receiver is even more necessary than in the case of DSB
modulation.

The solution is the same as for the DSB, either to transmit a pilot tone or to use a PLL.
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Figures [2.28 and show a frequency interpretation of the demodulation process for the cases
of upper sideband and lower sideband, respectively.

M(jw)
m
W = 27 B (rad/s)
I I
—w w “
R(jw) = S(jw)
Am Ac T
/ An T \
1 —we We w
3 R(w + jwe)
Am Ac T
A
/ An T -\
—2w —w, We 2w, g
‘ ‘ ¢ 1 R(w — jwe)
Am Ac
Am )‘*—/ N
— 2w, —We We 2w, «
— 'i?_';m(t)
. | . . 1 , . A A+
X(jw) = 7 R(jw + jwe) + 5 R(jw — jwe) e — %em(1) cos(2wet) — 5 (1) sin(2uwer)
/ Amj/\
—2we —We We 2w ¢

Figure 2.28: Frequency interpretation of the demodulation process of a single sideband signal (for
upper sideband).

Due to the spectral efficiency of this modulation method, it is used, for example, for the trans-
mission of voice channels over telephone cables. With this modulation the capacity, in number of
channels, of the cable in question is doubled.

The main drawback is in its generation. Using the direct filtering technique, to avoid any
distortion in the generated signal, ideal filters are required, which is not possible in practice. Using
the technique based on the Hilbert filter, the drawback is that now two quadrature oscillators are
needed, and also an exact implementation of a Hilbert transformer, which is also not possible.
Therefore, in the signal generation process itself, a certain degree of distortion will usually be
introduced.

2.2.4 Vestigial Sideband Modulation (VSB)

To relax the ideal filter requirements for SSB modulation, vestigial sideband modulation proposes
to replace ideal filters by implementable filters: instead of frequency responses with an instanta-
neous transition from 0 to 1 (or from 1 to 0) at the carrier frequency, responses with progressive
transition from 0 to 1 (or from 1 to 0) around the carrier frequency, with the transition in the
interval £Ay rad/s around the carrier frequency, as it is shown in Figure . This type of filter
allows a part of the band to be removed, called vestige, to remain in the modulated signal. In this
way, the implementation of the filters is possible at the price of slightly increasing the bandwidth
of the signal.
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Ay == -
\ I /\ I /
—2we —We We 2w, w

Figure 2.29: Frequency interpretation of the demodulation process of a single sideband signal (for
lower sideband).

M (jw) — Ideal filter
(Modulating signal) A,
/ \ W = 2B (rad/s)
4 W w (rad/s)
(Doble sideband (x2)) Sp(jw)
A Am AC T A
—we—W —we —w.+W we—W W w.+W w(rad/s)

Upper sideband Hygp (jw)
. Am AC - -
‘ L Vestige Aw <—J)r

—we—W —we —we+W _ we—W W w.+W  w(rad/s)
Lower sideband Hig (jw)

- An Ae + -
r | ‘ ‘l(—> Aw Vestige
A A

—we—W —we —we+W we — W We we + W w (rad/s)

Figure 2.30: From SSB to VSB: from ideal filters to implementable filters.
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To build this signal by direct filtering, similarly as in a SSB modulation first a double sideband
signal (with double amplitude), sp(t), is generated, and then it is filtered, as shown in the Figure

231
m(t) N sp(t) ( VSB Filter s(1)
&? LhVSB , Hysp(jw)

2 x ¢(t) = 2A. cos(w,t)

Figure 2.31: Generation of a vestigial sideband (VSB) signal using direct filtering.

The vestigial sideband modulated signal therefore has the analytical expression

s(t) = |m(t) x 2A. cos(wet) | * hysp(t)-

SD(t)

In the frequency domain, this expression corresponds to
S(jw) = Ac [M(jw — jwe) + M(jw + we)] Hysp(jw).

Let’s analyze what happens in the receiver, if a synchronous receiver like the one in Figure [2.20] is
used. It will be assumed that the signal has been transmitted without distortion, so the received
signal will be equal to the transmitted VSB signal. In this case

R(jw) = S(jw) = Ac [M(jw = jwe) + M (jw + we)] Hysp(jw).

The demodulated (unfiltered) signal in the frequency domain is

[R(jw — jwe)) + R(jw + jwe))].

DN | —

x(t) = r(t) cos(w.t) = X(jw) =

X (ju) =155 [M (o — 12) + M()] Hysiloo — o)
28 M) + MG+ 260)] Hysp(io-+ i)

Finally, the filtered demodulated signal in the frequency domain is

D(ji) = 52 M(Ge) [Hvslie - jw) + Hyss (o + ji)

It can be interpreted that this signal has been obtained by filtering the modulated signal with a
filter with equivalent response

HEQ(jW) - HVSB(jw - jwc} + HVSB(jw +jw0)'

To avoid distortion, this joint response must have and ideal behavior in the bandpass of the signal,
lw| < W = 27B rad/s; that is, its module must be constant, and its phase linear. From here we
can obtain the condition that the vestigial sideband filter must satisfy

|Hysp(jw — jw.) + Hysp(jw + jw)| = C in |w| < 27B rad/s.
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Ideally, the constant value would be C' = 1. This condition is satisfied if the frequency response of
the vestigial sideband filter has odd symmetry around w. in the frequency range w. — Ay < w <
we + Aw, where Ay, is the bandwidth excess (vestige) in radians/s. In that case, the bandwidth
of the modulated signal is

A
Byss = B+ Ap Hz, with Ap = 2—W Hz,
T

where Ap is the vestige or bandwidth excess in Hz (usually A << B).

Figure shows an example of filters for upper sideband and lower sideband. Note that the
response of the filter out of the frequency range of the double sideband signal (above w. + W or
below w. — W)) is irrelevant, because the filtered signal has no spectral components there.

. 1 | Hysg(jw) )
* USB *
e — W —Iwc we we + W e
N | | Hvss (jw)
LSB * .
—'wc —we+ W we — W w «

Hysp(jw — jwe) + Hysa(jw + jwe) in |w| < W

I Al
-W —Ayw Aw w

Figure 2.32: Examples of vestigial sideband filters for upper sideband and lower sideband.

Demodulation of VSB signals

If the filters satisfy the specified condition, it is possible to recover the signal without distortion
using a synchronous receiver. Figure [2.33| shows the frequency interpretation of the modulation
and demodulation process for an upper sideband VSB signal.

2.2.5 Summary of characteristics and comparison between the differ-
ent amplitude modulations

Table shows the main characteristics of the different amplitude modulations that have been
studied. In particular, reference is made to the power of the modulated signal, and how much of
it is related to the information transmitted, and to the consumption of bandwidth. If the power
efficiency and the spectral efficiency are considered, the conclusions that can be drawn are:

e Power efficiency
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Figure 2.33: Frequency interpretation of the modulation and demodulation process for a vestigial
sideband modulation (upper sideband).

Modulation | BW (Hz) Pq Ps(m(t)) d(t) Py(m(t))

Conv. AM | 2B F[14Py] SPu  FLtm)] 5 Pu,
DSB 2B 2 Pu A Pu Aemn(t) ATQ Pu
$s13 B Amy 2Py e AR,

BW (Hz): bandwidth of the modulated signal, in Hz

Pg: power of the modulated signal

Ps(m(t)): power of the modulated signal that is related to m(t)
d(t): signal recovered with a coherent or synchronous receiver
P;(m(t)): power of the demodulated signal that is related to m(t)

Table 2.1: Comparison of amplitude modulations.
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— If it is understood as modulations where all the power of the signal is related to the
transmission of information (signal m(t))

« DSB, SSB, VSB
e Spectral efficiency

— Minimum transmission bandwidth (same bandwidth as the modulating signal, B Hz)

* SSB and VSB (in this case with a vestigial increment Ap)

Regarding the data corresponding to the demodulator that appear in the table, it has always been
considered that a synchronous or coherent receiver has been used. As in the case of conventional
AM modulation this receptor had not been studied, for completeness, it is included below.

Synchronous detection of a conventional AM modulation

In this section we study the demodulation of a conventional AM signal with a receiver like the
one in Figure 2.20] As in the previous cases, it is assumed that the modulated signal is trans-
mitted without distortion, so the received signal is equal to the modulated signal that has been
transmitted, which in the case of conventional AM modulation is

r(t) = s(t) = A. [1 4+ mq(t)] cos(wet + ¢c)
The unfiltered demodulated signal z(t) is then

z(t) =r(t) x cos(wet + @)
e [1+mq(t)] cos(wet + @) X cos(wet + )

I
N

v

A
(1 ma(0)] cos(ge = 9) + 57 [1+ ma(t)] cos(2eit + 6, +6)
Low-pass filtering removes the high-frequency terms (terms in 2w,), so the filtered demodulated
signal is then
A
A(t) = 55 [1 -+ ma(0)] cos(pe — 9).
Therefore, the suitability of a synchronous or coherent demodulator is also revealed for this mod-
ulation, with ¢ = ¢, in which case the demodulated signal is
A

d(t) = 7 [1 4+ mq(t)].

2.3 Angle Modulations

In the previous section we have seen the amplitude modulation of a carrier, in which the amplitude
of the carrier is modified as a function of the modulating signal, m(¢). Amplitude modulation
methods are also called linear modulations, because the amplitude of the modulated signal has a
linear relationship with m(t).

Frequency (FM) and phase (PM) modulations are called angle modulations. In this case, the
frequency or phase of the carrier signal is modified to be dependent on the modulating signal.
These modulations are clearly non-linear, which implies a series of properties:
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1. They are more difficult to implement (both modulator and demodulator).

2. Their analysis is generally more complex. In many cases, it is only possible to perform the
analysis using approximations.

On the other hand, angle modulations expand the spectrum so that the bandwidth of the signal
is several times greater than that of the modulating signal. In a strict sense, these signals have
an infinite bandwidth, but normally we work with the so-called effective bandwidth, which is the
one in which the amplitude of the spectrum is relevant.

The reason why angle modulations are used, despite these disadvantages, is that they have the
advantage of high noise immunity: These modulations “trade” bandwidth for noise immunity. For
this reason, FM modulation is used in high-fidelity music broadcast systems or in point-to-point
communication systems where the transmission power is limited.

2.3.1 Representation of FM and PM signals

Both PM and FM modulations modify, depending on the message signal, the argument of a
sinusoidal carrier. Therefore, it is possible to make a joint analysis of the two modulations and,
as will be seen later, there is a clear relationship between them.

In general, an angle modulation can be represented mathematically as
s(t) = A cos(6(t)),

where taking into account that it is a signal generated from a carrier of frequency f. Hz (w. = 27 f.
rad/s), the angle 0(t) in general can be written as

O(t) = 2m fot + P(t) = wet + P(2).

This is a joint representation for PM and FM modulations. The argument 6(¢) is the phase of
the signal at time ¢, and the instantaneous frequency of the signal in Hz, f;(¢), is given by its
derivative

1 d
() = ——0(1).
filt) = 5-20()
For the particular expression above
1 d
() = fo+ ——o(1).
Filt) = fo+ 52 0(0)

If m(t) is the modulating signal (message to be transmitted), the relationship of the angle argument
of s(t) with the modulating signal is as follows for each of the two types of modulation:

e Phase Modulation (PM)

kp: phase deviation constant

e Frequency Modulation (FM)

AFH) = D) — f. = 5= () = by m(1)

ky: frequency deviation constant
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Constants k, and k; are the phase and frequency deviation constants, respectively.

In a PM modulation, the phase term ¢(t) is proportional to the modulating signal, and in an
FM modulation, the diference between the instantaneous frequency and the carrier frequency is
proportional to the modulating signal. In this case, given the definition of the instantaneous
frequency, the derivative of ¢(t) is proportional to m(t) (or equivalently, ¢(¢) is proportional to
the integral of m(t)).

There is a close relationship between both modulation methods, which can be easily seen by
writing the expressions for ¢(¢) and %¢(t) in PM and FM

) Ry m(2), PM
#t) = {27r ky ['_m(r)dr, FM

d )k, Em(t), PM
dt(b(t){%k:fm(t), FM

It can be seen that the FM modulation of m(t) is equivalent to the PM modulation of the integral of
m(t). Similarly, to modulate m(t) with a PM modulation is equivalent to modulate the derivative
of m(t) with an FM modulation. Figure represents the relationship between PM and FM

modulations.
m(t) s(t) m(t) s(t)
FM Modulator —  PM Modulator

m(t) s(t) m(t) s(t)
—»[IntegratOH PM Modulator ]—> %[Derivator]—{ FM Modulator ]—>

Figure 2.34: Relationship between FM and PM modulations.

This relationship between both types of modulation allows us to jointly analyze them and then
highlight their differences.

The waveform of an angle modulation is that of a sinusoid of constant amplitude, whose angular
information changes over time, which visually translates into a change in the distance between
zero crossings of the signal. Figure [2.35| shows an example of a modulating signal, the carrier
signal, and the resulting PM modulated signal.

The effect of the frequency or phase deviation constants is to weight the degree of deviation of
the modulated signal with respect to the carrier signal of constant frequency and phase. Figures
and show the modulated signal for a PM modulation for two different values of phase
deviation constant, k, = 27 X %1 and k, = 27 X %, respectively.

It can be seen how with respect to the carrier signal, when the modulating signal takes positive
values, the modulated signal is shifted before the carrier (by increasing the phase term proportion-
ally to m(t)), and it is shifted after the carrier when m(t) takes negative values (by reducing the
phase term in this case). The magnitude of the advance or delay at a given instant is proportional
to the parameter k.

The waveforms are similar in a frequency modulation, and the effect of the frequency deviation
constant ky is similar to the effect of k, in a PM modulation. Figures and show the
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Figure 2.35: Waveform of an angle modulation (in this case PM) for an example of a modulating
signal.
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- 8(t) = A cos(wet + ¢(1)) [q&(t) — pm(t)J c(t) = A. cos(w.t)
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|

Figure 2.36: Modulated signal for a PM modulation with &k, = 27 X }l for an example of a
modulating signal.

-m(?)

- s(f) = A cos(wct + ¢(1)) [qb(t) = kpm(t)J c(t) = A, cos(wet)

VRV NN |

I} u\MU |

Figure 2.37: Modulated signal for a PM modulation with £k, = 27 x % for an example of a
modulating signal.
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modulated signal for an FM phase modulation for two different values of the frequency deviation
constant, ky = 2m X i and ky = 27 X %, respectively.

Now, the modulated signal is shifted before the carrier when the integral of the signal is positive,
and it is shifted after the carrier when the integral is negative, since now the phase term ¢(t) is
proportional to the integral of the modulating signal. Again, the magnitude of the deviation with
respect to the carrier at an instant is proportional to the value of the deviation constant, in this
case the frequency deviation constant, ky.

-m(7)

- //\\, t

-

- 8(2) = Accos(wet + ¢(1)) | o(2) = 2mky fioo m(t) ’ c(t) = A, cos(wct)

AN

COAARANR R AR

Figure 2.38: Modulated signal for an FM modulation with ky = 27 X i for an example of a
modulating signal.

2.3.2 Modulation indices

An important parameter of an angle modulation is the modulation index, since various aspects of
modulation, such as bandwidth or noise immunity, depend on its value. The modulation indices
are defined from the phase or frequency deviation constants, respectively. In a phase modulated
signal, the maximum phase deviation of the signal is

Admax = kp max(|m(t)]).
Similarly, in a frequency modulated signal, the maximum frequency deviation of the signal is
A fmax = kg max(|m(t)]).

From these maximum deviations, the modulation indices of a PM modulation and an FM modu-
lation are defined, respectively, as

/Bp = Agbmax = kp maX(|m(t)|> = kp OM
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- 8(t) = A; cos(wet + ¢(1)) [qﬁ(t) = 27ks fioo m(t) ’ c(t) = A, cos(wet)
VAN AR

Figure 2.39: Modulated signal for an FM modulation with ky = 27 x %

modulating signal.

for an example of a

and
8, = A finax _ k¢ max(|m(t)|) _ ky Cu
=B B B
where B is the bandwidth in Hz of the modulating signal m(t), and C); is the maximum value of

its module, which defines its range: —C)hy < m(t) < +C)y.

2.3.3 Spectral characteristics of an angle modulation

Due to the non-linearity of the angle modulations, in many cases the precise characterization of
their spectrum cannot be treated in a strict mathematical way. Normally it is studied for simple
modulating signals and certain approximations are made. Following are some particular cases:
narrow band modulation, modulations by means of a sinusoidal signal and by means of a periodic
signal, and finally the case of an arbitrary non-periodic modulating signal will be discussed.

Narrowband angle modulation

An angle modulation is narrowband if the constants k, or k¢ and the signal m(t) are such that
o(t) << 1.

This implies small values of the deviation constants (and therefore, small value of the modulation
index). In this case, since the modulated signal has the general expression

s(t) = A. cos(wet + ¢(t)),
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and taking into account the trigonometric relation
cos(A + B) = cos(A) cos(B) F sin(A) sin(B),
we can expand the expression of the modulated signal and make the following approximation

s(t) =A, cos(w.t) coso(t) — A sin(w.t) sin ¢(t)
~A. cos(wet) — A () sin(wet).

Here, we have considered that for small values of ¢(t)

cos(¢(t)) ~ 1, and sin(¢(t)) ~ ¢(t).

This equation is very similar to the expression of a conventional AM signal, where a negative
sign and a sine appear instead of a cosine, and instead of the signal m(t) we have the phase ¢(t),
which for a PM is proportional to m(t) and for an FM it is proportional to the integral of m(t).
Remember that for a conventional AM

Conventional AM: s(t) = A, cos(w.t) + A. my(t) cos(w,t),

and that in angle modulations

Ry m(t) PM
olt) = {27T kg ffoo m(r)dr FM

For this type of modulation, the spectrum of the signal is very similar to that of an AM signal, at
least in terms of its bandwidth. It must be taken into account that the bandwidth of the integral
of a signal is the same as that of the signal itself (the frequency response of a derivative is jw).
Therefore, the spectrum will have the following components and characteristics:

e Two deltas, located at £w, (spectrum of the carrier)
e Two replicas of the spectrum of ¢(t) located at w = +w.
e With respect to the shape of the spectrum of ¢(¢)
— PM: proportional to the spectrum of m(t)
B(t) = by m(t) & B(jw) = by M(jw)
— FM: proportional to the spectrum of the integral of m(t)

¢(t) = 2m ky / m(7) dr + ®(jw) = 27k M;ZJM)

Thus, the bandwidth in Hz of these narrowband signals if the modulating signal has a bandwidth
B Hz is

BNB ~ 2B Hz.
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Modulation using a sinusoidal signal

In this section, the case in which the modulating signal is a sinusoidal signal, with amplitude a
and frequency w,, rad/s, will be analyzed. For convenience, in order to simultaneously analyze
PM and FM modulations, the analytical expression of the modulating signal is

m(t) =

a sin(wy,t) for a PM modulation
a cos(wyt) for an FM modulation

In this way, the analytical expression of the modulated signal, s(t), coincides for the two variants.
The modulation indices of a PM and FM modulation are

Afmax  ky max(|m(t)]) kyCu 27

pr— pr— p— :k —
br=—% B B T

Therefore, the expressions of the phase term ¢(t) are

e Expressions of ¢(t) for PM
o(t) =k, m(t) =k, a sin(wp,t) = B, sin(wn,t)

e Expressions of ¢(t) for FM

t

o(t) = 2m ky / m(7) dr =27 ks a 1 sin(wy,t) = By sin(wpt)

—c0 m

Which means that the expression of the modulated signal is common for both types of modulation
s(t) = Accos(wet + ¢(t)) = Ae cos(wet + B sin(wpt)),

where (3 is the modulation index of the corresponding modulation, 3, or 8¢. Since a cosine is the
real part of a complex exponential, the modulated signal can be rewritten as

S(t) = Re (AC ejwct ej,é’ sin(wmt)) ‘

The function e/? s"@m?) ig periodical, with frequency f,, = ¢= Hz. This implies that it admits a
Fourier series expansion, of the form

ejﬂ sin(wmt) _ Z Jn(ﬂ) ej(n wm)t'

n=—oo

The n-th coefficient of the series expansion, denoted here as J,(f), is in this case the Bessel
function of the first kind of order n and argument 5. These coefficients are very well known. A
series expansion of the Bessel function is

)k: (6)n+2k

; kl(k 4+ n)!

For small values of 3, the following approximation can be used

/BTL

2np!’

Jn(P) =
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It can be seen that for small values of 5 only the first few terms are significant (in general it can
be limited to n =1 or n = 2).

The Bessel functions also satisfy the following symmetry properties

) Ju(B), neven
G {—Jn(ﬁ), nodd

Figure and Table show the Bessel functions, as a function of 3, for various values of n.

]. T T T T T T T T T
Jo(B)
0.8 ]

J1(B)
0.6 Ja2(B) |

Js(8)
0al —— O e ae me

0.2 A

T

0 1

-0.2 J

T

-0.4 4

T

_06 1 1 1 1 1 1 1 1 1
0 1 2 3 4 ) 6 7 8 9 10

Figure 2.40: Bessel functions, J,(53), for different values of n.

Using the Fourier series expansion, an alternative expression of the modulated signal can be
obtained

s(t) =Re (Ac elwet Z Jo(B) el “’m)t) = Re Z A, Jo(B) glwet einwmt

n=-—oo n=—oo eJ(wet+n wm)t

= > A Ju(B) cos ((we +nwm) 1)

n=—oo

The modulated signal can be expressed as an infinite sum of sinusoids (cosines) with the following
characteristics (bearing in mind that the index of the sum is n):

e Frequencies of the sinusoidals
Frequencies (Hz) : f.+n f,, paran=0,£1,£2 ---
Angular Freq. (rad/s) : we.+n wy,, paran=0,+1,+2 -
e Amplitudes of the sinusoidals w. + n w,,

Ac Jn(B)

OCW Universidad Carlos I1I de Madrid 115 Marcelino Lazaro, 2023



Universidad
Carlos I
de Madrid

ucdm

Communication Theory

n B=01 B=02 B=05 B=1 B=2 B=5 B=8 B=10
0 09975 0.9900 0.9385 0.7652 0.2230 —0.1776  0.1717 —0.2459
1 0.0499 0.0995 0.2423 0.4401 0.5767 —0.3276  0.2346  0.0435
2 0.0012 0.0050 0.0306 0.1149 0.3528  0.0466 —0.1130  0.2546
3 0.0002  0.0026 0.0196 0.1280  0.3648 —0.2911  0.0584
4 0.0002 0.0025 0.0340  0.3912 —0.1054 —0.2196
5 0.0002 0.0070  0.2611  0.1858 —0.2341
6 0.0012  0.1310  0.3376 —0.0145
7 0.0002  0.0534  0.3206  0.2167
8 0.0184  0.2235  0.3179
9 0.0055  0.1263  0.2919
10 0.0015  0.0608  0.2075
11 0.0004  0.0256  0.1231
12 0.0001  0.0096  0.0634
13 0.0033  0.0290
14 0.0010  0.0120
15 0.0003  0.0045
16 0.0001  0.0016

Table 2.2: Table with values of the Bessel functions J,(5).

This means that the bandwidth is theoretically infinite. However, the bandwidth of the modu-
lated signal is not infinite, since the amplitude of the components for high values of n is very small.
Therefore a finite effective bandwidth is defined. In general, the effective bandwidth is defined as
that which contains at least 98% of the signal power. In this case, this effective bandwidth is

B.=2(p+1) f, Hz.

Let’s see how the modulating signal affects the spectrum of the signal. In this case, assuming the

same sinusoidal modulating signals of amplitude a and frequency f,,

Be:2(6+1)fm: {

or equivalently

Be:2(ﬁ+1)fm: {

2(kpa+ 1) fn,
2(’;1‘—m“+1)fm, FM’

2(kpa + 1) fin,
2 (kfa + fm) 5

PM

PM
FM

On the other hand, the total number of harmonics in the effective bandwidth B, is

Me=2L6J+3={

Jm

2|kpal +3, PM
2|22] +3,

FM

These expressions show that increasing the amplitude of the signal, a, has practically the same
effect on both modulations, it increases the bandwidth. On the other hand, increasing the fre-
quency, f., also increases the bandwidth, but the effect is much greater in PM than in FM
modulation. In PM the increase is multiplicative while it is additive in FM.

An increase in amplitude increases the number of harmonics in the signal bandwidth. However,
increasing the frequency, for PM, does not change the number of harmonics, while for FM it
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decreases it. This explains the relative insensitivity of the FM bandwidth with respect to the
frequency of the signal. On the one hand, increasing f,, increases the space between the relevant
harmonics, but on the other hand their number decreases.

An example of the shape of the spectrum will be seen below. In this case, it will be done for a
modulation with modulation index # = 5. In this case, the modulated signal is a sum of sinusoids
of amplitude A, J,(5) and pulsations w, + n w,,. The values of the Bessel functions for the value
of B are

Jo(5) = —0.18, J1(5) = —0.32, J5(5) = 0.05, J5(5) = 0.37, J4(5) = 0.39, J5(5) = 0.26, - - -

Figure [2.41] shows the shape of the frequency response for positive frequencies. Note that the
frequency response of a cosine is a delta with amplitude 7 times the amplitude of the cosine.
The property of Bessel functions that J_,(5) is equal to J,,(8) or to that value changed sign,
depending on whether n is even or odd, provides that peculiar symmetry of the frequency response
with respect to the carrier frequency w..

+0.394, 7 —I—U.37Ajﬂ{)'39AcW
T 40.334,.7 T
A
S(jw)
+0.13A,7 +0.13A, 7
+0.054,7 +0.05A,7
We — Swm we — 3wm T wc + wm T

_ _ _ we + 2wy wWe + 4wy, we + 6wy

we — 6wm we — 4wm We — ZQSU,; W Wm we + 3wm we + Swp w (rad[s)
—0.184,7
~+
+ —0.334,7
—0.37A, 7

Figure 2.41: Frequency response of an angle modulation for a modulation index g = 5 with a
sinusoidal modulator of frequency w,, rad/s.

Modulation by a periodic signal

Similarly as in the case of a sinusoidal modulating signal, is the modulating signal is periodic the
spectrum only has frequencies of the form f. + nf,. A periodic signal admits a Fourier series
expansion, in such a way that it can be expressed as a sum of sinusoids with frequencies that are
multiples of the one that defines the period. Therefore, the frequencies in the spectrum of the
signal are

fetn fon or (we £n wpy)
The amplitudes of each frequency will be given by the sum of the contributions of all the harmonics.
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Modulation by a non-periodic deterministic signal

The analysis of the spectum for a general modulating signal is very complex due to the non-linearity
of angle modulations. In this case, there is only a heuristic rule that provides the approximate
value of the bandwidth of the modulated signal. It is called the Carson’s rule, which says that
the bandwidth of the modulated signal when the modulating signal has a bandwidth of B Hz is,
approximately

BWearson =2 (f+ 1) B Hz.

Taking into account that in wideband FM modulations the value of § is normally around 5 or
even higher, this bandwidth is much greater than the bandwidth of amplitude modulations, which
was B (SSB), B + Ap (VSB) or at most 2B Hz (for DSB and conventional AM).

2.3.4 Modulation of FM and PM signals

A discussion about the modulation and demodulation of angle modulations can be found in
[Proakis and Salehi, 2002]. Any modulation or demodulation process, both for amplitude modu-
lation and for angle modulations, involves the generation of frequencies that are not found in the
original message signal. This means that both a modulator and a demodulator cannot be modeled
by a linear and invariant system, since a linear invariant system does not produce new frequencies,
frequencies not present in the input signal of the system, at the output of the system.

Angle modulators are, in general, non-linear and time-varying systems. One method of gener-
ating an FM signal directly is to design an oscillator whose voltage varies with an input voltage.
These types of oscillators are called voltage controlled oscillators and are often denoted by the
abbreviation VCO. A VCO can be implemented in several ways:

1. Using a wvaractor diode: A varactor is an element whose capacitance varies with the voltage
applied to it. Therefore, if such a device is used in the design of an oscillator, its frequency
varies as a function of the capacity and therefore of the applied voltage.

When m(t) = 0, the frequency of the tuned circuit is

1

fc - 27T\/ L[)OO '

In general, for m(¢) not null we have

1
:271'\/L0(CO + k’o??’b(t))
1 1

2V LoCo 1+ fam(r)

fi(t)

Assuming that
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and using the approximations

1
\/1+5z1+§, ~1-—e¢,

2 1+¢

the following expression is obtained
ko
B~ fo1— —m(t) ).
Fi £ (1= gm0

2. Using reactance tube: A ballast tube is a device whose inductance varies with applied voltage.
A similar analysis can be done for the varactor diode.

Another possibility for the generation of signals from an angle modulation is the so-called indirect
method. In this case, the process is divided into two parts:

1. A narrow band angle modulation is generated. Due to the relationship with AM modulation
this is easy to do.

2. The second step is to generate the broadband signal from the narrowband signal.

If the narrowband signal is
See(t) = Accos(2m fet + (1)),
the output of the frequency multiplier is
y(t) = Accos(2mnfet + no(t)).
Finally, to set the desired carrier frequency, it is multiplied by a local oscillator

s(t) = Accos(2m(nf. — for)t + no(t)).

2.3.5 Demodulation of FM and PM signals

Demodulation of an FM signal consists of finding the instantaneous frequency of the modulated
signal, s(t), and then subtracting the frequency of the carrier, since

m(t) = fi(t) — fc‘

ky

As for a PM signal, demodulation consists of finding the phase of the signal, since

In general, an FM demodulator can be implemented using an FM to AM converter and then
use an AM demodulator, as shown in Figure

The FM-AM conversion can be done in many ways:

1. By derivation
|H (jw)| = w.
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Figure 2.42: General scheme of an FM demodulator.

2. Frequency characteristic of a tuned circuit. The linear part of this response is used. This
system is easy to implement, although the linear area may be small. When the linear area is
too small, two circuits tuned to two frequencies can be used and combined with a so-called
balanced discriminator.

These methods have the disadvantage that the bandwidth of the AM signal generated in the
intermediate step is equal to the equivalent bandwidth, B, of the FM modulation, so the corre-
sponding noise is the noise contained in that band that is generally greater than B.

2.4 Noise in analog communication systems

Previously, the power and bandwidth properties of the different analog modulations, amplitude
and angle modulations, have been studied. In this section we analyze the effect of noise on these
modulations. In all cases the following premises will be considered:

e The modulating signal m(t) is bandlimited, with a bandwidth B Hz.

e An ideal transmission is assumed, a transmission over a Gaussian channel, where the trans-
mitted signal s(¢) does not suffer any linear distortion and the only effect produced during
transmission is the addition of thermal noise

r(t) = s(t) + n(t).

The power of the signal component that is received at the input of the receiver is therefore
Pg, the power of the transmitted modulated signal. Regarding the thermal noise, the usual
statistical model will be used.

— Random process n(t): stationary, ergodic, white, Gaussian, with power spectral density

Sp(jw) = .

e The receiver used for amplitude modulations will be a coherent receiver:

— Filters will be introduced to limit the effect of noise before proceeding with demodu-
lation. The filters will be fitted to the bandwidth of the transmitted signal, in such
a way that the effect of noise is minimized without producing any distortion in the
information signal s(t).

— The filters will be considered ideal, so as to obtain the maximum achievable perfor-
mance.

The objective is to calculate the signal-to-noise ratio (S/N or SNR) of the demodulated signal for

the different types of modulation. This figure of merit will be compared with the signal-to-noise

ratio of a baseband transmission, when the signal is transmitted unmodulated. This reference
S

ratio will be denoted as (N)b'
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2.4.1 Signal-to-noise ratio in a baseband transmission

In this section, the reference signal-to-noise ratio is obtained, the one obtained when the signal is
transmitted without modulation, so that

s(t) = m(t) — Ps = Py.
The signal at the input of the receiver will therefore be
r(t) = s(t) + n(t) = m(t) + n(t)

In the receiver, the only processing that will be carried out will be filtering to minimize the effect
of noise without distorting the information signal. To do this, an ideal low-pass filter of bandwidth
B Hz will be used. Figure shows the scheme of the receiver.

r(1) = s(t) + n(1) LpE | 40 =s(0) +ns(2)

B Hz

Figure 2.43: Diagram of a base band receiver for the reception of a signal with bandwidth B Hz.

The noise power at the output of the filter is obtained by integrating its power spectral density.
Bearing in mind that at the output of a linear and invariant system the power spectral density
is that of the input multiplied by the module squared of the frequency response of the filter, the
power spectral density of the filtered noise n¢(t) is

2

S
0 if w| > W =27B rad/s

(juw) {& if |w| <W =27B rad/s
s (jw) =

Therefore, the power of the filtered noise is

1 +oo 1 +27B N,

, 0
P =5 N Sn; (Jw) dw = — dw = N, B Watt.

P, ——
27 —27B

This same result could be obtained considering that the noise power that passes through an ideal
filter with bandwidth B Hz is Ny x B Watt. In either case, the baseband signal-to-noise ratio is

(%), 5

N/, NyoB

This will be the reference value with which the signal-to-noise ratio obtained with the different
modulation variants will be compared.

2.4.2 Effect of noise on amplitude modulations

In this section, the signal-to-noise ratio is determined at the output of the receiver that demodu-
lates the amplitude modulated signals. The results obtained are compared with the result of the
noise effect in a baseband transmission.
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rf(t) @ x(1) LPF d(r)
H,(jw) B Hz

Noise Filter

cos(wet + @)

Figure 2.44: Block diagram of a coherent receiver used for amplitude modulations, including the
noise filter.

Coherent and filtered receiver to minimize the effect of noise

For all amplitude modulations, the receiver shown in Figure is going to be used, where ¢ = ¢,
as it is a coherent receiver. When necessary, for simplicity, we will consider ¢, = 0.

The noise filter, with impulse reponse h,,(t) and frequency response H,(jw), is placed before the
synchronous demodulator to minimize the effect of noise. To do this, it is an ideal bandpass filter
whose passband, and therefore the bandwidth, is the same as that of the modulated signal s(t).

The received signal is modeled with the thermal additive noise model
r(t) = s(n) + n(t).

The signal component at the outpuf of the noise filter, taking into account that the filter is fitted
to the bandwidth of the signal, is

ri(t) = s(n) +ng(t), con ng(t) = n(t) * hy(t).
The demodulated signal is obtained as
x(t) = rs(t) x cos(wet) = s(t) cos(wet) +ns(t) cos(wet) = xg(t) + x,(t)
and the filtered demodulated signal is
d(t) =x(t) x hppr_p(t) = x5(t) * hppr_p(t) + x,(t) x hppr_p(t) = ds(t) + d,(t).

As you can see, at the output of the receiver there are two terms:

e A term due to the modulated signal s(t), which is dg(t).

e A term due to thermal noise n(t), which is d,(¢).

The signal term is not affected by the noise filter. For amplitude modulations, it was calculated
before, and the obtained result, along with the power of the demodulated signal that is related
with the information signal m(t), Py, is shown in Table [2.3]

Regarding the noise term, its power depends on the noise filter that is used, which in turn
depends on the modulation variant, and in particular on its bandwidth. We will denote the noise
power as Py , and it will be calculated later for each type of modulation.

Once the noise power at the demodulator output has been obtained, the signal-to-noise ratio
after demodulation will be obtained as

S\ | P
N/), P’
and it will be compared with the baseband signal-to-noise ratio

SY _ B
N/), N,B
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Conventional AM %2 1+ Pl % [1 4 mg(t)] ATzPMa
DSB ATgP M Aem(t) ATEPM
55D ALPry gm(t) 5Py
VSB A2Py dem(t)  Apy

P,,: power in dg(t) related to m(t)
Py, s power of my(t), Py, = STQPM
M

Table 2.3: Power of the modulated signal, demodulator output signal, and signal power for each
type of amplitude modulation when using a synchronous demodulator.

Noise power at the demodulator output - General analysis

The power spectral density of the filtered noise ns(t) is
. . . 2 NO . 2
Sy (Jw) = Sa(jw) [Ha(jw)” = | Ha ()"
The power spectral density of the demodulated noise x,,(t) is then

. 1 . ) 1 ) ) N, ) . . )
S (J0) = 7, (jw = jwe) + 750, (jw + jwe) = go [ H, (o — jwe)|” + | Ha(jw + jwe)|?] -

4
Finally, the power spectral density after low-pass filtering, for signal d,,(t), is

Sz, (jw), si|w| <W =27B

Sy (jw) = Sy (jw) |Hppr_p(jw)|* =
i, (Jw) (W) [Hepr-p(jw)| {o, si|lw| >W =27B

The noise power at the ouput of the coherent receiver is now calculated by integrating this PSD

1 00 1 27 B
dn " on /_oo i, (Jw) e 27 ) _onp o) de
N.[1 [2B 1 [?rB
=0 —/ | H (jw — jwe)|? dw + — [ Ha(jw + jewe)|* duw |
8 27 —27B 27 —27B

Noise power calculation - Conventional AM and DSB

Since the bandwidth of the conventional and double-sideband AM modulations is identical, the
noise filter and therefore the noise power is also the same. For both modulations the noise filter
is identical

I, fw—-W<|w <w+W

. )
0, in other case

Hn(]w) = {

where W is the bandwidth in rad/s (W = 27B). Figure represents the frequency response
of this noise filter.

For this noise filter

1 2B 1 2B

1
|H,,(jw — jwe)|? dw + — |H,,(jw + jwe)]? dw = o AW =4B,
s

27 —2nB 27 —27B
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ITH"UUJ) Way =2 W
o I R ==

—we — W —we —we + W We we+ W w(rad/s)

Figure 2.45: Frequency response of the noise filter used in conventional AM modulation and double
sideband modulation.

and the noise power is therefore

1
Pdn = §N(]B

Figure shows the frequency interpretation of the process that noise undergoes in the receiver.

Noise Power Calculation - Single Sideband (SSB)

The case of an upper sideband SSB modulation will be considered. For lower sideband the result
is the same. For this modulation the noise filter has the following frequency response

L, fw <|w <w.+W

0, in other case

where W is the bandwidth in rad/s (W = 27B). Figure represents the module of the
frequency response of the noise filter.

For this noise filter

1 2B 2B 1

| H,(jw — jwe)|? dw + — |H, (jw + jwe)|? dw = 5 2W =2B
T

27 ) _onB 27 ) _onp

and the noise power is therefore

1
Fu, = 7 NoB

Figure [2.48| shows the frequency interpretation of the process that noise undergoes in the receiver.

Noise Power Calculation - Vestigial Sideband (VSB)

The case of an upper sideband VSB modulation will be considered. For lower sideband the result
is the same. For this modulation the noise filter has the following frequency response

1, ifwe—Aw < |w| < we+ W

. )
0, in other case

H,(jw) = {
where W is the bandwidth in rad/s (W = 27B), and Ay is the excess vestigial bandwidth in
rad/s (Aw = 27 Deltag). Figure represents the module of the frequency response of the
noise filter used.

For this noise filter

1 2B 1 2B

1
|H, (jw — jwc)]2 dw + — |H,(jw —|—jwc)\2 dw = gy 2(W + Aw) =2(B + Ap)

27 —2nB 27 —2nB
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. 2W 2W
[Hn (jw) -— -—
41
| | | |
T T T T
—2we —We “+we +2we w
. 2W 2W
Snf (]UJ) -— N -— >
T 2
| | | |
T T T T
—2we —We +we +2we w
1 P . 2W 2W
gsn_r (jw — jwe) ~— TN~ -
T 4
| | | I | | | |
T T T T
—2we —We +we +2we w
2W 2W 1 o : i
< o ’15///(,/“}4»,/“’(‘)
T —
| | | | | | | |
T T T T
—2we —We “+we +2we w
, 2W Sa, (jw) 2W
Se, (JW) %
| | | | | | | |
T T T T
—2we —We +we +2we w

Figure 2.46: Frequency interpretation of the process that noise undergoes in the receiver for
conventional AM and DSB modulations.

Wssp = W

1 Hy(jw)

| t
—we — W —w, we—W We o w.+W w(rad/s)

Figure 2.47: Frequency response of the noise filter used in single-sideband (upper-sideband) mod-
ulation.
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. w w
|Hn (]UJ)| -~ 1 -~
% %
—2we —We “+we +2we w
. w w
Snf (]UJ) -~ No -~
T 2
% %
—2we —We +we +2we w
. . w w
isn_r (]UJ - ]W(‘) -~ N  —
- 4
% % | % |
—2we —we +we +2we w
1% W , . N
- N fe— i1*5/// (Jw + jwe)
<4 +
I % | % %
—2we —We “+we +2we w
. %% Sdn (Jw) W
T 4
[ ] % [ ] % [ ]
—2we —We +we +2we w

Figure 2.48: Frequency interpretation of the process that noise undergoes in the receiver for a
single sideband modulation (upper sideband).

Wysg = W+ Ay

1+ Hu(jw)

e — W —we | we—W lwe w.4+W o (radls)
we — Aw

Figure 2.49: Frequency response of the noise filter used in a vestigial sideband (upper sideband)
modulation.
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and the noise power is therefore

1
Pdn - ZNO(B + AB)

Figure [2.50| shows the frequency interpretation of the process that noise undergoes in the receiver.

. W+ Aw W+ Aw
[Hn (jw) -~ 1 -—
| | | |
T T T T
—2we —We +we +2we w
. W+ Aw W+ Aw
Snf (]w) -~ N, -~
No
T 2
| | | |
T T T T
—2w, —We +we +2we w
1o . . W+ Ay W+ Aw
L5, (juo — juoe) Sl —
f Ng
T 4
| | | —| | l | |
T T T T
—2we —We “+we +2we w
Her_\.\\' V V*A\\' y ‘. .
—> No | ’\577,; (Jw + Jwe)
< —+
| | | | |_ | | |
T T T T
—2we —We +we +2we w
. W + Ay Sdn (]UJ) W+ Aw
an (]W) —> N ——
4
| | | | | I | |
T T T T
—2we —We Fwe +2we w

Figure 2.50: Frequency interpretation of the process that noise undergoes in the receiver for a
vestigial sideband modulation (upper sideband).

Calculation of signal to noise ratios

Once the power of the signal and noise components at the demodulator output are known (sum-
marized in Table [2.4)), all that remains is to calculate the signal-to-noise ratio and to compare it
with that obtained in a baseband transmission.

Double Sideband (DSB) modulation The signal to noise ratio for this type of modulation

1S
2 2
s P FPu FPu  Ps (S
N)pssg Pu. sNeB NoB  NeB \N),

n

OCW Universidad Carlos I1I de Madrid 127 Marcelino Léazaro, 2023



vedm | oo Communication Theory
Modulation Pg ds(t) Pag Py,
Conventional AM A?g 1+ Pl % [1+ mq()] ATZPMG %NOB
DSB 4 Py Aem(t)  Aipy 1N,B
SSB APy, Aepn(t) A Py INyB
VSB A2Py, Ao (1) 2Py INy(B+Ap)

Table 2.4: Signal and noise powers at the demodulator output for amplitude modulations.

It can be seen that the DSB modulation haves exactly the same signal-to-noise ratio than a
baseband transmission.

Single Sideband (SSB) modulation The signal to noise ratio for a SSB modulation is

S\ Py %Py APy Ps (5
N)ssy Po, INgB  NeB  NoB \N/,’

n

Again, the same signal-to-noise ratio as for a baseband transmission.

Conventional AM modulation The signal to noise ratio for a conventional AM modulation
1s

P, INgB O NyB 1+ Py, NyB

2 2 2
(é) _ Pie  FPu, FPu, Py, 51+ Py
N AM

n 2
Py, Ps S
T 1+ Py, NoB MMAN),
~———
nNAM

In this case, the signal-to-noise ratio is worse than in a baseband transmission. This is due to
the transmission of the carrier, which does not contain information, and which makes this type of
modulation inefficient in power. The efficiency factor nay, < 1 is in this case

2
a
a 012\4 PM PM

_1+PMa_1+g—JQZPM_Z_§4+PM.

Py

Nam

The efficiency depends on the modulation index a, with lower efficiency for lower values of a.

Vestigial Sideband Modulation (VSB) The signal to noise ratio for a VSB modulation is

S Py ATEPM APy B APy
<N)VSB Py, iINg(B+Ap) No(B+Ap) B+ Ap NoB
B Ps S
= —B+AB m =nBLV <N)b
NBLV

In this case the ratio is also worse than the signal-to-noise ratio transmitting in baseband. The

efficiency factor ngry < 1 is now
B

NBLV = m-
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The efficiency therefore depends on the excess of bandwidth or vestige, Ag. If the vestige is small
with respect to the bandwidth, Ap << B, in that case ngry =~ 1, i.e., the signal-to-noise ratio is
similar to the one in a baseband transmission.

2.4.3 Effect of noise on angle modulations

The analysis of the noise effect for angle modulations is relatively complicated due to the non-
linear dependence of the modulated signal with respect to the modulating signal, since it is inside
of the argument of the sinusoidal carrier.

In general, to summarize the main characteristics without going into a rigorous analytical de-
velopment, the demodulated signal can be written as

) kym(t) + Ya(t), PM
() = {k:fm(t) + L4y, (t), FM

The noise term, Y,,(t), leads to the following expressions for the power spectral density of the noise
at the demodulator output

Sy (Jw) = ]X_g’ P
! N2 FM

This implies that the noise power at the output of the demodulator is
DY
1 [ N
by ffoo A_g dw, PM

1 [ Ng, 2
= pwldw, FM

{ 2NoB PM

P, Sy (Jw) dw

Az
2NoB3 2 )
w FM
3A2 )

And the signal to noise ratio

18 5 9
k;p AZ Py

SY _) 2 NyB’
N),” ) 3k3A2 Py,

2B% NyB’

PM

FM

If the received signal power is denoted as Py = ATE and the modulation indices are considered

5]) 2 PM
P PM
(S) )" (max\m(t)| N,B’
2) = 2%
d M

B '
3P FM
g (max im(t)] ) N,B’

Taking into account that
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the signal-to-noise ratio can be written in terms of the signal-to-noise ratio transmitting at base-

band as follows )
By S
<§) )P (max|m<t>|) <N> o
N), By /8 ‘
3 <max|m<t>|> (N) A

It can be observed that in the angle modulations there is a fanance in relation to signal to noise
proportional to the modulation index squared.

In summary, the expression for the signal-to-noise ratio for angle modulations could be written

in a general way as
E =« P_M X 62 X 5
N), \C% N/,

e The factor a depends on the modulation: apy =1, apy = 3

In this general expression
e The term (g—%;) is usually constant (its value depends on the type of modulating signals)
Threshold effect in angle modulations

This gain effect only occurs in practice if the baseband signal-to-noise ratio is greater than a

threshold given by
V)
— =20 (B+1).
(N threshold

In practice, this implies that there is a threshold level for the received signal power, from which
this gain is obtained in relation to signal-to-noise

S

PSth'reshold = (NOB) X (N) - Ac:thre'ShOld = \% 2PSthreshold'
threshold
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Chapter 3

Modulation and detection in Gaussian
channels

The basic function of a digital communications system consists of sending and reliably retrieving
a digital sequence of information sent over an analog channel. This is the problem addressed in
this chapter.

The chapter begins by introducing the convenience of a geometrical (vector) representation of
signals for the design and analysis of a digital communication system, and the basic characteristics
of such a representation are presented. Next, the problem of transmission in white, Gaussian,
additive noise channels, commonly referred to as a Gaussian channel, is studied. In this model
it is assumed that the only distortion suffered by the communications signal during transmission
is the sum of thermal noise, which is modeled by a stationary, ergodic, white, Gaussian, random
process with power spectral density Ny/2 W /Hz. The functional elements of the transmitter and
receiver are analyzed, addressing the optimal design of each element, and the methodology to
evaluate the performance of a given system is presented.

3.1 Introduction

This chapter focuses on the analysis of digital communication systems. Therefore, it is convenient
to recall the characteristics and the communication model of these systems.

3.1.1 Advantages of digital communication systems

Digital communications systems clearly prevaul over analog systems because they have multiple
advantages over them. The most important are the following:

e The “regeneration” capability. This is undoubtedly the main advantage. Under certain
circumstances it is possible to transmit without errors, or in general, with an arbitrarily low
probability of error. This is possible because at a certain instant of time, the transmitted
symbol is one among a finite set. This means that the signal can have a shape among a
finite set, and if the distortion is not very severe, the most similar to the received shape is
the transmitted one, and the signal can be “regenerated”, as illustrated in Figure 3.1 As
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it can be seen in the figure, in each interval one of two possible waveforms is transmitted,
high level and low level, so if the distortion is moderate in the receiver, the signal can be
recovered in each interval and recover exact transmitted signal.

BIT ENCODING - Binary system using squared pulses
1 = High level
0 = Low level

TRANSMITTED DIGITAL SIGNAL RECEIVED DISTORTED SIGNAL

oj1j0}11 1 11}]0

0O T 2T 3T 4T ST 6T 7T 0 T 2T 3T 4T 5T 6T 1T

IDENTIFICATION OF EACH SYMBOL REGENERATED SIGNAL

Figure 3.1: Illustration of the regeneration capacity in a digital communications system.

e Error detection and correction techniques exist. In the example of Figure the distortion
suffered by the transmitted signal is moderate, so the transmitted signal (binary sequence)
is recovered without errors. In real cases errors occur, but there are techniques that allow
to detect and correct most of these errors.

e Information can be encrypted (protected) relatively easily. It is enough to apply arithmetic
operations on the binary information with a binary key.

e The distortion that is introduced by the channel can be compensated (channel equalization)
in a much easier way than in analog systems. Knowing what possible values the signal
can take in a certain interval makes it easier to estimate the effect of the channel on the
transmitted signal in order to invert it.

e The format of the transmitted information is independent of the type of information (voice,
data, TV, etc.). In any case, the information is stored in a sequence of binary symbols (bits).
To design a digital system, the objective is to transmit bits efficiently, regardless of the type
of information that they contain.

e New multiplexing or media access mechanisms, such as TDM/TDMA and CDM/CDMA (in
addition to FDM/FDMA), can be used to simultaneously transmit several digital signals in
a single medium.

e The circuits implementing a digital system are, in general

— More reliable
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— Of lower cost

— More flexible (programmable)

Obviously not all are advantages in the comparison between analog and digital systems. Al-
though the advantages clearly predominate over the disadvantages, it is convenient to know these
as well. The most important are:

e The need for synchronism at the receiver. In the example of Figure [3.1], the instants where
the transmission of each bit begins and ends are identified, which allows to compare in each
interval the received signal with a high or low level to perform the regeneration of the signal
(or what is the same, the identification of the transmitted binary sequence). In a real system,
the digital receiver must generate the synchronism signal that allows the identification of
these instants. This is not necessary in analog systems.

e In general, an information signal for a source of the same type (e.g. a voice signal) requires a
higher bandwidth for transmission in digital format than in analog format. This disadvantage
can be compensated by using compression techniques for signals in digital format, which
allows them to be transmitted with a lower bandwidth.

e Many information sources are analog in nature. In reality, this is a minor drawback, since
as we have already seen in the Introduction chapter, the analog-to-digital conversion of
information signals (aling with the corresponding digital-to-analog conversion at the receiver)
allows the transmission of sources of analog nature through digital communications systems.
Analog-to-digital (A/D) and digital-to-analog (D/A) conversion technology is now a mature
and cost-effective technology.

3.1.2 Overview of a digital communications system

The main characteristic of a digital communications system is that the information to be trans-
mitted is stored in a sequence of symbols belonging to a finite alphabet of symbols, as opposed to
analog communications systems, where the information is contained in the shape of a continuous
time waveform m(t). This characteristic endows this type of systems with a series of advantages
that have made them prevail over analog communications systems, as we have seen before.

Although in general the information can be encoded in different alphabets, this chapter will
focus on the most frequent case, in which the information is contained in a binary sequence, so
that the objective of the system will be the efficient transmission of bits between the source and
the destination of the transmission.

Figures [3.2) and [3.3] show the block diagrams of a digital transmitter and receiver, respectively.
These diagrams include the basic functional elements that appear in any system.

The first element of the transmitter, the source encoder, generates the binary information to be
transmitted. Usually, it includes some compression to reduce the redundancy of the information
source to low the necessary binary rate for the transmission.

The channel encoder is responsible for introducing redundancy in a controlled manner to allow
the detection and correction of a certain number of bit errors. The simplest example of channel
encoders are repetition codes. These codes repeat each bit to be transmitted several times. A
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Figure 3.2: Functional block diagram of the transmitter of a digital communications system.

Channel Source
Decoder Decoder

From channel

Figure 3.3: Functional block diagram of the receiver of a digital communications system.

repetition code of order 1 when it transmits a certain bit repeats it again, so that each bit is sent
twice. A repetition code of order 2 repeats each bit twice, ultimately transmitting each bit three
times, performing a coding process

0 — 000

1 —111

In each block of three coded bits, the receiver can detect up to two errors. By adopting the
majority decision strategy, the receiver will be able to correct an error on each block of three
transmitted bits. If there are two or three errors, this majority decision scheme would result in
the wrong decision on the block. Thus, each channel code has a certain detection and correction
capability.

On many occasions, bit errors in the transmitted sequence in a system do not occur isolated,
but rather in bursts of errors. The direct application of the channel coding techniques on bursts of
errors is not useful, since they work well when there are a limited number of errors on each block
of coded bits (1 error out of 3 encoded bits in the case of the previous example). The role of the
interleaver is to convert bursts of bit errors into isolated errors. To do this, the bits are rearranged
before transmission (interleaved) and returned to the original order at the receiver (deinterleaved),
so that burst errors before deinterleaving become isolated errors at the deinterleaver output, as
described in the example that is shown in Figure [3.4]

In the transmitter, from the source encoder, and after carrying out the channel coding and
interleaving processes, a binary sequence By[l] is generated that contains the information to be
transmitted. In this chapter we will study the last element of the transmitter, the digital modu-
lator. The main function of this digital modulator is the transmission of the bit sequence, By[/],
over an analog communications channel, for which it must convert the information sequence into
an electromagnetic signal, s(t), that is suitable to the analog medium used for transmission (a
cable, optical fiber, the radio spectrum, etc.).

At the receiver, the digital demodulator will recover transmitted information from the received
signal, r(t). Ideally, the transmitted sequence should be recovered exactly, but the distortion
suffered by the signal during its transmission will make this not possible in general. Therefore,
the digital demodulator must provide an estimate of the transmitted sequence, Bb[ﬁ], trying to
minimize the number of errors in the estimate.

In this chapter we will study the digital modulator of the transmitter and the digital demodulator
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Figure 3.4: Example of a matrix interleaver, in which the bits are reordered by entering them in
a matrix structure by columns and reading them out by rows.

of the receiver. In other words, the basic problems that are addressed are the transmission of a
sequence of bits over an analog channel, and the recovery of that sequence from the signal that
is received at the output of the channel, which suffers certain types of distortions during its
transmission.

3.1.3 General design of a digital modulator and basic notation

As we have just seen, the function of the digital modulator is the transmission of bits, the binary
sequence By[l], at a bit rate R, = Tib bits/s over a transmission medium (channel) of an analog
nature. To do this, it must convert the binary sequence into an electromagnetic signal s(t).

In general, the transmission of the binary sequence is not carried out bit-by-bit, but will be
carried out by blocks of m bits. The bit sequence By[¢] shall be splitted into blocks of m bits,
and each of these blocks shall be sent. Each block of m bits is called a symbol, so the alphabet
of symbols has M = 2™ possible values: the M possible combinations of m bits. The elements of
this alphabet are denoted as b;, with 7 € {0,1,--- | M — 1}, that is

B[n] c {bo,bl,"‘ 7bM71}-

Thus, the first step in the digital modulator is the bits-to-symbols conversion of the binary se-
quence By[f] to a the symbol sequence B[n]. An important aspect in this conversion is the rate
conversion. In a digital communication systems two transmission rates are identified: the binary
rate, Ry bits/s, and the symbol rate, Ry symbols/s or bauds. The relationship between these two
transmission rates is evident. Since each symbol contains m bits, the relation is

Rb:mXRS.
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Associated with each rate is a time duration, the bit time duration, 7}, and the symbol time
duration, T', respectively. The relationship of these times with the transmission rates is also

evident . ]
Th=— T=— T= T.
b va Rsa m X 1y

This chapter will present the simplest form of information transmission, with the objective of
introducing the basic modulation and demodulation techniques. The sequence of digital informa-
tion has to be converted into an electrical signal. This conversion is piecewise. One symbol is
transmitted every T seconds, so that a time interval is associated with the transmission of each
symbol. The transmission of the first symbol of the sequence, B[0], starts at t = 0, and lasts
until ¢ = T'. Then the second symbol of the sequence, B[1], will be transmitted between instants
t =T and t = 27, and so on. In general, the symbol B[n] will have associated with it the interval
nT <t < (n+ 1)T. Thus, the shape of the signal in each symbol interval will be associated with
the symbol transmitted in that interval.

As explained above, the symbol sequence can take one among M possible values for each discrete
instant n.

B[n] - {bo,bl,"' 7bM71}-

The simplest way to perform the symbol-to-signal conversion s(t) is to define a set of M signals
of duration 7" seconds

{so(t),s1(t), -+ ,sp_1(t)}, with support in 0 <t < T
and making a symbol-to-waveform association:

When at instant n the sequence of symbols takes on a certain value, for example B[n] = b;, the
shape of the signal s(¢) in the interval associated with this symbol, nT' < t < (n + 1)7T', will be
the waveform associated to b;, which is s;(¢). Obviously, the waveform s;(¢) must be shifted to
the corresponding symbol interval

s(t) =sj(t —nT), in nT <t < (n+1)T if Bln| = b;.
This procedure is illustrated below with a simple example. In this case, the bits will be trans-

mitted in blocks of size m = 2 bits, so the system has an alphabet of M = 22 = 4 symbols. For
example, the following association can be made

bp = 00, by =01, by =10, by = 11,

although a different one could have been made. A set of M = 4 signals must be chosen, and a
signal must be associated to each symbol. In this example, the four signals of Figure have been
chosen. The signal-to-symbol association is implicit in the subindices (s;(t) is associated with b;).

The initial part of the binary sequence is in this example
By[¢] = 011110001101 - - -
This sequence is splitted into blocks of m = 2 bits
B[] : 0111|1000 [11]01] ---,
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A So(t) A 51 (t) A So (t) A S3 (t)

+1 +V2 1 +V2 1A

Figure 3.5: Set of 4 signals chosen for the example.

and the bits-to-symbols conversion is performed, identifying each 2-bit block according to the
previously specified binary assignment:

Bln] = by [ bs | by [ by | bg | by ] -
Now the transmitted signal is generated piecewise, by symbol intervals:
e Since the first symbol is b, the associated waveform, s;(¢), is placed in the first symbol
interval (0 <t <T).

e Since the second symbol is b3, in the second symbol interval (7" < ¢t < 2T') the associated
waveform, s3(t), is placed. The signal is delayed by T" seconds to be shifted into that interval.

e Since the third symbol is by, the third symbol interval (27" < t < 3T') contains the associated
waveform, sq(t), but delayed by 27" seconds to be shifted into that interval.

e In general, if Bn| = b;, then s(t) = s;(t — nT) in the the n-th symbol interval, nT <t < T.

Following this basic procedure, the modulated signal s(t) is generated by intervals as follows
s(t) ={s1(t) | s3(t = T) | s2(t — 2T") | so(t — 3T) | s3(t —4T) | s1(t =5T) | ---}

Figure |3.6| shows the signal resulting from applying this piecewise, by symbol interval, generation
process.

+v2
+1

0 T 2T 3T t (seg) 4T 5T 6T T

Figure 3.6: Signal generated by the example binary sequence.

In the light of this example, it can be clearly seen that the design of the digital modulator
consists in the choice of M signals, which must be associated with each one of the M possible
values of the symbol sequence. In this example the choice has been arbitrary. Is the example
choice a good choice? What criteria must be taken into account when choosing the set of M
signals? These questions will be answered throughout this chapter.
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3.1.4 Transmission through a communications channel

Once the modulated signal s(¢) containing the digital information is generated, it is transmitted
through a physical medium or communications channel, such as a cable, optical fiber, the radio
spectrum or any other medium that allows the transmission of a signal. The signal is distorted
during transmission so that the received signal, r(¢), does not match the transmitted signal:

r(t) # s(t).

There are several types of distortion that affect a signal during its transmission over a physical
medium. In this subject, only the two most important ones will be considered: linear distortion
and noise. The usual way of modeling linear distortion is by means of a linear and invariant system
model, characterized by a certain impulse response h(t) and its corresponding frequency response
H(jw), responses related through the Fourier transform. The noise is modeled as an additive
process whose statistical characteristics are associated in most cases with the usual model of
thermal noise: a stationary, ergodic, white, Gaussian random process with zero mean and power
spectral density No/2 W /Hz, where the constant Ny is obtained by the product of the Boltzmann
constant and the temperature expressed in degrees Kelvin. Therefore, the communications channel
model that will be used in this chapter will be the one defined by the relationship

r(t) = s(t) * h(t) + n(t)
which is shown in Figure [3.7]
s(1) su(1) Py r(1)

h(t) @T—/

(¢

p

=

Figure 3.7: Communications channel model.

3.1.5 Generic design of a digital demodulator and basic notation

The function of the digital demodulator is the recovery of the bit sequence B,[¢] from the signal
received through the channel, r(¢). The signal is distorted during its transmission through the
communications channel, so the received signal will be different from the transmitted signal

r(t) # s(t).

The basic procedure to recover the signal is presented now. The received signal is processed
piecewise, specifically by symbol intervals. In the symbol interval associated to the discrete time
index n, interval nT" < ¢t < (n + 1)T', the received signal is observed and compared with the M
waveforms of the system. The signal with which it is most “similar” is chosen, and if this is
s;(t), the estimate for the symbol associated with that interval is the symbol associated to that

waveform Bln] = b;.

Returning to the previous example, after the transmission of the signal, it suffers a certain
distortion, giving rise to the signal shown in Figure [3.8|

After segmenting the signal into symbol intervals, a search is made for each symbol interval to
find which of the M possible signals in the system (signals in Figure in this example) is most
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Figure 3.8: Signal received at the receiver input in the example.

similar to the received signal in the interval. In this case, a simple visual inspection allows the
identification of the signal corresponding to each interval

e n =0, interval 0 <t < T - “Most similar” signal: s,(t) — B[0] = by
e n =1, interval T < t < 2T -“Most similar” signal: s3(t) — B[1] = bs

e In general, for n, interval nT < (n + 1)T - “Most similar” signal: s(t) — B[n] = by

Therefore, following this procedure: B[2] = by, B[3] = by, B[4] = bs, B[5] = by, and the estimated
symbol sequence is

A

Bln] =by | by | by | by | b | by ]| -

which after the symbols-to-bits conversion produces the following binary sequence

A

By[f]:01]11]10]00|11]01] ---

In the example the distortion of the signal is moderate, so that by means of a visual inspection
the original sequence is recovered without problems. But the real system must somehow measure
the “similarity” or “difference” between signals. It is necessary to define a measure that quantifies
the difference of the signal that is received in the n-th symbol interval with the waveform s;(t),
which we could denote as

diference(n, 7).

In this way, the criterion for making a decision would be to decide the symbol associated with the
signal with the smallest difference (greatest similarity) with respect to the signal received in the
interval

Bln] = b; if diference(n, i) < diference(n, 7) for all j # i.

For example, a possible measure may sum the difference in modulus between the observed signal
at the symbol interval and each of the possible reference signals (the sum over each time instant
becomes in an integral)
(n+1)T
diference4(n, i) = / |s(t) — si(t — nT)| dt.
nT
Another possible measure is energy of the difference signal, which is given by
(n+1)T
diferencep(n, i) = / |s(t) — si(t —nT)|* dt.

nT

Intuitively both measures somehow quantify the difference between the signals, giving lower values
the more they are similar (they would give 0 only if the signals are identical). And we could think
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of many more measures that could be used to quantify the similarity or difference between signals.
What would be the best measure to minimize the probability of being wrong? The design of
the digital demodulator consists in finding the best way to quantify this resemblance so that the
estimated sequence is the one that minimizes the number of erroneous estimates.

3.1.6 Factors to consider in the selection of the M waveforms

We have just seen what basic function must be performed by the digital modulator and demod-
ulator in a digital communications system, what procedure will be used to perform this function,
and what its design consists of. Summarizing;:

e Digital modulator

— Function: Conversion of the binary information sequence By[¢] into an electromagnetic
signal s(t).

— Procedure: Bits are grouped into blocks of m bits (symbols), each symbol is associated
to a waveform out of M possible ones, which is transmitted into the interval associated
with this symbol.

— Design: Choice of an appropriate set of M signals to carry each of the M possible
symbols (blocks of m bits).

e Digital demodulator

— Function: To estimate the sequence of transmitted bits, B, [¢], from the received signal
r(t).

— Procedure: Decision for each symbol interval, of which of the M signals was transmitted
in each symbol interval in view of the signal received in said interval, comparing the

shape of the signal in the interval with the M possible signals and choosing one of
them.

— Design: Determine the optimal measure to make the comparison and the choice, so as
to minimize the errors made taking into account the distortion suffered by the signal
in its transmission through the channel.

Several factors must be considered in the system design. In particular, when designing the
digital modulator and demodulator, three main factors must be taken into account:

1. Performance: measured by means of the error probabilities associated to the estimates at
the receiver, i.e., the symbol error rate and the bit error rate (P., BER)

e If at the receiver, for each symbol interval, the most “similar” signal is decided, obvi-
ously the probability of error will depend on the “similarity” between signals. There-
fore, it is convenient to select a set of M signals as different as possible.

e Another problem is to determine the measure of “similarity”, or alternative of “differ-
ence”, that leads to minimizing the error probability taking into account the type of
distortion suffered by the signal in its transmission.

2. Energy/power of the transmitted signal
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e The popwer of the transmitted signal is limited in practice, since the amplifiers used
in the transmitter have a power that cannot be exceeded for various kinds of reasons.
Since the transmitted signal is composed of “pieces” at each symbol interval, and at
each interval one of the M waveforms s;(t) appears, in practice a reasonable measure of
the average power or energy of the modulated signal is the average of the energy of each
of the signals that compose it, which is called the average or mean energy per symbol
(Es). In practice, this energy is limited. This average energy per symbol is obtained
by weighting the energy of each symbol (more properly, of the signal associated with
each symbol) taking into account the probability of each symbol:

— Probability of each symbol: pg(b;) = P(Bn| = b;)
— Energy of symbol b; = energy of signal s;(t)
— Average energy per symbol: average of the energy of the M symbols

o

E, - i p(b) E{s: ()}, with E{si(t)} = / 152 (82 .

—00

3. Characteristics of the communication channel (h(t) Al (Jw))

e The system must be designed to minimize the distortion suffered by the signal during
transmission. As seen in Section the effect of the channel is usually modeled
through the relationship

r(t) = s(t) * h(t) + n(t).

The transmitted signal fundamentally suffers two effects: a linear distortion given by
the channel response (described by the impulse response h(t) or the frequency response
H(jw)) and the additive noise (usually thermal noise). Noise will always be present,
and a filter at the input of the receiver is necessary to minimize its effect. The choice of
signals s;(t), which determine the characteristics of the transmitted signal, is relevant
to minimize the linear distortion. Taking into account the channel response, there will
be signals that suffer greater distortion, and signals that have less distortion. The ideal
situation would be zero linear distortion, which theoretically could be achieved if an
appropriate set of M signals is chosen. That appropriate set would satisfy

si(t) x h(t) = s;(t) for i € {0,1,--- , M — 1},
or equivalently, it is easier to interpret this condition in the frequency domain
Si(jw) x H(jw) = S;(jw) fori e {0,1,--- , M — 1}.

If this condition is satisfied for the M signals, the only distortion that the transmitted
signal will suffer will be the addition of noise

r(t) = s(t) +n(t),

which is called the Additive White and Gaussian Noise (AWGN) model, or Gaussian
channel model for short.

Selecting M signals jointly attending to these three factors working with signals in the time
domain is complicated, since some of the factors are even in opposition. For example, it is easy
to increase the difference between signals with signals of higher amplitude, but these have higher
energy. Finding M signals of limited energy, as different as possible, and at the same time having
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a suitable Fourier transform taking into accout the channel response, is a complicated problem.
In addition, there is also the problem of determining the measure of “difference” that leads to
minimum error probability. This problem can be made simpler by working with the geometric
representation of the signals in a vector space. This representation will be presented in the next
section.

3.2 Geometric representation of signals

When designing the modulator, it must associate a waveform to each symbol of the alphabet of
Bln], which means that each b; is associated with a signal s;(t). If the design goal is to have the
lowest probability of error, intuitively it is logical to think that these signals should be as different
as possible. But it is not so easy to find a measure of difference between signals, when these are
defined in the time domain, easy to handle analytically and that is appropriate to minimize the
error probability.

This is the reason for using a geometric representation of the signals. Let’s assume that each
signal can be represented within a vector space: Each received signal can be represented by a
vector, as shown in Figure (dashed line). The set of M = 4 signals {so(t), s1(t), s2(t), s3(t)},
can also be represented by vectors (continuous lines). The signal s;(t) is represented by the vector
a; (association based on the subindices). On the one hand, if a measure of distance between
vectors is used, it is easy to determine how far or close the vectors associated with two signals are.
And that measure of distance can be a good measure of similarity between signals. On the other
hand, the noise will also be represented as a vector, which will be added to the signal vector to
produce the vector for the received signal (in this case the vector q in the figure). With a measure
of distance between vectors it is easy to choose the signal that is closer to the received vector (in
this example, the signal sy(t), since the vector q is closest to the vector ay than to the other three
vectors).

aj q Q

ag ag

Figure 3.9: Geometric representation of signals (example of a 4-ary system in a two-dimensional
space).

In this section, a vectorial representation of the signals will be presented, which is appropriate
for the design and analysis of digital communications systems. Firstly, the main characteristics
of vector spaces and Hilbert spaces will be reviewed, how to obtain an orthonormal basis for
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the vectorial representation of a set of M signals, and how to calculate energies and difference
measurements on the vector representations.

3.2.1 Vector spaces

Signals admit a representation as vectors of a vector space. As we are going to see, this represen-
tation allows us to apply all the analysis and synthesis tools of this type of space to work with
the signals.

Let us first analyze whether a signal can be considered as a vector inside a vector space. A
vector space V is a set of elements, which we call vectors, that have the following properties:

1. There is an internal composition law, which is called sum and is represented by the symbol
+ that, applied to two vectors (x,y, € V) of the form x + y results in another vector of the
space (x +y € V). This law must satisfy the following properties:

Commutative: Vx,y € Vix+y =y +x.

(a
(b
(c

(d) Existence of an inverse element: V x € VI(—x) : x + (—x) = 0.

Associative: Vx,y,z € Vix+ (y+2z) = (x+y) + 2
Existence of a neutral element (zero): 30 € V:VxeV;x+0=0+x =x.

)
)
)
)

2. There is a law of external composition that we call product with a set C of elements called
scalars (which must have the Field structure) that, applied to a scalar a (o € C ) and a
vector x (x € V) of the form ax results in another vector (ax € V). This law must satisfy
the following properties:

(a) Associative: V «, € C;V x € V; a(fx) = (af)x.
(b
(c

(d) Distributive with respect to the product by a scalar:

)
) Existence of a neutral element (one): 31 € C:Vx € V;1x = x.
) Distributive with respect to sum: Vo € C;Vx,y € Via(x+y) = ax + ay.
)

Va,feCVxeV;(a+ f)x =ax+ px.

If the general case of a complex signal is considered (both in continuous time and in discrete
time), this signal fulfills all the conditions of a vector space. The addition operation of the vector
space is the point-to-point addition of the signal, which is commutative, associative, has a neutral
element (z(t) = 0) and an inverse element, the inverted signal itself (multiplied by —1).

If the scalars are the field of complex numbers, the law of external composition is the multipli-
cation of the signal by a complex, and it is easy to verify that all the properties are satisfied.

The case of the real signals and the real numbers also fulfill it, since in fact they are a particular
case of the complex signals and complex numbers.

However, this generic vector space structure is too simple to be useful. A more elaborate
structure is found in Hilbert vector spaces or simply Hilbert spaces.
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3.2.2 Hilbert spaces for signals of finite energy

A Hilbert space is basically an inner product vector Spaceﬂ The inner product, also known as
scalar product or dot product, is an application of pairs of vectors in the field of scalars (complex
or real in our case),

f:(V,V) = C,

which is denoted as (x,y), and which satisfies the following properties:

The inner product induces a norm for the vector space, defined as

x[] = V/(x, %),
and from the norm a measure of distance between vectors
d(x,y) = |[x = yll.

The angle between two vectors is measured as

= cost (L),

[l ]yl

For signals and, in general, for any generic vector space, there is no a single definition of the
inner product: any function that meets the previously established requirements can be chosen as
a inner product. Each definition gives rise to a different Hilbert space, with a different norm and
distance measure. Next, the structure of two Hilbert spaces for energy signals is presented, which
are the most appropriate for their application in communication systems.

1. Ls: Hilbert space for energy signals in continuous time.

2. l: Hilbert space for energy signals in discrete time.

Hilbert space for continuous time energy signals

The space L is defined by the following inner product

v = [ " at) v () de.

o0

1Strictly speaking, it is a scalar product vector space that satisfies the completeness property. Completeness is
fulfilled when every Cauchy sequence is convergent in the metric induced by the scalar product. If it does not have
this property, the vector space is called a pre-Hilbert space.
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The norm induced by this inner product is

Il = V/fxx) \/ [ let) at = VEED.

e., it is the square root of the energy of the signal. This is interesting because the norm of
a vector defines the distance of the vector representation from the origin of coordinates, so the
energy of a signal can be easily evaluated as the squared distance of its vector representation from
the origin of coordinates.

The distance between the vector representation of two signals is given by

d(x,y)=\\x—3’|l=\//_oo () —y(B)? dt = v/E{x(t) — y(t)}-

In this case, we have the square root of the energy of the difference signal, which intuitively seems
like a reasonable quantitative measure of the difference between two signals (later we will see that
in certain cases it is the optimal measure to decide with the minimum error probability in a digital
demodulator).

Hilbert space for discrete-time energy signals

The space {5 is defined by the following inner product

(x,y)= > z[n] y*[n].

n=—oo

The norm induced by this inner product is

E{z(n},

and the distance is the well known Euclidean distance

dix,y) = lIx =yl = | > lzln] —y[n]? = /E{z[n] —yn]},

that is also related with the energy of the difference signal.

The basic definitions are equivalent in both spaces, with the only difference being the continuous
or discrete nature of the time index (¢ or n, respectively).

Some aspects of interest

In any case, the inner product provides a measure of the resemblance or similarity between two
signals. The inner product of two signals with a similar waveform will be “large”, while that of
two signals with very different waveforms will be “small”.
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When the inner product of two signals is equal to zero, those signals are said to be orthogonal.
This means that the corresponding vector representations have a 90 degrees angle between them.

There is an important relationship between the vector norms and the magnitude of the inner
product. The Cauchy-Schwarz inequality makes use of this relationship and states that

|6 ) < ]Iyl

The equality only holds if the vector y is a scaled version of the vector x, which in the case of

signals means that y(t) = « x(t) or y[n] = « x[n]. This inequality takes the following form for the
L, and /5 spaces
'/m@« ) dt \// |2dt\// (12 dt
and
dYooalynl| <\ | Y |z Z ly[n]
respectively.

3.2.3 Representation of vectors in a basis

The inner product also makes it possible to easily find the representation of a signal in a basis of
the vector space.

A basis for a Hilbert space H of dimension D is a subset of D elements {¢,} € H, which
determine a set of D unique coefficients {c,(x)}, n € {0,1,---, D — 1}, for any element x in the
space, such that the element can be uniquely represented as a linear expansion over the elements
of the basis

D—1
X = Cn (X) ¢n
n=0
The D coefficients that uniquely define the vector x, {c,(x)}2=;, are usually called coordinates

of the vector in the basis.

A basis is orthogonal when the elements of the basis are orthogonal to each other, which means
that their inner product is zero

(On, pm) =0, ¥V # m.

A basis is orthonormal when it is an orthogonal basis, that is, it is true that the elements of the
basis are orthogonal, and it is also true that each of them has unit norm. Taking into account the
definition of norm through the inner product, this is equivalent to saying that the inner product
of each element of the base with itself is one

In Hilbert spaces, one of the advantages of working with an orthonormal basis is that the
coefficients of the expansion in terms of the basis (coordinates) are obtained by means of the inner
product of the vector with the different elements that form the orthonormal basis

cn(X) = (X, bn).
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In the case of the L, space, an example of a trivial orthonormal basis is the set of Dirac delta

functions {6(t — 7), 7 € R}. If ¢; = 0(t — 1),

<¢i,¢j>:/ 5(t — 7)8(t — ;) dt:{(l)’ :;:ﬂ

The representation of the signal in terms of this basis is

x =x(t) = /OO x(71)o(t — 1) dr.

—00

The coefficients of the expansion are obtained as

ei(x) = (x, 6(t — 7)) = /_OO 2(8) 6(t — 7) dt = ().

o0

The same is true for the ¢y space, where the set {§[n — k], k € Z}, forms an orthonormal basis.
In this case it can be denoted as ¢, = d[n — k|

(G0 = 3 oln — Moln — il = [k — i) = {é

n=—oo

The representation of the signal in terms of this basis is

The coefficients of the expansion are obtained as

o0

cr(x) = (x,¢1) = Y _ x[n] 5[n — k] = x[k].

n=—oo

These are valid bases, but non-practical because of the infinite dimension. In the next section,
we will see how to obtain a finite dimension basis to represent a set of M signals.

3.2.4 Gram-Schmidt orthogonalization procedure

The two orthonormal bases presented above are not practical since they involve infinitely many
coefficients, which means knowing the complete signal in practice. It is possible to obtain a
finite-dimension orthonormal basis that allows to represent a finite set of elements of the vector
space (in the particular case that affects the design and analysis of systems of communications,
a finite-dimension basis that allows representing M signals). A suitable basis for this type of
representation can be obtained by means of the so-called Gram-Schmidt orthogonalization method.
This procedure allows to obtain an orthonormal basis of N < M elements to represent a set of
M signals. In this way it is possible to represent each signal as an N-dimensional vector, in the
space defined by that basis.

In a communications system there is a set of M signals {s;(t),i = 0,--- , M — 1}, of duration
T seconds and defined in the interval 0 < t < T, which are used to transmit information over
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the communication channel. From this set, another set of N orthonormal signals {¢;(t),; =
0,---,N — 1}, with N < M, can be obtained. They allow to represent each signal s;(t) by the
following linear combination

?

si(t) = aij ¢;(t).

J

Il
)

According to the definition of an orthonormal basis, any signal s;(t) can be expressed as a linear
combination of the elements of the basis where the coefficients of the expansion, or coordinates of
the vector representation for the signal s;(t), a; j, can be obtained by the dot product

ous = {50 05(0) = [ sit) 6510 .
—0o0
This results in a vector representation (N dimensional) of each signal via the coordinates vector
ai0
Qi1
S; (t) — a; =
ai,N-1

Although at first glance it may seem that this change in representation does not represent a
great advance, it must be taken into account that in this way NV is the dimension of the signal
space, and each signal is represented by N coordinates, which is more convenient than handling
the expression of the signal in the continuous time domain. In addition, it also simplifies the
calculation of the energy of the signals s;(¢) and their difference.

It is important to remember that since it is an orthonormal basis, the inner product of two
different elements of the basis is zero, and the inner product of an element of the basis with itself
is one, i.e.,

(r(t) / oi(t) — i - j].

The inner product between two signals s;(t) and sg(t) is calculated as

(s:(t), su(t)) = / sa(t) sp(t) dt

—0o0

-/ (Z ¢j<t>> (Z ¢Z(t)> i

/OO <ZZ% age 5(t) ()) dt

o0\ j=0 ¢=0
N— 1N-1
Yo, [ a0 X o, [ a0
j=0 7=0 ¢=0
L]
which applying the orthonormality property of the basis reduces to
N-1
(sivse) = (si(t), sk(t)) = ) _ ay; ap;.
j=0
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The energy of a signal, which in the time domain involves an integral

&:S@N»:/fwﬁﬁ

can now be calculated from the vectorl representation of the signal in a simpler way

Ei=E{si(t)} = (si,si) = lsa(B)[]” = Z Jai; .

The calculation from integrals of the signals in the time domain has been replaced by a sum of N
squared coordinates, much easier to perform.

This comment is also valid for the calculation of the difference between signals. An intuitively
reasonable measure (later we will also see that in many cases it is the optimal measure) is the
energy of the difference signal, which in the time domain again requires an integral

/_oo 15:(t) — sw()? dt.

With the definition of the inner product for the £, space, the square root of this energy corresponds
to the norm of the difference vector, i.e., the distance between the vector representation of the
signals. In short, this intuitive measure of difference can be obtained from the norm of the

difference vector
d(si(t), se(t)) = |[si(t) — si(t H—\// ) — sk(t)]* dt.

Taking into account the linear expansion for both signals

N-1

d(si(t), sk(t)) = /{si — s s —se) = | Y laij — aryl*.

J=0

Once again, integrals over signals have been replaced by sums over /N coordinates. Therefore, the
vector representation of signals by coordinates in an orthonormal basis is useful.

To obtain an orthonormal basis that allows representing M signals, the Gram-Schmidt orthog-
onalization process begins selecting a non-zero energy signal, so(¢). The first element of the basis
is obtained simply by normalizing the first signal

so(t)
N

This ensures that the energy of ¢o(t), E{¢o(t)} = 1, i.e., we have the first element of an orthonormal
basis.

¢0(t) =

To obtain the second element of the basis, first the projection of s1(t) on ¢g(t) is obtained. The
coordinate of this signal on the first element of the basis is

aro = /_ Tt G dt

o0

Then the projection over ¢q(t) is subtracted from s;(t)
dl(t) = Sl(t) - a1’0¢0<t).
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Now d; (t) is orthogonal to ¢y(t), and it must be normalized. If & denotes the energy of d(t)

& =&t} = [ la0P .

the second element of the orthonormal basis is

which also has unit energy.

In general, obtaining the element k + 1 of the basis, ¢ (t) is obtained as

Pr(t) = Ve
where -
di(t) = si(t) — Zak,j ?5(t),
&= ()} = [ a0
and

o = /_ " slt) 62(0) dt.

[e.9]

Below is an example of the calculation of a basis that allows to represent 4 signals.

Example

The Gram-Schmidt procedure is applied to the set of signals in Figure [3.10)

To obtain the first element of the base we calculate the energy of so(t). It is easy to check
that & = 2. Therefore

so(t)

ok

Then the projection of s1(t) over ¢o(t) is calculated.

Po(t) =

aio = /Oo Sl(t) gf)a(t) dt = 0.

—0o0

So in this case di(t) = s1(t), which is orthogonal to ¢o(t), and must be normalized. Its

energy is
& =2,
and therefore 0
S1 t
t) = .
¢l( ) \/§
To calculate ¢a(t), the projections of so(t) over ¢o(t) and ¢1(t) are obtained. The coordinates

are

G20 = / T sa(t) G5(t) di = 0.
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Figure 3.10: Set of M = 4 signals.

and ~
a1 = / Sg(t) d)T(t) dt = *\/5.

Therefore

da(t) = s2(t) — a0 ¢o(t) — a2 ¢1(t)
= sult) + V30 (1).

The energy of da(t) is
52 = 17

and

Ga(t) = da(t) = s2(t) + V291 (2).

Now the last signal, s3(t), is processed. The projections of this signal over the 3 elements of
the basis are obtained. The coordinates are

azo = /Oo s3(t) ¢n(t) dt = V2.

— 00

CL371 = /OO Sg(t) ¢T(t) dt = 0.

—00

ays = / s(t) G5(8) dt = 1.

Now
dg(t) = Sg(t) —aso ¢0(t) —as;1 ¢1(t) —az?2 ¢2(t) =0.

This means that no additional element is necessary in the basis to be able to represent s3(t),
since this signal can be obtained as a linear combination of the 3 current elements. So, in
this case, the dimension of this space of signals is 3, and the 3 basis functions are shown in
Figure [3.11
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Figure 3.11: Set of orthonormal signals.
Once the N signals of the orthonormal basis have been calculated
{gbj(t)vj =0,---,N— 1}
each signal can be obtained as a linear combination of the N elements of the basis
N—-1
S,L(t): amcﬁj(t), Z:O, ,M—l
j=0
Therefore, each signal can be represented by a vector
Q5.0
@1
a;, =
a; N—1
or equivalently, as a point in an /N-dimensional signal space with coordinates (a; 0, @i1, - , @i n-1)-

On the other hand, the energy of s;(t), &;

& :/ |s;(t)]? dt,

o0

can be easily calculated from these coordinates

=z

EZ' == <Si,Si> = ’ai,j 2.

J

Il
o

Example
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The coordinates of the 4 signals of the previous example (which have been calculated during
the development of the orthogonalization procedure) are

ap,0 = ﬂ
ap1 =0 — ag = [v/2,0,0]T.
ao’z =0
aio = 0
a1 =v2 p —a;=[0,v2,0]".
ai2 = 0
a270 =0
az1 = —\/i — a2 = [0, *\/5, l]T.
a2 = 1
azo = ﬁ
as1 = 0 — ag = [\/5, 0, 1]T.
a372 =1

These signals can be represented as points in 3D space, such as and as shown in Fig. 3.12

08
0.6 -
0.4 -

0.2 ~|

Figure 3.12: Signals represented in the orthonormal basis.

It is easy to check that
=2, E=2,86=3, & =3.
The distances between signals can also be calculated in a simple way. In this case they are

as follows
d(So,Sl) = 2, d(So,Sg) = \/5, d(So,Sg) =1

d(Sl,SQ> = \/§, d(Sl,Sg) = \/5, d(SQ,Sg) =2

It is important to note that the basis for representing a set of M signals is not unique. If the
Gram-Schmidt procedure is applied but changing the order of the signals, the obtained absis and
the corresponding coordinates are different. However, the energies and distances between signals
are maintained. This means that the new representation is just a rotated version of any other
valid basis.

In some cases, as in this simple example, it is possible to find a set of signals a suitable basis by
visual inspection. For example, for these signals the following signals could be used as basis:

1, si0o<t<1
0, en otro caso
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1, sil<t<?2
0, en otro caso

1, si2<t<3

t) = .
0 (1) {0, en otro caso

They form a valid orthonormal basis: they are orthogonal (they are non-overlapping, therefore
the integran in the inner product is zero) and all of them has unit energy.

In this case, it is trivial to see that the coordinates vectors of the 4 signals in this new basis are

1 1 —1 1
ag=|1]|aj=|-1|ay,=| 1 |[a;=]|1
0 0 1 1

It is easy to check how energies (which are related to the distance of each point to the origin) and
distances between vector representations are maintained using this new representation.

Therefore, the corresponding vector representation assumes a rotation of the representation using
the other orthonormal basis, as can be seen in Figure showing the vector representation of
the 4 signals in the new orthonormal basis.

08
0.6 ~|

0.4+

Figure 3.13: Signals represented in the alternative orthonormal basis.

3.3 Digital communication model

The vector representation of the signals in an orthonormal N-dimensional basis allows the use
of a digital communication model based on this representation. This model notably simplifies
the design and analysis of the system. This model has 4 functional elements (in addition to the
communications channel), as shown in Figure [3.14]

In this model, both the digital modulator and the digital demodulator are divided into two
modules:

e Digital modualtor:

— Encoder
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Bits L{ Encoder ]L{ Modulator ] 2

Digital Modulator
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[ Channel J

By[4]

T fin n r(t
Bits it Detector ]&[Demodulator} ¥

Digital Demodulator

Figure 3.14: Basic model of a digital communications system.

— Modulator
e Digital demodulator:

— Demodulator

— Detector

It must be remembered that the task of the digital modulator and demodulator was to convert
bits (grouped into symbols) into signals and to do the inverse conversion, respectively. With
this division into modules, a vectorial representation of the intermediate signals has been intro-
duced in both cases, A[n] in the transmitter and q[n| in the receiver.These intermediate vector
representations greatly facilitate the design and analysis of the system.

In the transmitter, the assignment of a signal s;(¢) to each value of the alphabet of symbols b;
is now done in two steps:

e An assignment is made of the vector representation of s;(t), a;, to b; (encoder).

e The vector representation of the signal, a;, is converted to signal s;(t) (modulator). To do
this, an orthonormal basis of dimension N must be defined, since

N-1

si(t) = Z aij X ¢;(t).

J=0

This division considerably simplifies the problem of choosing the M signals to take into account the
3 factors that were specified in Section : performance (similarity/difference between signals),
energy and channel features. The first two factors are uncoupled from the third one. The energy
and the similarity between signals can be evaluated from the vector representation of the signals,
regardless of the chosen orthonormal basis. In this way, the design of the encoder, which consists
in choosing the vector representation of the M signals,

{a07ala e 7aM71}7

which will usually be called constellation. These vector are chosen taking into account two factors:
performance (measure of difference between the signals) and energy.
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Regarding the characteristics of the channel, it is necessary to ensure that the signals have
a frequency response appropriate to the frequency response of the channel. The form of the
frequency response of the signal s;(t), given that

=z

N-1
sit) =) aig x ¢(t) ¢ Si(jw) =Y ai; x ;(jw),
=0

J

i
o

depends on the choice of the orthonormal basis. Choosing an orthonormal basis or another has no
impact on the energy and difference measure (distance) between signals, since these parameters
are completely defined by the vector representation of the signals. The shape of the signals, both
in the time and frequency domains depend only on the basis. In this way, the design of the
modulator, which consists of choosing an appropriate orthonormal basis, is carried out taking into
account only the third factor: the signals are adequate to the channel characteristics.

At the receiver, the division into two modules also simplifies its functionality. First, the demod-
ulator obtains the vector representation of the signal that is received in each symbol interval, q[n]
for the interval nT' <t < T'. From this representation, it is much easier to find the optimal rule to
decide which of the M signals was transmitted in that interval (the rule that minimizes the error
probability) than working with the continuous-time representation of the signals.

The function and main characteristics of each of the 4 functional elements of the system are
briefly summarized below:

e Encoder

— Defines the vector representation of the signal associated with each symbol (constellation)
« Discrete time index n: vector A[n| representing s(t) in nT <t < (n+ 1)T
— Design criteria (to select the constellation)

* Energy

x Performance: distance (“disimilarity”) between signals
e Modulator

— Defines the orthonormal basis of the signal space

— Design criteria (to select the N functions ¢;(t), for i =0,1,--- | N — 1)

x Adaptation to the characteristics of the communication channel
e Demodulator

— Converts the received signal, by symbol intervals, into vectors in the signal space defined
by the basis {¢;(t) j-V:_Ol
* Discrete time index n: vector q[n] representing r(t) in n7 <t < (n+ 1)T
e Detector
— Compares the “disimilarity” between the received signal and the M possible signals

si(t) to decide symbols

x Distance are measure over vector representations

* Distances are obtained between:
- Vector of the received signal in the symbol interval: q[n]
- Vectors of the M possible symbols: a;, for i € {0,1,--- M — 1}
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3.3.1 Example to illustrate the advantage of vector representation in
the design of a system

We will start by considering a binary communication system in which each symbol corresponds
to 1 bit (m = 1, M = 2™ = 2) and the two bits are transmitted with the same probability. As
signals for the transmission of each symbol, there are four candidate sets of signals {so(t), s1(¢)}.
These sets are plotted in Figure |3.15]

( so(1) 51(2) so(t) s1(1)
+2 + +2 + +2 +2 +
+v2 +v2 T+ +v2 +v2
+1 +1 + +1 +1 +
t t . t
-1 —1 -1 -1
-2 -2 T -2 —V2 T
-2 4+ —2 4+ —2 -+ -2 4+
Set 1 Set 2 )
so(1) s51(1) 50(2) 51(2)
+2 + +2 + +2 +2
+v2 +V2 +v2 +v2
+1 +1 - +1 +1
t ! !
1 = —1 4 -1 -1
_2 -+ 2 + —/2 —+/2
—2 -2 + -2 -2
Set 3 Set 4

Figure 3.15: Sets of condidate signals for a binary system

To decide which set of signals is the most appropriate, it must be remembered that the objective
is to recover the symbolwith minimum error probability, taking into account the characteristics
of the channel. White and Gaussian noise is added. It seems logical to think that the greater
the “disimilarity” or “difference” between so(t) and s1(t), the easier to discern between them in
the receiver despite the added noise. To measure this disimilarity, a measure of distance between
signals is needed.

The distance measure defined in the Hilbert space of finite energy signals, Ls, will be used. In
this space, the signals s;(¢) become vectors a; and the distance is defined as

d(si(t), s;(t)) = |Jai — a;|| = \// |si(2) — s;()[>dL.
Applying this measure to the two signals of the first set

d(so(t), s1(t)) = \//0 11— (=1)]2dt = 2V/T.

For the second set of signals we have

d(so(t), s1(t)) = 4 //OT 12— 0)2dt = 2v/T.
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For the third set of signals

d@dw@goy:¢lf (%g)-—(—viﬂn(%?>)2m
:\//0T8sin2 (?) dt
il (F)= ()],
=2V/T.
And for the last set of signals
d(so(t), s1(t)) Z\//T 2sin @) — <2cos (?)) 2dt

S (3 o (3
=2V/T,

because , .
2t 2mt 2T 2t
/0 8sin (ﬂ (?) it — [7 (7)] 0.

Thus, the four sets have the same distance and, in principle, the signals would behave in the
same way when faced with the disturbance introduced by the channel. But we must also ask
ourselves if it takes the same effort for the transmitter to send them through the channel. And
the way to measure the effort is the average energy per symbol which is defined as

E, =E[E{s(t)}]
_F / |s(t)|2dt}
M-1 -
=D P(s(t) = si(t)) x E{si(t)}
' .
=Y pata) [ st
=0 -
If the symbols are equiprobable, p4(a;) = ﬁ, SO
M1y oo
B 2
E, = 2; i 7oo|81(t>| dt

Applying this definition to the first set of signals
1" I 1, 1
B, - -/ |1|2dt+—/ 1Pt = T4 fr—T
2 J, 2 J, 2" "2
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If we calculate this energy for the rest of the sets we obtain, respectively, £, = 2T, E, = T and
E, = 2T. Tt can therefore be said that the best sets are the first and the third, since they have
the same distance with the lowest energy.

When handling sets of signals with different distance between signals, it is necessary to use some
kind of normalization that allows us to establish their comparison. The most common of these
normalizations consists of expressing the distance between signals as a function of the average
energy per symbol. For the first set of symbols, this normalized distance is

d(so(t), 51(t)) = 2VT = 2/E,.

For the rest of the sets, respectively

d(80<t) ( - 2\/_ \/_87
d(so(t), s1(t)) = 2VT =2

d(so(t), s1(t)) —2\/_ \/_

Clearly, sets of signals 1 and 3 provide a greater separation distance between signals than sets
2 and 4 for the same value of F,.

and

Another question to consider is whether it is possible to find a way to represent the signals that
allows us to see in a simpler way the benefits that we are going to obtain with a certain set. The
answer is found in the same vector space structure that has allowed us to measure the distance
between signals. if an orthonormal basis allows to represent a certain set of signals, it is possible
to work directly with the coordinates in that basis, thus avoiding any type of calculation on the
waveforms.

Expressed formally, a representation is sought for each of the signals in the set {s;(t) : i =
0,---,M — 1} of the form

?

si(t) = a; ;j¢;(t),

<.
I
o

where {¢;(t) :4=0,--- ,N —1} are the orthonormal basis elements, and {a;; : j =0,--- ,N —1}
are the coordinates of the signal s;(¢) in that basis, which are grouped in the vector a;. Thus, the
symbols a; correspond to the coordinates of s;(t).

If the basis for the first set of signals is obtained, it can be verified that
so(t) = VT (1), s1(t) = —VTo(t),
where ¢o(t) = so(t)/v/T, which is plotted in Figure m

The basis has a single element, ¢q(t), for a very simple reason: since s1(t) = —so(t), a change
in the sign of the coordinate for so(t) is enough to generate s1(¢). The amplitude of ¢g(¢) is taken
from the orthonormality condition, normalization of the energy ( ffooo ®3(t) dt = 1). Now it is easy
to calculate the distance between the signals and their energy

d(so(t),s1(t)) = d(ag, a1) \/ a0 — a10)* = \/ ))2 = 2VT.

The energy per symbol is

B, = BIE(s()}] = Blé{a)] = pa(ao)ado + palar)ady = 5T+ 5T =T,
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Figure 3.16: Orthogonalization for the first set of signals.

The result, of course, is the same that was previously obtained by calculating on the waveforms.

For the second set of signals, the basis and coordinates are shown in Figure [3.17]

1 ﬁbO(t) ) 2T .
TV a a9
| | P \
I | | * | ?
_vl*f . 2T /T 0 +VT 42T
T

Figure 3.17: Orthogonalization for the second set of signals.

If we compare it with the result for the first set, we can see that the unique element of the basis
is the same signal. The distance between signals to be maintained, so that in the face of noise it
would behave the same as the first set. However, the average energy of the constellation increases

1
E, = El&{a;}] = pa(ag)ad o + pa(ai)aly = §4T = 2T.

The orthogonalization of the third set is shown in Figure |3.18, This constellation is the same
one that was obtained for the first set, but now the single element of the basis is different: a
sinusoid with a cycle in T" seconds, instead of a rectangle of duration 7" seconds.

(;b(](t) p) 2ﬁ N
AN . B
S ¢ ° - %o
-V ‘L \/ —2VT VT 0 +VT  42VT

Figure 3.18: Orthogonalization for the third set of signals.

Finally, the orthogonalization of the fourth set is shown in Figure|3.19, Unlike the previous sets,
two elements appear in the basis of the vector space. If previously the symbols of the constellation
ag and a; could be interpreted as points on a line, now they are interpreted as points on a plane
whose axes represent the coordinates on ¢g(t) and ¢;(t). The symbols ay and a; are now expressed
as 2-dimensional vectors whose values are

o K i R B P R
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+/3 + +/%

1 t

Figure 3.19: Orthogonalization for the fourth set of signals.

Now the distance is calculated as the distance on the plane, that is
d(so(t), 51(t)) =d(ag, a1) = [|ag — a||
:\/(ao,o —a10)* + (a1 — a1,1)?

—\/(V2T)? + (—vaT)2 = 2VT.

And the average energy per symbol is

E, =E[{a;}] = E[[|a]*]

=pa(ao)|laol|* + pa(ar)||ay||?
:pA<aO)(a8,0 + GSJ) + pA(al)(aio + a%,l)
1

1
=27+ 27 = 2T.
2 * 2

»

If the first set and the third set are compared, it is observed that the basis is different but the
constellation is the same. If the constellation is the same, the distances and the average energy
of the constellation, or average energy per symbol, are identical. From this fact we can draw a
conclusion: the choice of the basis, {¢;(t) | j =0,---, N — 1}, does not affect the performance or
the energy. In fact, performance and energy are defined by the constellation.

For this example, the best compromise between performance and energy is obtained with sets 1
and 3, since they share a constellation, so the difference (distance) between signals and the energy
of each signal is the same. When will it be more appropriate to use set 1, and when set 37 What
does the choice of one or the other orthonormal basis depend on? To answer this question, it
is necessary to consider what changes when choosing between one or another orthonormal basis.
What is modified is the shape of the signals, in the time domain (seen in Figure and in
the frequency domain. The frequency response for the four sets, which depends on the Fourier
transform of the basis functions, is shown in Figure [3.20]

It can be seen that the signals of sets 1 and 2 have their frequency response centered at 0 Hz,
so they are signals appropriate to transmit over channels with “good response” at low frequencies.
The signals of sets 3 and 4 have their frequency response centered on w = 2?“ rad/s, so they
are appropriate signals to transmit over channels with “good response” around the frequency 2%
radians/s. In other words, the choice of the orthonormal basis depends on the characteristics of

the channel.

This conclusion is not specific to these 4 signal sets, but it is rather a general conclusion for the
transmitter design. In a situation where the goal is to design the transmitter from scratch, the
constellation and the basis are designed almost independently:

OCW Universidad Carlos I1I de Madrid 161 Marcelino Léazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

e Set 1 and Set 2

[Si (5w
i i -
_zm 0 +2z w (rad/s)

e Set 3 and Set 4
A

[Si(jw)l
i i -
L 0 +2z w (rad/s)

Figure 3.20: Frequency response of the signals of the four sets proposed in the example.

e The constellation according to performance and energy criteria.

e The elements of the basis attending to the behavior of the communications channel (trying
that the physical channel behaves like the Gaussian channel).

The geometric interpretation of the signals is derived from the vector space structure of signals,
and more specifically from the definition of the inner product in this vector space. With this
geometric interpretation, the energy of a particular symbol is the squared norm of the vector
E; = ||ag*.

The validity of everything raised and discussed above is not restricted to this set of signals, but
can be applied to the general case of a constellation of M symbols {a; | ¢ =0,--- , M — 1} and
an orthonormal basis of N signals {¢;(t) | 7 = 0,---,N — 1} that generate the set of signals
{si(t)|i=10,---, M — 1}. In general:

e The constellation is designed looking for a trade-off between getting a maximum separation
between the symbols, and at the same time having an average energy per symbol, or energy
of the constellation, within the limits of the system.

— The choice of the basis is irrelevant in terms of performance and energy.
e The basis is chosen to be suitable for the channel, taking into account its response.
— The choice of the constellation has no relevance on the adequacy of the signals to the

channel.

This allows the design of the constellation to be decoupled from the design of the orthonormal
basis that defines the signal space (corresponding to the encoder design and the modulator design,
respectively).
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Next, each of the 4 functional elements of the communication model illustrated in Figure [3.14]
will be analyzed individually. The analysis will start with the receiver and will end with the
transmitter.

3.4 Demodulator

The demodulator is the first functional element of the receiver (see Fig. [3.14). This element
converts the received signal r(t) into a discrete sequence q[n] of vectors of dimension N, as
illustrated in Figure [3.21]

rt)  al

Signal |__Pemodulator [y iors

Figure 3.21: Demodulator of a digital communications system.

The sequence q[n] contains the vector representation of the received signal r(¢) into the vector
space defined by the orthonormal basis of dimension N

{¢O(t)7 ¢1(t)7 T ¢N—1(t)}'

It is therefore a sequence of N-dimensional vectors

dqN-1 [n]

Specifically, the received signal is processed by symbol intervals, and at the discrete instant n, the
sequence q[n] contains the vector representation of the piece of the received signal in the symbol
interval associated with that instant, that is, in nT <t < (n+ 1)T":

N-1

q[n] = projection of r(t) in nT" < ¢ < (n+ 1)T through {¢;(¢)},_,

The projection of a signal over an element of the basis, ¢(t), is obtained by using the inner
product. Since the signals that form the basis have by definition their support in the interval
0 <t < T, to make the inner product of the fragment of the signal r(¢) in the symbol interval of
index n, in nT < t < (n+ 1)T, is equivalent to the inner product of r(t) with the signal ¢(t)
delayed nT seconds. Therefore, the k-th coordinate of vector q[n| can be obtained as

(n+1)T

r() ¢3(t — nT) dt = / r(t) &(t — nT) dt.

nT

o0

auli) = (r0), on(e = ) = [
The conjugate operator is only relevant for complex signals. In this subject only real signals will
be considered, although for completeness in the notation the possibility of working with complex
signals will be included?l Therefore, for the implementation of a demodulator, some kind of
structure capable of obtaining N inner products is needed. Here we will study two equivalent
structures to carry out this task:

2There are no complex electromagnetic signals, but in some cases the complex notation is used for the simul-
taneous handling of two real signals, one contained in the real part and the other in the imaginary part of the
analytical signal.

OCW Universidad Carlos I1I de Madrid 163 Marcelino Léazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

1. Based on correlators.

2. Based on matched filters.

3.4.1 Demodulation by correlation

The idea of the demodulator by correlation is to use the structure that comes from the direct
implementation of the inner product operation

(n+1)T

qr = (r(t), op(t — nT)) = / r(t) oy (t — nT)dt.

nT

Therefore, the demodulator has the structure shown in Figure [3.22]

¢n_1(t —nT)

Correlators

Figure 3.22: Structure of the demodulator by correlation.

The vector notation that we are using may give the impression of an excessively complex demod-
ulator structure for its implementation in hardware. However, when we particularize the structure
in practical systems, the structure is generally not very complex. For example, for the four sets of
signals in the example of Section [3.3.1] the structure is very simple. For the first two sets, where
the basis function takes a constant value over the entire symbol interval, the demodulator reduces
to a scaling of the received signal and an integration over the symbol interval, as shown in Figure
a). For the third set, the demodulator multiplies the received signal by a sinusoidal signal
(in hardware, an oscillator) and integrates the product into the symbol interval (Figure b)).
For the fourth set of signals, the received signal must be multiplied by two sinusoidal components
in quadrature (a sine and a cosine, which can be obtained in hardware with an oscillator and a
90 degrees phase shifter) and two integrators (Figure c)).
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(1) o) ol

Q [y o dt

(a) Sets 1, 2

r(t) (X) [E+0T § gy qoln]

nT

%sin(%’rt) \/gcos (?‘T"t)

(b) Set 3 (c) Set 4

fn(;"'l)T ° dt

REMARK: sin (%¢) = sin (% (t — nT))

Figure 3.23: Demodulator structure for the four sets of signals analyzed; a) first two sets, b) third
set, ¢) fourth set.

3.4.2 The matched filter

Another possibility for the receiver design is the use of matched filters. In some cases, this option
offers a more efficient alternative for the hardware implementation of the demodulator, depending
on the shape of the basis functions that define the signal space of the system.

If the signal received at the input of the receiver, r(t), is filtered with a certain filter, with
impulse response hy(t), its output is

o0

yr(t) = r(t) * hi(t) = / (1) hi(t — 7) dr.

—00

We are going to see that through a filtering process it is possible to implement the inner product
operation that the receiver requires. Remember that we are looking for a structure to obtain

(n+1)T

gl = (r(t), bt — nT)) = / F(£)65(t — nT) dt. (3.1)

nT

If the two previous expressions are compared, for y,(¢) and gx[n], respectively, it is observed that
in the second one ¢j(t) appears instead of hi(t), a complex conjugate, that in the first one it
integrates over 7 while in the second one it integrates over ¢, and that the sign on the integration
variable is negative in the response of the filter. If hy(t) = ¢*(—t) is chosen, the expression for
Yk (t) becomes
wlt) = [ 1) 6i(~(t =) ar

If it is compared with the analytical expression for gx[n], Eq. (3.1), and taking into account that
—(t — 7) can be written as (7 — t)

yr(t) = /_OO r(7) ¢p(T —t) dr,

[e.9]
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we see that the two expressions are equal if the value ¢ = nT is taken. So if the signal at the
ourput of the filter, yx (), is sampled at t = nT
(n+1)T

wint) = [ " rr) di(r —nT) dr = [ ) ot —ur) dr = il

00 nT

that is, the inner product of the received signal with ¢ (¢) in the symbol interval of index n.

In general, a filter with impulse response h(t) = x*(—t) is said to be the matched filter to the
signal x(t). So the demodulator can be implemented using a bank of N matched filters, matched
to the elements of the basis ¢y (t), with response hy(t) = ¢} (—t), and sampling at ¢t = nT (at the
beginning of the symbol interval), as shown in Figure m

qo[n]

Matched Filters

Figure 3.24: Demodulator structure based on matched filters.

For the practical implementation of this structure, it is necessary to note that the matched
filters are anticausal: since ¢y (t) has by definition 0 < ¢ < T" as support, ¢} (—t) has as support
—T <t > 0. In order to have an equivalent causal implementation, the response ¢*(—t) must be
delayed T" seconds, and the response is ¢*(T'—t). In this case, the output of the filter is delayed by
the same amount and it is necessary to sample at ¢t = (n+ 1)T', at the end of the symbol interval,
as shown in Figure [3.25] In this way, we have the same as with the anticausal filter sampling at
t =nT, at the beginning of the symbol interval.

Analytically, shifting ¢;(—t) T seconds means having ¢5(—(t —T')) = ¢;(T —t). The output of
that shifted filter, denoted y/ () is then

0 =05 6T =0 = [ 1) 6T - - dr= [ o) (T 47 1) dr

o0 —00

Sampling at ¢t = (n 4+ 1)T" we have

(e o]

gl ((n+ 1)T) = / r(7) $(r — nT)) dr = y(nT) = geln].

—0o0
This causal structure provides exactly the same result as the one that uses anticausal filters. For
the implementation, obviously the structure with causal filters must be used, but since both are
analytically equivalent, to make calculations the anticausal matched filters can be used, for ease
of notation.
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Matched Filters (Causal)

Figure 3.25: Demodulator structure based on causal matched filters.
Properties of the matched filter

The matched filter provides an alternative structure for the implementation of the inner product
operations that the demodulator must carry out. Moreover, this structure allows to analyze in a
simple way some of the properties of the demodulator.

Maximum signal to noise ratio This is surely the most important property. In order to
demonstrate this property, the following general case is analyzed: a known signal s(t), to which
noise is added, is filtered, the filter has impulse response h(t), and the output of this filter is
evaluated at ¢ = 0.. The model for the additive noise is the usual statistical model for thermal
noise: stationary, ergodic, white, Gaussian random process, with zero mean and power spectral
density, and autocorrelation function, respectively
N, N
70, R.(7) = —0(5(7').
This general case is represented by the scheme that is shown in Fig. (3

s(1) D ( q(1) r

\T

n(r)

Sn(ﬂ”) =

Figure 3.26: Model for the derivation of the maximum signal-to-noise ratio property of the matched
filter.

We are going to look for the filter that provides the maximum signal-to-noise ratio at its sampled
output, ¢, defined as

(S) _ Energy in g associated to s(t)
N

~ Energy in ¢ associated to n(t)’

OCW Universidad Carlos I1I de Madrid 167 Marcelino Léazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

To simplify the notation, the case of real signals is considered, although the results are trivially
extended to the case of complex signals. The output of the filter, ¢(¢), is defined as

q(t) =(s(t) +n(t)) x h(t) = s(t) * h(t) + n(t) * h(t)
/_ s(t) h(t —7) dr + n(r) h(t — 1) dr.

o0 —00

The value at t =0 is

q=q(0)= /_OO s(1) h(—7) dr + /_OO n(t) h(—7) dr = s+ n.

oo o0

The signal-to-noise ratio of the output is defined as
(5) - Ellsf) _ |s?
N/, Elnl]  En?

since the term s is deterministic if the signal s(¢) is known

B {15 =1sf = | [ sty =) ar

The value for E[|n|?] is obtained as

E ] =E K / " n(r) h(—7) dT> ( /_ :O n(6) h(—0) d@)]

/+OO /+OO n(0)] h(—7) h(—0) dr df

Ry (T—0)

/m /+OO No s~ 0) h(—r) h(—0) dr do

Ry (17— 9)

+00 oo
Z% /OO ()2 dr = % /OO |h(7)|? dr = % E{n(t)}

In this expressions, the property of the integral of the product of a delta and a function has been
applied.

2
(deterministic value)

—+00

f(z) 6(x — xo) dx = f(x0).

—00
It can be seen that the energy of the noise component only depends on the energy of the filter.
Substituting this result in the expression for the signal-to-noise ratio, we have

2
(S) Bk ’f_OOS(T) h(—7) dr
N/, ElnP] FE{()}
In order to find the maximum of this signal-to-noise ratio with respect to the impulse response
of the filter, h(t), the following reasoning is going to be done: it is assumed that the energy of
h(t) is constant, and the maximum of the relation (S/N), with respect to h(t) is sought; if that

maximum does not depend on E{A(t)} we will have the maximum for any value of E{h(t)} and,
therefore, the maximum that are we searching for.
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If £{h(t)} is assumed constant, the maximum of the signal-to-noise ratio is limited to computing
the maximum of the numerator. If we particularize the Cauchy-Schwarz inequality (see Section
3.2.2)) for the signals s(t) and h(—t), and squaring each of the terms of the inequality

o ([ stzar) ([~ menpar).

The equality, and thus the maximum, occurs when h(—t) = a x s(t) for some value of the constant
a. Introducing this result, we get

‘/::3(7') h(—7) dr

max
h(t)

(E) _ (fi’Zos(T)h(—T)afT)2
NJ, Nog{h(t)}
h(—t)=as(t)

(stnpar) (02 72, s ar)
e {s(0)}

2
:ES{S(t)}.

Two conclusions can be drawn from this result:

1. The signal-to-noise ratio becomes maximum when h(t) = as(—t) for any value of a (except
a = 0) and, particularly, for the matched filter

For complex signals, the same conclusion can be trivially reached for

h(t) = s*(—t).

2. The signal-to-noise ratio at the output of the matched filter does not depend on the specific
shape of s(t), but only on its energy and on the power spectral density of the additive noise
term.

This proof for a generic signal can be applied to the set of M signals, {s;(t) |i=0,---, M —1},
of a digital transmitter, and to the basis for these signals, {¢;(t) | i =0,--- , M — 1}, which shows
that the matched filter-based demodulator structure (or its correlation equivalent) is the structure
that allows to obtain the maximum signal-to-noise ratio in each component of the vector q[n].

3.4.3 Statistical characterization of the demodulator output in the
case of transmission on a Gaussian channel

Once the structures that can be used for the implementation of the demodulator have been
seen, then the statistical characterization of the sequence of observations q[n] will be carried
out. In particular, the case of signal transmission over a Gaussian channel will be considered:
The transmitted signal does not suffer any linear distortion (which implies assuming that the
orthonormal basis is perfectly adapted to the channel response), and the only distortion is due to
the additive noise. Therefore, the received signal is

r(t) = s(t) + n(t).
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For ease of notation, we consider the first discrete instant, n = 0, and the dependency on the
discrete time index n will be omitted. The objective is to obtain the statistical model of the
observation q when the symbol that has been transmitted is known, which in general is assumed
to be the i-th symbol, i.e. A = A[0] = a;. This means that in the symbol interval of interest, the
first one, 0 <t < T, the transmitted signal is

s(t) = si(t) = a;; X ¢;(t).

Now, the demodulator output under this situation is analyzed. Introducing the analytical expres-
sion of r(t) to obtain the k-th coordinate, g, we have

gk ={r (), du(t)) = / F(t) Gi(t) dt = / (s(t) + (1)) G (t) dt

—/O (Z_ i ¢j(t)> ¢r(t) dt +/0 n(t) ¢ (t) dt

(N J/
-

2k

N—

:Z J/ ¢j ) OR(t) dt + 25 = Zaz] ]_k]+zk—azk+zk

7=0

It has been taken into account in the development that the elements of the basis are orthonormal,
which analytically implies that

0,0 00 = [ 6,0 0100 {1, ST

In this case a; is k-th coordinate of the symbol a; and z; is the contribution of the Gaussian
noise to that coordinate. All the components (coordinates) of q can be expressed together using
vector notation as

;.0 20
Qi1 21
q= ) + ) =a; + 2.
i N—1 ZN-1

This expression can be generalized for any discrete time instant as
q[n] = Aln] + z[n].

The vector component, a;, is deterministic (the assumption is that the transmitted symbol is
known).The components of the noise vector are considered as a random variables. Since n(t)
is Gaussian, each component is Gaussian. The vector with the noise coordinates is therefore
composed of N jointly Gaussian random variables. To characterize them, it is necessary to find
their joint probability density function, which in the case of jointly Gaussian variables is defined
by its vector of means and its covariance matrix. The mean of the k-th component is

m = Blad = B[ [ 0 ar] = [ B o5 i =0
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since n(t) has zero mean. Next, the covariance matrix is calculated. Taking into account that all
the components have zero mean, the covariance between two of the components is

Cov(zj, z) =E|z; 2{] = E K /0 : n(t) ¢j(t) dt) ( /O ' n*(1) é(7) dr)l
// Eln(t) n'(1)] 63(0) du(r) dt dr

Ry(t—7 :TO o(t—7)

/ /T No 5 ¢;(t) o (7) dt dr

]%/¢ ) oult) di = 20 5 — ]

Therefore, the covariance between two different coordinates is zero, and the covariance of a coor-
dinate with itself (variance) is

2 _ Mo

Zk 2 ‘

This means that the random variables that model each of the elements of the noise vector are
uncorrelated, which for Gaussian random variables is equivalent to saying that they are indepen-
dent. Thus, the covariance matrix is a diagonal matrix with the variance of each component on
the main diagonal. In light of these results, it can be concluded that the /N noise components are
uncorrelated (independent) Gaussian random variables with zero mean and variance Ny/2. Since
a Gaussian random variable is uniquely determined from its mean and its variance, the probability
density function of each component z; is

NO 1 Z%
fzk(zk) = ./\/ (0, 7) = 71'—]\[06 No

and as under Gaussian statistics uncorrelation implies independence, the joint probability density
function of z is obtained by the product of the distributions of each of the components of the

vector
N—1

fa(z) = H fa(z) = W@ k=0 No = W@ No,

k=0
N (o No
fa(z) =N (0, 7) :

or equivalently

Once the PDF of the noise vector is obtained, it is easy to obtain the conditional distribution of
the observation q. The probability density function of q when the transmitted symbol is known,
A = a;, is a conditional distribution: distribution of g, given that the transmitted symbol is
A = a;. For each of the components of the vector q, ¢, there is also a conditional distribution:
distribution of g given than the transmitted symbol is A = a;. In this case, g = a; + 21 is a
random variable formed by the sum of a deterministic constant a;; and a random variable, zj.
Therefore, it has the same type of distribution as z; but with the mean modified by adding the
constant value, a;j, to the mean of z;, which in this case is zero. Thus, the distribution is a
Gaussian distribution, with mean equal to the k-th coordinate of the transmitted symbol, a;,
and variance Ny/2

e = (& No
2

Ny 1 (ap—agp)?
7TNO .

mmmszQm,
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Because of the conditional independence, the joint conditional probability density function of the
vector q given A = a; is obtained by the product of the conditional distributions of each of the
vector components

N—-1 9
1 _y N gk eip)”
faia(ala;) = kUO Sariae (el ai) = 7 Ng N E° R0 — N

1 _lla=ayl?
—¢ N
(7TN0)N/2
The conditional distribution of the observation vector, given a transmitted symbol, is an N dimen-

sional Gaussian distribution, with independent components, with the mean equal to the transmit-
ted symbol and variance Ny/2 in each of the N directions of the space

faa(ala) =N (a5 ).

In the analysis of the demodulator we have started from the idea of recovering the coordinates of
the received signal over the basis of the signal space of the transmitter. However, we have not ana-
lyzed if this observation contains all the relevant information to make the decision about the symbol
that was transmitted. The answer to this question is that q contains all the relevant information
to decide which symbol was transmitted. Strictly speaking, the vector q is said to be a sufficient
statistic for detection. The demo can be found, for example at [Artés-Rodriguez et al., 2007].

3.4.4 Equivalent discrete channel

Some of the conclusions obtained from the analysis of the digital communication model are the
following:

1. The reliability of a communication scheme, regarding the modulation process, is given by
the characteristics of the signal constellation and not by the elements of the basis that is
used in the modulation process.

2. The signal-to-noise ratio does not depend on the paritcular form of the elements of the bass,
but on the energy of the signals and the power spectral density of the noise (and equivalently,
on the noise power).

3. The output of the demodulator is a vector q that takes the form q = A + z, where A is the
transmitted symbol and z is a noise component with a jointly Gaussian probability density
function.

These conclusions allow us to obtain a simplification of the general model of a communication
system. The modulator, channel and demodulator can be grouped into a single element that is
called the equivalent discrete channel. This model, which is represented in Fig. [3.27] is useful in
analysis of the detecto, because it allows us to “hide” the analog nature of the channel and focus
on the aspects that influence the reliability of the communication.

The equivalent discrete channel is in general vector, with the dimension given by the signal space
of the system, N. The input-output relationship, for a Gaussian channel transmission model, is
given by

qln] = A[n] + z[n],
as represented in Figure [3.2§]
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Figure 3.27: Definition of equivalent discrete channel.
ai,o do
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Figure 3.28: Relationships between transmitter and receiver vector representations given by the
equivalent discrete channel, when the symbol A[n] = a; is transmitted over a Gaussian channel.

3.5 Detector

The detector is the final element of a digital demodulator, see Fig. [3.14] and its function is to
provide the estimate of the symbol that has been transmitted at an instant n, B[n], based on the
vector representation of the signal received in the symbol interval associated with this instant, q[n],
as illustrated in Figure With this estimate, there is an implicit estimate of the transmitted
bits, B, [], due to the identification of each symbol, b;, with an specific m-bit tuple.

etector
Vectors Symbols

Figure 3.29: Detector in a digital communications system.
Given its function, it is a determining element for system performance, parameterized by the

probability of error, defined at the symbol level or at the bit level. Therefore, the detector is
designed according to the following criterion: to minimize the symbol error rate.

3.5.1 Detector Design - Decision Regions

Since q[n] is a sufficient statistic for the detection of A[n] (and thus B[n]), the decision will be
made symbol-by-symbol, without memory. For each time instant n, Bln| is decided from q[n],
always applying the same rule, since the statistics of q[n] are time invariant.
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Given that the alphabet of symbols has M possible values

B[?’L] € {b0>b17"' 7bM71}>

the design of the detector consists in establishing for each possible value of q[n], which value of
the alphabet, out of the possible M, is decided. In another way, establish what are the possible
values of g[n] that will lead to the decision of each of the M possible values of B[n]. The way to
set those values is by defining what are called decision regions. The domain of q[n] will be splitted
into M disjoint regions that form a partition of the space of q[n]

{[Oajla e 7IM—1}-

Each region is associated with one symbol, identifying the association through the subindex (I} is
associated with b;). Once the regions are defined, in view of an observation q[n], the decision is
B[n] = by when the observation is in the decision region of by, i.e., when q[n| € I

Given q[n] = qo, B[n] = by, if qo € 1.
That is why they are called decision regions.

The design of the detector is stated as the problem of establishing the M decision regions that
minimize the symbol error rate.

3.5.2 Obtaining the optimal detector

The rules or criteria to optimally establish the decision regions must minimize the symbol error
rate. For ease of notation, the dependence on the time index is ignored

A ~

B = B[n], q = q[n].

When q takes a given value qp, the detector makes a decision about the transmitted symbol, for ex-
ample B = b;. The error probability associated to that decision is denoted as P.(q = qo — B=b, i),
and it is

Pe(q =qo — B= bi) = P(B # bi|q = QO) =1- P(B = bilq = QO> =1 _pB\q(bi|q0>'

The error probability of such a decision, B = b;, from an observation, q = qq, is equal to the
probability of a different transmitted symbol, Bln| # b;, given this observation. The conditional
distribution pp|q(bi|qo) is called the posterior probability of the symbol b;.

If the detector always made the same decision, B = bi, regardless of the observation value q,
the mean error probability, which will be denoted as P.(B = b;,Vq), is obtained by calculating
the average over the set of all possible values of the observation q, which is statistically the
mathematical expectation under the distribution of q

oo

Pe(B = an(l) :Efq(qo) [Pe<q =qo — B= bz)] = /_ [1 - pB|q(bi|CI0)} fq(QO) dqo

/ Fala) dap — / Pia(ilo) fala) deo

- / prialbildo) faldo) dao.
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When the detector makes different decisions when the observation q takes values in each one of
the M decision regions, the error probability of the system, taking into account that these are
disjoint regions that form a partition of the domain of q, is

M-1
Pe=1- Z / Pala(bildo) fq(ao) dao.
i=0 Y 1i
To find the minimum of this expression, the following must be taken into account:

e The minimum is obtained when the second term is maximized.

e The function within the integrals of this term, ppjq(bildo)fq(do), is always greater than or
equal to zero because it is the product of non-negative functions (0 < ppq(bilqo) < 1,
0 < fq(qo) < 1). This implies that the error probability is minimized when this argument
is maximized.

e f4(qo) is independent of the decision. Therefore, the maximum of the summation is obtained
when the value of ppjq(b;|qo) is maximized in each of the decision regions.

e Consequently, the decision region I;, for which the decision is B= b;, is the one satisfying:

pB\q(bi|qO) > pB|q(bj|q0)a Vj#i.

In other words, given an observation q = qg, the detector must calculate the set of posterior
probabilities {ppjq(bjlao) | j = 0,---, M — 1} and the decision is the symbol b; that maximizes
the posterior probability. In the case in which two different symbols b;, by, obtain the maximum
value, that is to say

PBla(bildo) = pBiq(bk|do) > PBiq(bjldo), V J F#i,k,
the decision can be any of them, arbitrarily, and the choice does not affect the error probability.

This criterion is known as mazimum a posteriori or MAP (from “Mazimum A Posteriori”). Its
name comes from the denomination of pp|q(bi|do) as posterior probabilities of B given q, since
it represents the probability of the symbols once the transmission has been made, instead of the
probabilities a priori pg(b;). Figure shows an example of how these posterior probabilities
could be for a constellation of 4 symbols in a one-dimensional space. It can be verified that for
each possible observation value ¢, the sum of the four posterior probabilities is one.

In order to obtain the decision regions, it is necessary to look for the symbol having the maximum
poterior probability for each value of g. The maximum posterior probability value, for each possible
observation value, is highlighted in black in Figure The decision region of a symbol is formed
by the set of observation values for which the posterior probability of that symbol is the largest
one. The decision region of by (or of ag), is the set of points for which pgiq(bo|q) is greater than
the posterior probabilities of the other 3 symbols; the decision region of b; (or of a;), is the set of
points for which ppq(b1]q) is greater than the posterior probabilities of the other 3 symbols, and
so on. The figure illustrates this way of obtaining the decision regions.

The analytical expression of the posterior probabilities can be obtained by means of Bayes’ rule

pB(b;) fqB(dolb;)
fq(QO) '
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Figure 3.30: An example of the posterior probabilities for a 4-symbol constellation in one-
dimensional space.

PBlq(bolq) PBlq(b3]q)
1 —
i PBlq(b1lq)
0.5
0 < o———@ \L 4
ag ai az
IO Il ]:;

Figure 3.31: Obtaining the decision regions using the maximum a posteriori criterion for an
example: a 4-ary constellation in a one-dimensional space.
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Considering that B = b; implies that A = a; and vice versa,

faB(aolb;) = fqalaolay).

Replacing this distribution into the expression for the posterior probabilities, the MAP criterion
is reduced to finding the symbol b; that satisfies

pr(bi) fqalqola:) - p5(b;) fqaldolay)
fq(QO) fq(qo)

Since fq(qp) is a non-negative quantity independent of the decision, this condition is equivalent
to

:O7aM_1’j7éZ

pB(bi) fqa(aola)) > pe(b;) fqalaola;) j=0,---,M—1, j#1i,

or, equivalently

pal(ai) fqalaola:) > pa(a)) fgalaola;) 5=0,--- M -1, j#i.

Below is an example that illustrates the application of this criterion under the conditions analyzed
in Section|3.4.3] i.e. transmission over a Gaussian channel. Recall that in that case the conditional
distributions of the observation were Gaussian, of the dimension of the signal space N, mean equal
to the transmitted symbol and variance Ny/2 in all directions of the space

Faa(ala) =A™ (2, 52).

Example

A binary system (M = 2) employing a one-dimensional signal space (N = 1) is considered.
In this case both A and q are scalars, and the symbol probabilities are pp(b;) = % and
pp(bo) = 1. That is, the symbol by is twice as likely. Figure plots pp(b1) fqa(dlal) y
pB(bo) fqa(alao), when the distribution of a conditional on each symbol is Gaussian with

the mean of the transmitted symbol and variance Ny /2.

Pa(a0) fya(dalao) pa(a1) fya(qlar)

T i } 1 q
ap + a, Ny In pAang
pa
=2t T Ba g (oo,q), 1= ac0)

Figure 3.32: Application of the MAP criterion with non-equiprobable symbols.
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The decision regions are given by the threshold q,, the point where the curves intersect

fpa(ao) fqal(aulao) = fpa(ar)fqa(qular),

and therefore ¢, is

pa(ao)
o _ 20t No In i@
“ 2 2 (al—ao)'

If the value q = qg in the receiver is greater than q,, then
pB(bo) fqalqolao) > pp(b1) fqalaolar),
so such points will be part of the decision region Iy, while if it is less than qy,
pB(b1) fqa(aolar) > ps(bo) fqa(dolao),
so such points will be part of the decision region I;. Therefore, the decision regions are
Iy = (Qu, 0)
I = (=00, qu)

The areas that are highligted in the figure (in blue and red) define the symbol error rate

P, = palao) / fua(alao) dg + palar) / foa(alas) da,

as it will be shown later (see Section |3.5.3). Taking this into account, it is possible to see
that these are the optimal decision regions, because if the decision threshold is modified, this
error probability increases, as shown in Figure |3.33

pa(ag) fq1a(qlao) pa(ar) fya(qla;)

T T 1 T q
yi aO (\15 al LN
pa(ao) fqa(qlao)
- bt q
yl ao glj al \
hY) IO N\ Il r

Figure 3.33: MAP criterion as the optimal decision with non-equiprobable symbols.
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In many systems, all symbols are transmitted with the same probability. Under the equiprobable
symbols hypothesis, pg(b;) = 1/M, the a priori probabilities of the symbols become irrelevant in
the comparison, so the decision rule for an observation value q = qg reduces to finding the symbol
b; that satisfies

faa(aolai) > fgalaola;) Jj=0,--- M —1, j#1,
that is, the symbol that maximizes the conditional distribution of the observation, fga(dola;).
This particularization of the MAP criterion for equiprobable symbols is called the mazimum
likelihood criterion or ML criterion (from “Mazimum Likelihood”). The name comes from the
function fq a(qola;) itself, called the likelihood function since it represents a measure of certainty
or likelihood that the true hypothesis is that the transmitted symbol was a; given that q = qqg.

Example

The same binary system (M = 2) is considered in a one-dimensional signal space (N = 1)
of the previous example, but in this case with equiprobable symbols. The figure [3.34] shows
the curves of pp(b1) fqa(alar) and pp(bo) fq a(dlao) respectively. Now, eliminating the a
priori probabilities of each symbol in the comparison does not modify the representation by
more than one scale factor, since the symbols are equiprobable pp(by) = pp(b1).

Jaja(d|ao) faja(glar)
f I f q
yi aO (\lg al \
h) IO [4) Il 4
a +a
q. = T: Iy = (_Oogqu); I, = [qu,OO)

Figure 3.34: Application of the MAP criterion with equiprobable symbols, in which case it is
specified in the maximum likelihood (ML) criterion.

If q = qq is lower than q,, then

p5(bo) fqa(dolao) > pa(b1) fqalaolal),
or, equivalently
fqa(aolao) > fqa(aolar),

so such points will be part of the decision region Iy. If the observation is higher than q

pB(b1) fqa(dolar) > pp(bo) fqa(dolao),

or, equivalently
faia(aolai) > fqa(qolao),

so such points will be part of the decision region I;. This leads us to see that the decision
regions are

Io = (q1,00)
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and
Il = (—OO, Q1)-
Intuitively, it can be seen that in this case, since both Gaussian functions have the same
variance and scale factor, the threshold is the midpoint between their means
ap + a;
qQu = 9

When the signal space is one-dimensional, as in the two examples seen above, the values that
separate the decision regions are often called decision thresholds. If the signal space is multidi-
mensional, the curves (N = 2) or surfaces that separate the decision regions are called decision
boundaries. In the two previous examples the decision threshold is q,. It is the midpoint between
the symbols ag and aj, in the second example, when the symbols are equiprobable. It can be seen
that when the symbols are not transmitted with the same probability, the optimal detector tends
to increase the decision region of the symbols that are transmitted with the highest probability,
which seems quite intuitively reasonable (as well as being supported by the relevant analytical
developments). By modifying the a priori probabilities to make the symbol b; more likely, the
threshold has been moved from 2F2L increasing the decision region of the most likely symbol.

Finally, the decision rule for the ML criterion (or MAP with equiprobable symbols) will be
specified for the case in which the conditional distributions of the observation are Gaussian, as
in the case seen in Section [3.4.3] Introducing the probability density function at the input of
the receiver in the formulation of the ML decision maker, it is obtained that the decision for an
observation q = qg will be the symbol b; (or equivalently qo belongs to I; ) if it is fulfilled

1 _HqOZ;aiH2 1 llag—ayl? » . .
<7TN0)N/26 ~ (ﬂ'No)N/?e j=0, M1, j#i.
Multiplying both terms of the inequality by (7 Ny)™¥/? gives
_ llag—a;|1? llag—a;l?
e M >e M j=0,--- M—1, j#1.

Bearing in mind that the exponential function is a monotonic increasing function and, therefore,
satisfies
e >eb e a >,

the above expression is equivalent to

|lao — ail? llao — a;]|? » Sy
—_— > =0,---,M—1, i,
No No J J#
and multiplying by Ny and taking into account the negative sign, we arrive at the condition
lao — aill* <[lao —ayl*  j=0,-- M—1,j#i

Applying the definition of the norm of a vector

N-1
qu — aZ.HQ = Z ’qo,k - ai,k’2 = ’d(QO,ai)F-
k=0

Therefore, it is finally established that the decision rule is limited to choosing the closest symbol
to the observation vector q = qg. Alternatively, it can be said that the decision region of a symbol,
I;, will be formed by all points in the space of q that are closer to the symbol, a;, than to any
other symbol of the constellation. A scheme illustrating the decision maker resulting from this
criterion, called minimum Euclidean distance criterion, is shown in Figure [3.35

At this point it is necessary to make the following clarifications:

OCW Universidad Carlos I1I de Madrid 180 Marcelino Lazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

Figure 3.35: Structure of the minimum Euclidean distance detector.

e This last development that has led us to formulate the ML decider as a Fuclidean minimum
distance decider is based on a Gaussian pdf at the input of the decider, and this Gaussian
pdf is given by the nature of the noise thermal usually present in communication channels.
When the noise that appears in the channel does not have a Gaussian distribution, as it
happens for example in some communication systems based on fiber optics, the development
of the optimal decider will lead to different decision rules.

e The definition of dot product that was adopted in Section [3.2.2] is not the only possible
one, and was adopted at the time without strict justification. This definition means that the
distance measure on the resulting Hilbert space is the Euclidean distance. Now it is possible
to justify that in the case of Gaussian statistics for noise, this definition is convenient since
it allows us to considerably simplify the decision rule for the case of equiprobable symbols,
which on the other hand is the most frequent case in digital communication systems.

3.5.3 Calculation of error probabilities

In the previous section, the design rules of a detector have been obtained. These rules allow obtain-
ing the lowest error probability. In this section we will study how to evaluate the error probability
in different types of systems. In a communication system the performance is determined by the
transmitted constellation (together with the transmission probability for each symbol), and it is
independent of the orthonormal basis that defines the signal space, as long as it is chosen appropri-
ately taking into account the channel characteristics. For this reason, in this section, after stating
the problem of evaluating the error probability of a system, the study will be particularized for
different types of constellations.

Exact calculation of symbol error rate

The symbol error rate of a digital communications system is defined as the probability of deciding
of a wrong symbol at an instant n

P. = P(B[n] # bi|B[n] = b;).
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The calculation of this error probability is obtained by averaging the conditional error probabilities,
i.e., the error probabilities given each of the M possible transmitted symbols. By notation, and
taking into account the unique relationship between a symbol and the vector representation of its
associated signal, these conditional probabilities will be represented as

PoiBlnj=b; = Pe|An)=a; = Peja;-

The symbol error probability, or symbol error rate, is obtained by averaging these conditional
probabilities taking into account the probability with which each symbol is transmitted

M—-1

P, = Z pA(ai) Pe\ai'

=0

Therefore, the basic problem is the calculation of the conditional error probabilities. To do this,
it is only necessary to analyze under what circumstances an error occurs when a symbol has
been transmitted, A[n] = a;, and to evaluate the probability of occurrence of such circumstances.
Once again, for ease of notation, the time index n will be omitted (which is possible due to
the independence of the symbols and observations at different time instants). When the symbol
A = a; has been transmitted, an erroneous decision occurs when B= b; # b; is decided, and this
happens when the observation q is not in the decision region of the symbol, I;. This means that
the conditional error probability for a; is the probability of the observation q being out the the
decision region I;, given that the transmitted symbol is A = a;. Since the conditional distribution
of the observation when a; is transmitted is fqa(qla;), the conditional error probability is

Pe|ai = / fqlA(q‘az) dq
qdl;

3

Finally, it is interesting to remark that in order to obtain the symbol error rate of a system, as
is clearly deduced from the previous expressions, the following parameters must be known:

e Prior probabilities of each symbol, pg(b;) = pa(a;).
e Decision regions of each symbol, I;.

e Conditional distributions of the observation for each symbol, fqa(qla;).

In all cases, these parameters must be known for i € {0,1,--- , M — 1}.

The calculation of the error probability for different types of constellations will be carried out.
By default, if the contrary is not explicitly indicated, identical a priori probabilities (equiprobable
symbols) will be assumed, as well as Gaussian conditional distributions for the observation, such
as those obtained in the transmission over a Gaussian channel (see Section [3.4.3)).

Binary constellation (M = 2) in one-dimensional space (N = 1)

As an initial example, a constellation of two symbols in a one-dimensional space is considered, the
symbol ay has the coordinate —A and the symbol a;, +A. Under the assumption of equiprobable
symbols and transmission on a Gaussian channel, the decision region I; will be formed by all
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Figure 3.36: Constellation and decision regions for the binary constellation example in one-
dimensional space.

the values of q closer to a; than to ag and vice versa for the region of decision Iy. The decision
threshold is therefore zero, and the decision regions

Threshold ¢, =0 — I, = [0,00), Iy = (—00,0),
as shown in Figure [3.36]

Let us now compute the conditional error probabilities, starting with the symbol ag. In this
case, the conditional distribution of the observation for this symbol is the one shown in Figure

B.37

fqia(qlao)
a9
¢ ! } q
-A q,=0 +A
Y IO L4 11 L4

Figure 3.37: Conditional distribution of the observation for the symbol ay.

It is a Gaussian distribution fqa(qlag) with mean —A, the vectorial representation of the
transmitted symbol, and variance Ny/2. The conditional error probability for ag is the integral of
this conditional distribution outside the decision region of ay, which in this case is the highlighted
area in the figure on the distribution

A
Pejag = o faa(alag) dg = Q ( N0/2> .

As when the symbol A = ag is transmitted the distribution of the observation is fqa(alay), and
the decision error occurs when the observation q takes values that fall outside [y (in this binary
case that means it falls in 1), the conditional error probability is calculated by integrating the
distribution of q outside Ij.

To compute the conditional error probability for the symbol a;, in this case the conditional
distribution of the observation for this symbol is the one shown in Figure [3.38|

It is a Gaussian distribution fqa(qla;) with mean +A and variance Ny/2. The conditional error
probability is the integral of this conditional distribution outside its decision region, which in this
case is the highlighted area in the figure

A
Pejay = " fqaldlar) dg=@Q ( N0/2> .
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Figure 3.38: Conditional distribution of the observation for the symbol a;.

Now, as when the symbol A = a; is transmitted, the distribution of the observation is fqa(qlay),
and the decision error occurs when the observation q takes values that fall outside of I; (in
this binary case that means that it falls in Iy), the probability of this occurring is calculated by
integrating the distribution of q outside of I;.

Once the conditional error probabilities are calculated, the symbol error probability is obtained
by averaging them, which in this case means

1 1
P, = _Pe|a0 + _Pe|a1 =

1
5 5 faa(alag) dg + 5 fqa(alar) dg

1
2 Jagn, 2 Jagn
Figure[3.39|shows the graphical interpretation of the meaning of this probability of error, and how

the modification of the decision threshold would increase the error probability.

1 1 1 1
Pe = _Pelao + _Pe|a1 = —/ fq|A(q|aO) dq + _/ fqlA(qlal) dq
2 2 2 Jagn 2 Jagn,

3 faa(glao) 5 faia(alar)
ao a;

4 T * q

'S
V¥
A
L 2

Iy I

2 faia(glao) 3 faa(alar)

= ¢ —e - q
—A q, +A
N IO 7'\ 11 r

Figure 3.39: Graphical interpretation of the symbol error rate for the optimal detector compared
with the symbol error rate for another detector.

From this example, the result can be immediately extrapolated to one-dimensional constellation
if the two symbols have any arbitrary values, ag and a;. Regardless of the values of the symbols,
for equiprobable symbols and Gaussian conditional distributions the threshold is midway between

them.
_apgta
Qu = 5
so that the distance from each symbol to the threshold, which defines the argument of the function
Q(z) to evaluate the integral of the Gaussian distribution, is half the distance between the two
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symbols

d(a0> al)
2 )
and, therefore, the conditional error probabilities are equal and the symbol error rate is

o d(ao,al)
Fe=@ (2 N0/2) '

Binary system (M = 2) in multidimensional space (N > 1)

d(aOa qu) - d(ala qu) =

To illustrate this case, consider the following constellation

SO

The symbols are 2-dimensional vectors. For the default case of equiprobable symbols and under
transmission on a Gaussian channel, the minimum Euclidean distance criterion can be applied
again: the decision region of each symbol is formed by the points in the space of q (in this case
the two-dimensional plane formed by the two coordinates, gy and ¢;) that are closer to that symbol
than to the other. The decision frontier that separates the closest points of ay from those of a; is
the line gy = ¢q1. Decision region I is the right half plane, and decision region I; is the left half

plane
Ioz{qz{qo}qozcn} Ilz{qZ[qo]qO<q1},
q1 q1

as represented in Figure |3.40]
qo = 91

qi

A € A

qo

> @ &

Figure 3.40: Decision boundary and decision regions for the example of a binary system in two-
dimensional space.

If the transmitted symbol is ag the conditional PDF of the observation, fqa(qlag), is a Gaussian

A S .
of mean ag = [ 0 ], with independent components and variance of each of those components

equal to No/2, and for the symbol a; fqa(qlag) is a Gaussian of mean a; = [ 1(31 ], again with
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independent components and variance Ng/2

Fuia(alas) 1 _lla—ayll? 1 _(w0-v?D’+a}
Algqla;) = —e€ No = — ¢ o
q 1 7TNO 7TN0 s

as shown in Figure m (in this case they are represented for A = 1, above separated for each
symbol, and below both together, highligting in colors the support of the decision regions).

0

MY
7 o
NN o“.“‘\‘
A

Figure 3.41: Conditional probability density functions for the example of a binary system in two-
dimensional space. Each function separately, and both represented within their decision regions.

To calculate the conditional error probabilities, I, , the conditional distribution for each symbol
a; must be integrated outside of its decision region, I;, in this case the defined half-plane for ¢y > ¢;
or qo < qi, respectively for ag and a;, as shown in Figure [3.42

0.5 0.5

Figure 3.42: Graphical interpretation of the conditional error probabilities for the example of a
binary system in two-dimensional space.

As is well known, the integral of a Gaussian function does not have a definite analytic expression.
In the one-dimensional case, the tabulated function Q(z), which can be calculated numerically,
is used to obtain the value of the integral of a one-dimensional Gaussian distribution. But now,
for two-dimensional spaces, there is no tabulated function that computes integrals of Gaussian
distributions over half-planes. However, taking advantage of the fact that with two symbols it
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is always possible to find a line going through those points, a transformation of the coordinate
system can convert the 2-D problem into another equivalent 1-D problem. To do this, the following
change of variables is made:

1
QE) :E(QO - Q1),
1

¢ =—=(q +q — A).

N~

This transformation rotates the constellation 45° and shifts the resulting system \% downwards,
as illustrated in Figure [3.43, so that the points of the constellation now happen to be on a one-

dimensional space, since its coordinate on the second axis, ¢}, is null for both symbols,

/ LA / _A
S il R i

Therefore, we could consider eliminating the second coordinate and solving the problem for the
new resulting one-dimensional constellation, as shown in Figure[3.44] In order to do this, the noise
components on the new axes need to be independent, and the noise distribution at coordinate ¢,
needs to be checked when performing the transformation, and see if it is still a mean-zero Gaussian
distribution. and variance Ny/2. Let’s see if these conditions are met.

/
q1 , q1
€L o7 0]
a o al
/ /
ap A
e e
— / /
g 20, _A +A
V2 V2
q0
/
q

Figure 3.43: Hlustration of the geometric transformation implicit in the proposed change of coor-
dinates.

]/
<—O—>
a) ay,
A ‘ A q
TV T

Figure 3.44: Decision regions on the new reference system after the change of coordinates.

Let’s start by remembering that when the symbol A = a; is transmitted
qo = Aip + 20, Q1 = Q;1 + 21.
In the new system, the received observation is
Qo = a0+ 2, ¢y = a;, + 2.
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If the transmitted symbol is ag, ¢ takes the form

1
Q6|A:a0 :E ((a0,0 + 20) — (ao,1 + 21))

((A+20) = (0+2))

< e S

F (20— =)

= —(20 — 21),

\/5 0 1
~ SY——
‘16,0 20

and q)

Similarly, if the transmitted symbol is a;, ¢ and ¢; take the form

1
q6|A:a1 :—2 ((a1,0 + 20) = (a1,1 + 21))

1
= 7 (04 20) — (A+ =)

Lt leo—2)
\/5 \/52’0 Z1)s

and

Of the two components, only ¢ contains information about the transmitted symbol; ¢} contains
only noise. This implies that the dimension of the signal space has been reduced from 2 to 1. The

coordinates of the new elements of the constellation with respect to ¢j, which we will denote aj
and af, are

!/

and

Sl =
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Regarding noise, it is easy to show that the terms z{ and z; are independent. The first is
proportional to zp — 2z and the second to zy + 21, since the sum (or subtraction) of two random
variables with Gaussian probability density function is another Gaussian random variable and

Ny Ny
El(z0 — 21)(20 + 21)] = E|25 — 23] = 5 5 = 0.
This implies that the value of ¢] is irrelevant to the decision and that ¢ is a sufficient statistic for
detection.

To determine the probability of error we must know the statistics of the noise component,
\%(2’0 — 21), since for now we only know that it is Gaussian. The mean value is

1 1 1
ElZ)l=F | —(z—21)| = —=FEJ[2y]| — —=FE[#] = 0.
4= B | 750 = 20)] = 5 Bla] = Bl
And the variance is
/ 1 ? |
Var(zy) = E —2(20 — 1) §E[ZO] + §E[21] — Elz021]

1IN, 1N,
53 "33 Y
2

Finally, if the new constellation is the same as in the one-dimensional case and the noise statistics
are the same (zero mean and variance Ny/2), so will the error probability,

[ d(ag,a))
Pe@(z N0/2>'

The distance between the symbols is the same as in the original constellation, d(ay, a)) = d(ap, a;),
so it makes no difference to measure in the original space than in the transformed one. In fact,
the transformation does not even have to be computed to evaluate the mean probability of error
in this case.

This result can be extended to any binary constellation in a space of arbitrary dimension, since
it is always possible to define a direction of space through the line that passes through the two
points. Thus, in general, the probability of error for binary systems with equiprobable symbols
and with transmission on a Gaussian channel is

B d(ao,al)
r-ogee)

regardless of the dimension of the signal space.

M-ary detector in one-dimensional space

To illustrate this case, consider an example of a system with a constellation of M = 4 symbols
that are transmitted with the same probability over a Gaussian channel. The coordinates of the
vector representation of the symbols are

8.0:—3, 31:—1, 32:+1, 33:+3
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In this case, since the criterion of minimum Euclidean distance can be applied for the design of
the decider, the thresholds of the decider appear at the midpoints between each two symbols of
the constellation

qu1 = _2a Qu2 = 07 qu3 = +27

and the decision regions are
[0 = (—OO, —2], [1 = (—2,0], IQ = (0, +2], [3 = (+2,+OO),

as illustrated in Figure [3.45]

ap a; a asz

° | ° | ° | ®

—3 _Z -1 0 1 2 3 .
Il L

Figure 3.45: Constellation and decision regions for the example of a 4-symbol constellation in
one-dimensional space.

The conditional error probability for the symbol ay requires to know the conditional distribution
of the observation for this symbol, fga(alag), which is the one shown in Figure It is a
Gaussian distribution with mean —3, the vector representation of the transmitted symbol, and
variance Ny/2.

Figure 3.46: Conditional distribution of the observation for the symbol ag.

The conditional error probability is the integral of this conditional distribution outside of its
decision region, which in this case is the highlighted area in the figure

Pejag = /W faa(qlao) dg = Q (ﬁ) :

The conditional error probability for the symbol a; is based on the conditional distribution of the
observation for this symbol, fga(qlai), which is the one shown in Figure [3.47 It is a Gaussian

distribution with mean —1, the vector representation of the transmitted symbol, and variance
No/2.

The conditional error probability is the integral of this conditional distribution outside of its
decision region, which corresponds with the highlighted area in the figure

Peja, = /gl fqalglar) dg =2Q ( ]\170/2> :
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fq|A(q|a1)

Figure 3.47: Conditional distribution of the observation for the symbol a;.

fq|A(q|al)

a

L
-3 -2 -1 OE 1 Q 3
L

Figure 3.48: Conditional distribution of the observation for the symbol a,.

The conditional distribution of the observation for the symbol as, fqa(qlaz), is a Gaussian
distribution with mean +1, the vector representation of the transmitted symbol, and variance

No/2, as shown in Figure [3.48|

The conditional error probability is the integral of this conditional distribution outside its deci-
sion region (the highlighted area in the figure)

1
Peja, = /gl fqaldlaz) dg = 2Q ( N0/2> :

Finally, for the symbol a3, the conditional distribution of the observation for this symbol,
faia(alas), is a Gaussian distribution ith mean +3 and variance Ny/2, as the one shown in Figure
0,491

faia(qlaz)

R 4

Figure 3.49: Conditional distribution of the observation for the symbol as.

In this case, the conditional error probability is

Pejay, = /M fala(qlas) dg = @Q (\/]\17_/2> :

In this example, given the symmetry of the decision regions, it can clearly be seen that

Pe|ao = e|a3 a’nd Pe|a1 = e|a27
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which could have been used to simplify the calculation.

Once the conditional error probabilities are calculated, the symbol error probability is obtained
by averaging them

M-1 1M—1 3 1
P, = aiPeai:_ Peai:_ e
ZPA( VP, =7 > P 2@( N0/2>

M-ary detector in a multidimensional space

The general case of calculating the symbol error rate in multidimensional constellations is a com-
plex problem due to the shapes that the decision regions can take. For binary constellations it is
always possible to transform the problem into a one-dimensional one, thus simplifying the reso-
lution of the integrals necessary to calculate the error probability of each symbol. However, for
constellations of more than two symbols this is not always possible. As an example, it is enough
to consider the constellations in Figure [3.50] which presents two examples of two-dimensional
constellations commonly used in communication systems and their associated decision regions.
In some cases it will be possible to calculate the exact probability of error, and in other cases
this will not be possible analytically, and it will be necessary to turn to numerical calculations,
approximations or bounds of the error probability.

q1 q1
a aj a9 as
[ ] ® 3 [ ] ® 10 Q0
Gy as ae az
[ ] ® +1 [ ] ®
-3 1 0 +1 +3 ajl as
| | | % —e *—
-1 1
as ag aio ail
[ J ® -1+ [} ®
a12 a13 a14 a5
) e 3+ © ° -1 @ A2
a) b)

Figure 3.50: Examples of two-dimensional constellations and their decision boundaries.

For systems with constellations like the ones in the figure, it is still possible to easily calculate the
symbol error rate. This is possible when the boundaries of the decision regions form a ractangular
grid or lattice over space, as occurs with the two constellations in the figure.

For example, first consider the constellation of Figure ). Let’s see how the conditional
error probability would be calculated for one of the symbols, for example ag. This symbol has

coordinates
g = 1
6 1 Y

so the conditional distribution of the observation, fga(qlas), is a two-dimensional Gaussian dis-
tribution with mean ag and variances o2 = Ny/2, as shown in Figure m
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Figure 3.51: Conditional distribution of the observation for the symbol ag, fqa(qlas): complete
distribution, and distribution outside its decision region (two views from different perspectives).

The decision region of this symbol is a grid, which in this case is aligned with the two axes of
the representation.Because of this, it can be written by two independent conditions (one for each
axis) that must occur simultaneously. In this case

0<gp<2and 0 < q <2.

There are no analytic expressions to directly compute the integral of a Gaussian outside of a square
or rectangle, but it is possible to transform this 2D problem into two coupled one-dimensional
problems. When the decision region can be parameterized into two independent conditions, one
for each dimension of space, that must hold simultaneously, the conditional error probability of a
symbol can be written as

Pra; =1—= Pya; =1— Paao X Pajasy =1 = [(1 = Prjayy) X (1= Pejary)]
where the following steps have been followed:
e The conditional probability of error can be written as 1 minus the conditional accuracy
(probability of a correct decision), Pa,-

e The conditional accuracy F,,, can be written as the product of the accuracies for the two
space directions, Pyjq, o X Pyja, ,, since the decision region is established with two independent
conditions, one on each direction of space.

e The accuracy in one of the directions of space (Fyjq;, Or FPyjq,,) can be written as 1 minus
the error probability in that direction (P4, , or Pejq,,). And these probabilities are equal to
the error probabilities in one-dimensional spaces that have been analyzed previously.

This allows to calculate the conditional error probabilities if the decision regions form a grid or a
lattice aligned with the axes of the observation space q.

Let us now see with numerical examples how the total error probability would be calculated for
the previous constellation. Decision regions can be grouped into three types, depending on the
number of boundaries defining the region.

e Type 1: {lo, I3, 12, 15}
— A single decision boundary in each direction of space.

e Type 2: {]5,—76,—79,]10}
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— Two decision boundaries in each direction of space.
L Type 3: {[17 [27 [47 [77 187 Illa [137 [14}

— A boundary in one of the directions of space.

— Two borders in the other direction.

All symbols of the same type have the same conditional probability of error, since the Gaussian
distribution centered on the symbol must be integrated outside a region of the same dimensions.
Therefore, it is possible to take an example of each type, and extrapolate the results. The chosen
examples can be, for example: ay (Type 1), a5 (Type 2), a; (Type 3). Thus, the probability of
total error will be

M-1
Pe - Z pA(ai) Pe\ai
1=0
1 1 1
=4 x —P 4 x —P —P
X 16 elag + 4 X 16 elas +8 X 16 elary

which will lead, as we will see below, to

1 9 1
s )t () »

We will start the calculation with the symbol that exemplifies the Type 1 regions, which is ag.
The calculation procedure for this case, which is illustrated in Figure |3.52] is as follows:

e Axis qq

— Mean of the 1-D Gaussian distribution: agg = —3

— Decision region : —o00 < qp < —2

1
P = E e 20 < N0/2>

o Axis ¢

— Mean of the 1-D Gaussian distribution: ag; = +3
— Decision region : +2 < ¢; < 400

1
Fions == Fooy =120 ( N /2>
0

e Conditional error probability

1 ’ 1 ) 1
Pe'%:“[”(m)] :2Q<To/2>‘Q ( No/z)

Next we will perform the calculation for the symbol that exemplifies the Type 2 regions, which
is a5. The calculation procedure for this case, which is illustrated in Figure [3.53] is:
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faolai o (@0lao,0)

M -

ai az as
® +31 ° )

ao,1

ag as ae ar
° o +1+—- @ °
—_
a3
- 10 +1 +3
§ | | | |
= 1 1 1 1
S)
~
T ° e -1 o
=
o
<3
alz a3 aig ais
° e 3+ e °

q1

Figure 3.52: Distribuciones condicionales marginales para el simbolo ag.

e Axis q

— Mean of the 1-D Gaussian distribution: aso = —1

— Decision region : —2 < ¢y <0

1
Pa|a5,0:1_Pe|a5,o:1_2Q( )

No/2
e Axis ¢

— Mean of the 1-D Gaussian distribution: as; = +1
— Decision region : 0 < ¢; < 42

1
Pa|a5,1:1_P€|a5,1:1_2Q< N/2>
0

e Conditional error probability

i ()| () ()

We will finish with the calculation for the symbol that exemplifies the Type 3 regions, a;. The
calculation procedure for this case, illustrated in Figure [3.52] is now:

e Axis qq
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7N Jaola; o (q0las,0)

as,0

ap aj az asz
° ® +31 ° °

as. 1
w .g
Q

I
| .g
4-00—: .E

_ +1
\ \ \
ag ag aio all
° e -1 o
—
'_L
0
S
=
j=)
= a2 ais a4 ais
Z
o ° e 3 o °
S
)
iy

q1

Figure 3.53: Marginal conditional distributions for the symbol as.

— Mean of the 1-D Gaussian distribution: a7y = +3
— Decision region : +2 < ¢y < +00

1
Pa|a7’o—1_Pea77o_1_Q< NO/2>

o Axis ¢y

— Mean of the 1-D Gaussian distribution: a7; = +1
— Decision region : 0 < ¢ < +2

1
Folra =17 Py = 1230 ( N0/2>

e Conditional error probability

e o)) ()] () 2ok

Finally, averaging the conditional error probabilities for the 16 symbols gives the final result
shown above, in Eq. (3.2).

We have seen how the probability of error can be calculated for decision regions that form a
lattice aligned with the axes of the observation space (given by vector q). The 2D problem can
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Figure 3.54: Marginal conditional distributions for the symbol a;.

be turned into two coupled 1D problems that can be solved independently. For the constellation
in Figure b), the decision regions form a lattice, but this is not aligned with the space axes
of q, qo and ¢;. However, it is easy to see that if a change of variables is applied that produces
a 45 degrees rotation, as was done in the example of a binary constellation in two-dimensional
space, the decision regions become aligned with the new axes and the symbol error rate can be
obtained. In this case, all regions are of Type 1, and since the distance between symbols in this
case is /2, it is easy to check that the conditional error probability is equal for of all symbols, so
its value coincides with the symbol error rate

e (o) () ) e

In the constellations represented in Figure [3.50] error probabilities can be easily calculated
because either there are decision regions that form a grid aligned with the axes of space, or there
is a simple transformation that converts them into those types of regions. But in other cases this
may not be possible, as in the case of a system with the constellation of Figure |3.55, where the
eight resulting decision regions are shown. In this case, it is not possible to analytically evaluate
the integral of a Gaussian distribution outside of such decision regions. To calculate the symbol
error rate, it is necessary to solve the integral of the conditional probability density function of
the observation outside the decision region using other procedures. In cases like this, to calculate
the probability of error exactly it is necessary to resort to numerical calculations. If analytical
expressions are required, approximations or bounds of the error probability can be useful. These
analytical tools will be discussed below.
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Figure 3.55: Example of a constellation in a two-dimensional signal space in which it is not possible
to calculate the probability of error analytically.

3.5.4 Approximation and bounds for the probability of error

Approximations and bounds are useful when it is not possible to accurately assess the probability
of error analytically, or when an idea of the magnitude of the probability of error is required,
without needing to know the exact value.

Approximation of the probability of error

The symbol error rate depends on the distance between symbols. In the event of an error, it is
most likely to erroneously decide on a symbol that is at a minimum distance from the transmitted
symbol, while the probability of an error occurring with symbols that are farther apart is consider-
ably lower. The most common approximation assumes that errors will only be made with symbols
that are at minimum distance, and that all symbols have the same number of symbols at minimum
distance, this number being the largest possible for the constellation. These considerations lead

to the approximation
dmin
PrEQ| —F/—=];
24/ Ny/2

where the two parameters appearing in the expression are:

® d,,;n: minimum distance between two symbols in the constellation symbols;

e k: maximum number of symbols at minimum distance of a symbol in the constellation.

These two parameters are very easy to calculate for any constellation. For example, for the
constellation of 16 symbols in Figure m (a), these parameters would be

dopin = 2, k& = 4.

For the parameter k, in the constellation there are symbols that have 2 symbols at minimum
distance (those at the corners, Type 1), symbols that have 4 symbols at minimum distance (the
4 in the center, Type 2) and others that have 3 symbols at minimum distance (symbols of Type
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3). The value to be included in the parameter is the maximum number of symbols at minimum
distance from a certain symbol, in this case 4. For the constellation in figure (b), the parameters
would be

Union bound

The approximation of the probability of error is useful when you want to have an idea of the
magnitude of the probability of error, and it is not relevant whether the total probability of error
is greater or less than the approximate value. However, on certain occasions it is necessary to
have an approximate idea of the probability of error, but with the certainty that the probability
of error is below the specified (bounding) value. In this case we resort to error probability bounds,
values that satisfy that

P. < Bound.

Here we will see two bounds: the union bound, which delimits the probability of error in a relatively
tight way, that is, that the probability of error is not far from the value of the bound, especially for
high signal-to-noise ratios. Its calculation becomes involved for constellations with many symbols,
and in this case the loose bound, a bound with a much simpler analytical expression, can be
useful. It is computed easily, but provides values that are somewhat further from the exact error
probability than with the union bound.

We will start with the union bound. It is a bound that is expressed as the sum of error
probabilities of binary systems. The idea is to limit the conditional error probability of a symbol
by the sum of the error probabilities of the M — 1 binary systems resulting from always using that
symbol and each of the remaining M — 1 symbols of the constellation, that is

i d(a;, a;)
pe‘ai < Q #) 7
2 (2 Nof2
i
which leads to delimit symbol error rate as

P, < ipA(ai) ) Q (M) :

i=0 j
J

To illustrate the procedure, the constellation in Figure b) will be used as an example. In
this constellation, the error probability when the transmitted symbol is ag, Fja,, is obtained by
integrating fqa(dlag) out of the decision region I, which corresponds to the highlighted area in

Figure (a).

Instead of calculating this integral, we calculate the error probability that would be obtained
using three binary detectors to decide between the symbol ay and each of the other three symbols,
that is, considering the following binary cases

e a; and ay;

e a; and ay;

e a; and ags;
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Figure 3.56: The union bound. Above (a), area where fqa(qlag) must be integrated. Below (b),
areas that are added in the union bound.
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This involves integrating the probability density function in each of the three regions shown in
Figure m (b). Starting with the symbol a;, we denote the error probability of the binary decider
between ay and a; as P.(ag, a;), and is obtained by integrating the highligted area in the left figure
of Fig. [3.56| (b). For a binary detector

d(ag, a V2 1
P.(ag,a;) = Q M —Q| ——=— _Q( >
2 N0/2 N0/2 V NO
Proceeding in the same way with the other two symbols
d(ag, a2) 2 \/i
P.(ag,a) = —— | = — | = — |,
(2, 22) Q<2 =)=l =l um
corresponds to the integral of fqa(qlap) in the area that is highlighted in the central figure of Fig.

3.56| (b), and
. d(ao,ag) . \/5 . L
P.(ag,a3) = Q <—2 No/2> =Q <—N0/2> =Q (\/ﬁ)) ;

corresponds to the integral of fqa(qlag) in the area that is highlighted in the right figure of Fig.
3.50] (b).

From these error probabilities with binary deciders, the bound of the union for P, is defined
as

M-—1
Pe|a0 S Z Pe(aoaaj)
j=1

=P, (ap,a1) + P.(ag,as) + P.(ap, a3)

() (i)

Figure 3.57: The union bound is an upper bound: fqa(qlag) is integrated once in the red areas,
twice in the yellow areas and three times in the blue area.

Figure [3.57| illustrates why the union is an upper bound. It must be taken into account that to
obtain P, the conditional distribution fqa (q|ag) must be integrated in the blue region of Figure
3.50| (a), i.e., outside of Iy. The three integrals of the same function in the regions highlighted
in the three figures of Fig. [3.56| (b) cover all the space outside of Iy. However, some regions are
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covered multiple times. This aspect is shown in Figure [3.57 In the red areas, fga(qlag) has only
been integrated once, in the yellow areas it has been integrated twice and in the blue area it has
been integrated three times.

Proceeding in the same way with the rest of the symbols of the constellation, we obtain the
so-called the union for the symbol error rate, which for a generic constellation of M symbols is

written as
M—1 M—1 M-1 Q. a
P.< > pala) ) Plana) =Y pala Z@(2 : )
i=0 §=0 i=0
J#i J#

For constellations with equiprobable symbols

ney s 2o(s5)

J#i

Particularizing for the example at hand, given the symmetry of the constellation, the union

bound results in
P.< 2Q) ( ) +Q —2 (3.4)
Vo 24/ No/2 ’

It has been proven that the union bound is an upper bound of the symbol error rate, but we
do not know if the bound is close or far from the true value of the real rate. For the previous
constellation, both the exact probability and the union bound have been calculated, in Eq. (3.3)

and Eq. (3.4]), respectively.

Figure compares both values as a function of the E/Ny ratio. It can be seen that the union
bound provides a value that is higher than the exact error probability and that is also quite tight
to the exact value, especially for high values of signal-to-noise ratio (parameterized by E;/Ny).

The loose bound

In constellations with a large number of symbols, the evaluation of the union bound can be
cumbersome due to the number of terms to be evaluated, which grows approximately with the
square of the number of symbols in the constellation. For a constellation of 4 symbols, 6 distances
must be evaluated (taking advantage of the fact that d(a;,a;) = d(a;,a;) and the union bound
requires to evaluate the () funtion for 6 distances. In general, the minimum number of distances
to consider in the expression, taking into account the symmetry d(a;, a;) = d(a;, a;), is

M-1

Ndistances = k
k=1

This, for some numerical examples supposes

e M = 4 symbols lead to Nyjstances = 6.
e M = 8 symbols lead to Nyjstances = 28.

e M = 16 symbols lead to Nystances = 120.
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Figure 3.58: Exact error probability and the union bound for the constellation of Figure m (b),
as a function of the F,/Ny ratio.

e M = 64 symbols lead to Ny;stances = 2016.

For constellations with a large number of symbols, the analytical computation without using a
computer is relatively expensive, so a more analytically compact bound should be sought. A
bound with a compact analytic expression that is commonly used is called the loose bound. This
bound assumes that all the symbols are at a distance d,,;, from the rest, which is a pessimistic
approximation for constellations with a large number of symbols: given a symbol, only a reduced
number of the remaining symbols are at minimum distance, and the other ones are at higher
distances. Therefore, error probability is bounded by the bound obtained by computing the error
probability under this assumption, i.e.

ag@w&@(f%%ﬁ.

Figure [3.59] compares the exact error probability with the loose bound for the four-symbol con-
stellation of Figure m (b), as a function of the relation E;/Ny. The loose bound provides a value
greater than the exact error probability which is now less tight to the exact value than the union
bound.

3.5.5 Expressions of the probability of error as a function of F;/N,

On many occasions, as in Figures|3.58| or [3.59] it is interesting to express the probability of error
(either the exact value, an approximation or a bound), as a function of the signal-to-noise ratio of
the system, parameterized by the ratio between the average energy per symbol of the transmitted
signal, and the power spectral density of the noise, i.e. E;/Ny. Obtaining expressions of the

OCW Universidad Carlos I1I de Madrid 203 Marcelino Léazaro, 2023



ucdm | Carlos il

Universidad
de Madrid Communication Theory @020

f—
e}
=

T T T
Probability of error (P,)

T | ——towseoune
Y\R
N\
\

[
2

f—
S
[s*)

Probability of error
<

0 2 4 6 8 10 12 14
E;/No (dB)

Figure 3.59: Exact error probability and loose bound for the constellation of Figure m (b), as
a function of the F/Nj ratio.

probability of error as a function of this ratio is very simple in most cases. Terms that commonly
appear in error probabilities are often written as

() mo(im)

In either case, by multiplying and dividing by 1/ Ejs, they can be rewritten as

| E A pmin E AV2 [E,

— dond ———— /=1 6 —— 4/

Q<U N0>7 onde @ V2VE, V No o VE; V Ny
—— ~——

The factor v is a constant value, which depends on the constellation and can be evaluated in a
simple way: it is enough to know the numerical value of E; and to include it in the previous
expression. This factor can be seen as a measure of the constellation efficiency, since the higher
v is, the smaller the value of the @Q(z) function is for that argument, and the more efficient the
constellation is. Next, an example is introduced in which the probability of error is calculated as
a function of /Ny for two different binary constellations.

Example

It has been seen that for any dimension N, any binary system with equiprobable symbols
that transmits over a Gaussian channel has a probability of error

. d(ao,al)
Fe=0 (2 N0/2>
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e Case (a): Symmetric binary constellation (N = 1)

ag = —A, ai =4A

e Case (b): Orthogonal constellation (N = 2)

SHENH

Distances and average energies per symbol are obtained for each constellation:

e Case (a): Es = A2, d(ag,a;) =2 A
e Case (b): Es = A2 d(ag,a;) = V2 A

From these expressions, the efficiency factor v is calculated as

e Case (a): Symmetric binary constellation

_ d(ag,a1) _ _ E,
VN % _\f2—>Pe_Q( 2N0>

e Case (b): Orthogonal constellation (extends for N > 2)

_ d(ag,21) _ Es
v = ﬂ\/ﬁs—lﬁPe—Q< N0>

It can be seen that the symmetric binary constellation is more efficient. For a given value
of F,, it performs better than the orthogonal constellation. Figure plots the error
probability as a function of the F,/Ny ratio.

3.6 Encoder

So far, the description of the encoder has been reduced to saying that it performs a transformation
of a sequence of symbols, B[n], to a vector representation of the signals that will be associated
with each symbol in the sequence, A[n|. This function is illustrated in Figure . Each of the
symbols will be made up of a block of m bits.

Once the receiver has been analyzed, and in view of the expressions obtained in the calculation
of the symbol error rate, the design of the encoder to have an efficient communication is now
possible.

3.6.1 Encoder design

The encoder design consists of two parts:

1. Design or choice of the constellation to transmit.

2. Binary assignment for each of the symbols.
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Figure 3.60: Error probability of 1D (N = 1) and 2D (N = 2) binary constellations as a function
of the E,/Ny ratio.
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Figure 3.61: Encoder in the transmitter of a digital communications system.
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The first part consists of choosing the constellation of M points in a /N-dimensional space. This
constellation defines the vector representation of the M signals that are used in the transmitter
to transport each one of the M = 2™ values of the alphabet of symbols (blocks of m bits). Thus,
each possible combination of m bits, symbol b;, will have an associated signal s;(t), and what
the encoder does is to define the vector representation of the signal, a;. The modulator will then
convert this vector representation into a continuous-time signal s;(¢).

It is important to remember that the vector representation of a set of M signals determines two
important factors:

1. The energy of each signal, and therefore, the average energy of the M signals.

2. The distance between each pair of signals, which is related to the energy of the difference
signal, and which determines the performance of the system, as seen in previous sections.

Therefore, the choice of the constellation determines these two factors: energy and performance.
And in fact, the design of the constellation will be based on these two factors: the best tradeoff
between energy and performance will be sought.

The second part of the encoder design is the binary assignment. This assignment consists in
assigning to each of the possible values of the alphabet of A (or equivalently of B[n], since there
is a one-to-one assignment b; <— a;) one of the M possible combinations of m bits. As we will see
later, the assignment determines the error probability at the bit level, that is, the performance of
the system. Therefore, the criteria that should guide the design of the encoder are:

1. Performance (symbol and bit error probabilities).
2. Energy.
Next, we will analyze how the constellation design is carried out for the case of equiprobable

symbol transmission when the noise is Gaussian, which is the most frequent case in communication
systems.

3.6.2 Design of the constellation

Constellation design depends on two factors: performance and energy. Performaces is related to
the distance between symbols, depending fundamentally on the minimum distance between two
symbols of the constellation. Remember the approximation of the probability of error

dmm
P~kQ|——|.
24/ Ny/2
So, depending on the type of a priori limitations of the system, the design problem can be posed
in two ways:

e If there is an energy limitation, to achieve the lowest possible error probability. The encoder
must generate a constellation that has the greatest distance between symbols, but with the
limitation that it sets the maximum value of symbol energy or average energy per symbol,
E, that is admissible taking into account the energy limitations of the system.
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e [f what is limited is the maximum admissible probability of error, this in fact is limiting the
mininmum distance between symbol. sit will be necessary to find a constellation with this
minimum distance by using the least amount of energy, so as to minimize the cost of the
transmitter system.

In any case, the two factors that determine the choice of constellation work in opposite directions:
if the distance between symbols in a constellation is increased to decrease the error probability, the
energy that is required to transmit each symbol will generally increase. It is therefore necessary
to find a compromise between both requirements. It should also be remembered that the energy
of a signal, in terms of its vector representation, is related to the distance from the origin (its
norm), since

N-1
ela} =llaillP =) laul”,
k=0

that is, that the energy of a signal is the squared norm of its vector representation (the squared
distance from the origin of coordinates). In this way, the problem of the optimal design of an
encoder can be stated as the problem of placing M points in a space of dimension N so that they
have a minimum separation between them, while at the same time are all as close as possible to
the origin of coordinates, looking for a compromise between the two design factors.

Related to the idea of placing the points as close as possible to the origin is the following property,
which determines one of the conditions that an optimal encoder must meet from the performance-
vs-energy compromise point of view: For given intersymbol distances, the mean energy per symbol
is minimized when the constellation mean is zero

E[CLZ"()] 0
E[(IZ’J] 0

Ela] = | =| . |=0
E[ai;N_l] 0

This property will be illustrated with a simple example of a binary system in a one-dimensional
space, which is easily extensible to any other situation. T'wo symbols are considered in a 1D space,
specifically the symbols

ag=B— A, ai=B+ A

which are represented in Figure [3.62

1D space: symbols (ap=B—A, a; =B+A)

'p 24 =
ao a Mean B
® = ° b0 Distance 24
B—A B B+A

Figure 3.62: Example for a binary and one-dimensional case of the relation of the energy of a
constellation with its mean and with the distance between symbols of the constellation.

The two symbol parameters, A and B, separately parameterize the distance between symbols
and their mean:

e Mean: B
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e Distance between symbols: 2A

If the average energy per symbol is calculated (assuming equiprobable symbols) for this constel-
lation, we have

E; :% E{ap} + % E{la;} == (B— A +% (B + A)?

N | —

1 1
=5 (B*+ A* —24B) + 5 (B* + A® + 2AB) = B* 4+ A%,
It can be seen that two independent terms appear, one related to the mean of the constellation,
and the other to the distance between symbols.

e Contribution of the mean: B?

e Contribution of the distance between symbols: A?

Therefore, for any distance between symbols, the minimum energy per symbol is obtained when
the mean is zero.
Zero mean (B =0) — E, = A”.

It is trivial to extend this development for higher-dimensional spaces or for a larger number of
symbols. So an optimal design will always have this feature: the mean of the constellation symbols
will be null (being the mean of dimension N).

Sphere Packing Technique

Taking all these considerations into account, the problem of designing an optimal constellation
can be stated. Here, by optimal we mean the one with the best possible compromise between
performance and energy consumption. In this case, the design can be posed as the search for
constellations that, for a given minimum distance between symbols, require the minimum energy,
which implies that the symbols are as close as possible to the origin (having a zero mean). Based
on this description, the constellation design problem can be solved by the so-called sphere packing
technique.

In the sphere packing technique, a symbol is modeled as a sphere of diameter d,,;,, so that two
spheres that are in contact are at distance d;,, as shown in Figure [3.63] With this model, the
design problem can be stated as follows: how to pack M such spheres in an N-dimensional space
occupying the smallest possible volume.

dmin

(oo

Figure 3.63: Model of a symbol in the sphere packing technique.
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Sphere Packing Technique - 1D Space

In a one-dimensional space, the application of this methodology is very simple. The M symbols
must be on a line, separated by at least d,.;,, and as close as possible to the origin. This is
achieved by placing equispaced symbols, centered on the origin, with half on each side, so that
the average is null, with which the coordinates of the M symbols are

dmin
2 ’

d.. -
a; € {:]: mm,:l:3

d..;
. :|: M—l min
. 07— 1) 2}

2

that is, symbols with coordinates + odd numbers times half the minimum distance between
symbols. Figure shows an example for M = 4.

L dmin \L dmin \L dmin dmin J

—

| | | |

| I | I
_ 2 %min _dmin 0 diin
373 2 37

£

Figure 3.64: Example of application of the sphere packing technique for a 1D space.

Sphere Packing Technique - 2D Space

In 2D space, the best way to pack spheres, as illustrated in Figure [3.65] is in a hexagonal config-
uration, which is more efficient than a lattice configuration.

0
(-
o
L)
(-
0
(]

B

A AN AT A
NN N N, N N
AN AT AT
NN N, N N N
G/.“/. D000¢
AN AT AT
AT AN AT AT
MNAATATATAT

Figure 3.65: Example of rectangular vs hexagonal package.

The option of placing a sphere in the center, and placing a circle of spheres touching it around
it, results in a much more efficient hexagonal configuration than a rectangular configuration with
the symbols arraged in a grid. If there are more symbols, a second ring will be placed on top of the
first, also having a hexagonal configuration, and this will continue until M spheres are completed.
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Since M is a power of 2, the last ring may not be complete, as in the examples shown in Figure
[3.66] In this case, if the initial sphere remains at the origin, the mean of the constellation will not
be zero, so it will be necessary to shift the constellation so that it has zero mean, as has already
been done for the constellation in the figure. It can be seen how the value of the mean energy per
symbol, using normalized levels (d,,;, = 2) is becomen progresively much lower (proportionally)

using the hexagonal package.
E,=21]
() %%

QAM and Hexagonal constellations for M = 4 (unit ratio in Ej)
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QAM and Hexagonal constellations for M = 64 (0.7447 ratio in Ej)

Figure 3.66: Example of application of the sphere packing technique for a 2D space, for constella-
tions of 4, 16 and 64 points (and comparison with a QAM packing). The mean energy per symbol
for each constellation is shown, as well as the ratio among the value of F; for the hexagonal and
QAM package, respectively.

The way in which a constellation with a non-zero mean must be modified so that maintaining
the relationship of distances between symbols (which is geometrically equivalent to a shift) it
has a zero mean is by subtracting from each symbol the constellation mean. The mean of the
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constellation is
M-1
Ela] =) pa(a) a;.
i=0

and the new constellation modified to have zero mean will have symbols with coordinates
a, = a; — Flay]

so that the mean of the new constellation is

0

M—-1 0
El])=> pa@)aj=1| . |=0

- :

pa(a;) 0

Below is an example of how to modify a constellation so that, maintaining the relation of
distances between symbols, the mean of the new constellation is zero, and therefore, the mean
energy per symbol is minimal for these relative distances.

Example

Specifically, we consider a constellation with M = 4 symbols, p4(a;) = i, Vi, with coordinates

1 3 1 3
— = _i_, — = _'_,
ol I R I R B B B

The constellation is represented in Fig.

a3 a3z
® - +2 ° +2+
a) a3
+1+ O Ela]] ® 1 °
a9 a E[a;]
I —@ H—o— 1 1 D 1 I
-2 -1 +1 +2 -2 -1 +1 +2
1+ o -1+ °
ap a)
—2+ .
INITIAL CONSTELLATION MODIFIED CONSTELLATION

Figure 3.67: Example of modification of a constellation to minimize the average energy per symbol
while maintaining the performance (relative distances between symbols).

The average energy per symbol of the constellation in this case is

1 1\2 3\ 2 1\? 3\ 2
E.o— - L 2 2 2 ot 92 d 92
G e |G o () e |G
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In order to minimize the average energy per symbol, the average of the constellation is first
calculated, which in this case is equal to

1 [ -1 1 [ +3 1 [ -1 1 [ +3 41
Ela] = = 2 - 2 - 2 - 2 | — 2 |
[ai 4[0]+4[0}+4[+2}+4[+2} [+1}
This average is illustrated with a circle in the figure. Once the average of the constellation

is calculated, this average is subtracted from each symbol, so that the following modified
constellation is obtained

1 +1 -1 +1
a{):aO—E[ai]:[_1],aﬁ=al—E[ai]:[_1]73/2:[+1]7ag:{+1}’

which is also represented in Figure|3.67, and which has a null mean. If we now calculate the
average energy per symbol of the modified constellation, we have

1

[(+1)* + (=1)?] +7 [(=1)* + (+1)?] +i [(+1)* + (+1)?] = 2.

It can be seen that it is smaller than in the original constellation, as expected.

3.6.3 Constellations used in communication systems

Although this is the optimal form of constellations from the point of view of the best compromise
between performance and energy consumption, there are other factors to take into account when
choosing a constellation. In practices, this means that this strategy is not always chosen. In fact,
hexagonal constellations are not the most frequently used constellations in practical communica-
tions systems. Among the factors that lead to choosing other types of constellations, the following
stand out:

Simplicity of the transmitter The coordinates of the different symbols must be able to be
expressed with finite precision numbers (not irrational) since it is necessary to store them in
the hardware or software of the transmitter. Coordinates of symbols of the irrational type
appear in a hexagonal packing. If the value of the coordinates is truncated, the position of
the symbols is modified, having a change in performance.

Simplicity of the receiver There are applications in which the cost of the receiver is decisive,
to such an extent that it is preferable to sacrifice a lower probability of error in reception
to achieve a simplification of the necessary circuitry in the receiver. Depending on the
technology used, this can be a determining factor for using constellations that, although they
do not have the best performance/energy compromise, allow cheaper implementations for the
receiver. An example of a problem that can appear in some technologies is the recovery of the
sign of the coordinates of the received symbol (implementing the sign function in an asic is
relatively complicated) and this forces the use of constellations where the coordinates are not
negative, commonly called unipolar constellations. Another example is the implementation of
the decider. In hexagonal constellations, the decision regions are hexagonal, and determining
if a point is within a given decision region involves comparing that point with 6 lines and
checking that it is simultaneously on the correct side of all six lines. Constellations with
simpler decision regions may be more convenient in some cases.

Constant energy per symbol In some cases, it can be convenient to transmit a constant energy
in all symbol intervals. In this case, all the symbols must have the same norm.
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Peak energy/average energy ratio There are amplification technologies that work well when
the energy of the signals does not vary too much between symbol intervals, but that generate
serious distortions when there are abrupt changes in energy from one interval to another.
Constellations like the one in Figure have symbols with relatively different energies
(very low for symbols close to the origin, and several orders of magnitude higher for symbols
further away). Constellations in which the ratio between the peak energy (maximum energy
of a symbol), and the average energy per symbol is high, are not suitable for use with this
type of amplifiers.

For practical reasons, especially those mentioned above, the most frequently used constellations
are those listed below.

QAM Constellations

These constellations, whose name comes from the English acronym for “Quadrature Amplitude
Modulation” , have as their main characteristic that the points of the constellation form a grid on
a 2D space, just like the examples shown in the Figure[3.68. To do this, they have the particularity
that the number of bits per symbol m is even.

q1

e e e T & o © e © ®© e-e o o o

(] L] ® [} [ ] ® L] [ ]
o e e o o0 o o o
. ; e 1 o o q0 O e e o oo o o o q0
[ [ ] [ ] L J @ L ] [ ] [ ]
@ @ [©) ® ® ™Y ® o e e e o0 o o o
[ ] [ o L ] -0 L ] [ ] [ ]
4-QAM 16-QAM 64-QAM
(2-PAM) x (2-PAM) (4-PAM) x (4-PAM) (8-PAM) x (8-PAM)

Figure 3.68: QAM constellations (with 4, 16 and 64 symbols).

This type of constellation has the advantage that the transmitter and receiver implementation
is relatively simple. For example, the coordinate values take the same values in each direction
of space, and the decision regions of each symbol can be expressed as independent conditions for
each of the directions of space, so that the processing can be done in the same way. independent
for each direction of space in both the transmitter and the receiver.

PSK constellations

These constellations, whose name comes from the English acronym for “Phase Shift Keying”, have
as their main characteristic that the points of the constellation form a circle on a 2D space, just
like the examples shown in Figure [3.69
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Figure 3.69: Examples of PSK constellations (with 4, 16 and 64 symbols).

OCW Universidad Carlos III de Madrid 215

Marcelino Lazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

Its main advantage is that since the symbols all have the same norm (distance from the origin),
they all have the same energy, so the energy remains constant at all symbol intervals during
transmission. The transmitter and receiver implementation is also not complex, since the symbols

can be encoded as .
An] = \/E, x 7l

that is, that the information of each symbol is in its phase. In the detector, the decision regions
are defined from thresholds on the phases, so the only thing to estimate is the phase of the received
observation and compare it with the values that define the decision regions.

Unipolar orthogonal constellations

These constellations are constellations in which the dimension of the signal space coincides with the
number of signals, such that M orthogonal signals are transmitted whose vectorial representation
has a single identical non-zero component, that is

VE; 0 0 0

0 VE 0 0

0 0 VE 0

ap = 0 ; a1 = 0 ; g = 0 y Tty AM-1 = 0

0 0 0 | VE, |

In this case, all the coordinates are positive, the energy of all the symbols is the same, and the
receiver is very simple, since it is enough to find the dimension with the largest component.

3.6.4 Binary Assignment - Gray Coding and BER Calculation

Once a constellation has been selected, it is necessary to carry out the binary assignment: assign
to each of the M symbols of the constellation, one of the M possible combinations of m bits. The
objective when making the assignment will be to minimize the probability of error at bit level,
which we will denote as BER (from “Bit Error Rate”), and which is defined as

BER = P(By[(] # By[f]).

In order to obtain a rule that allows minimizing this error probability, the first thing is to know
what it depends on, and how having a certain binary assignment in the encoder affects it. The
calculation of this probability of error is done in a similar way to that of the symbol error rate. The
conditional bit error probabilities, BER,,, must be calculated and averaged taking into account
the probability with which each symbol in the constellation is transmitted
M-1
BER =Y pa(a;) BER,,.
i=0
Regarding the conditional probabilities, we must average the probability of a given wrong symbol
decision, taking into account the number of erroneous bits associated to this error. Mathematically,
it is
BER,, = Afp x elaiza;
a; — pr ela;—a; m 3
Ji
where the parameters involved are defined as follows:
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® Pja;—sq;: probability of deciding A= a; if A = a; is transmitted
Pe|ai—>a]- = / fq|A(q0|ai) qu
qQoel;

® 1M¢jq;—sq;: NUMber of erroneous bits associated to this decision

e m: number of bits per symbol in the constellation

An example of BER calculation for a one-dimensional system

The BER will be calculated for a one-dimensional constellation of 4 equiprobable symbols with
coordinates

ag=—3, ag = —1, ay = +1, azg = +3.
The decision regions are defined by the thresholds ¢,; = —2, qu2 =0, qu3 = +2
Iy = (—o0,=2], I = (—2,0], I, = (0,42], I3 = (42, +00),
and the chosen binary assignment (at the moment arbitrarily is)
ag =01, a; =00, ap =10, ag = 11.

Figure illustrates these characteristics of the system under evaluation.

ay=01 a, =00 a,=10 a3;=11

° | ® | ° | ®

-3 -2 -1 0 1 2 3
— <

I I

W

Figure 3.70: Constellation, decision regions, and binary assignment for BER calculation.

First, the conditional BERs for each of the 4 symbols of the constellation will be evaluated.
We start with the first symbol, ag. For this symbol, the conditional distribution fqa(qlag) is
Gaussian with mean ay and variance Ny/2, so the conditional BER is given by

1 3 1
- @(m)—@(m)]x 2

BER,,

Pe|a‘0,~>a1 ey
2 1
o= el * 2 +le(——=])|x ;
| No/2 No/2 J 2 No/2 <
-~ Melag—ag v d Melag—ag

3

Pe\a0—>::12 Pe|ao—>ag m

Figure w graphically represents the meaning of the probabilities Pja,a; in different colors.
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Figure 3.71: Graphical illustration of the probabilities of error between symbols, Pyjaya;, para
A= aq.

For the second symbol, a;, the conditional distribution fqa(qla;) is Gaussian with mean a; and
variance Ny/2, so the probability of conditional bit error is

1 1 1 3 1
BER, = Q| ——||x = +]lo(——)-0——]|x =
L ( N0/2>], N [ ( N0/2> ( N0/2>]/ Z

Pel;f_)ao me|ar}1—>ao P€|;32 me\a;}—»aQ

3 2
+|Q X =

( N0/2>] Z
N~ - Mela) —a,

Pe\a1—>a3 m :

Figure W graphically represents the meaning of the probabilities Peja, a; in different colors.

q|A(qlal)

A
~
L 4
N
L 2

Figure 3.72: Graphical illustration of the probabilities of error between symbols, Pyja, a;, para
A= aj.

For the third symbol, the conditional distribution fqa(qlas) is Gaussian with mean a, and
variance Ny/2, so that

sene —lo(—2 Ve 2 lof-i) of 2 )], ¢
* | N2)| T 2| No/2 Nof2)| 2
PEIa;f*)aO me|ar2n—>a0 Pe|a‘2fg)a1 me‘afn_)al
1 1
+ x =
()] 2
Pe‘;a3 me|a’r2n—>a3

Figure graphically represents the meaning of the probabilities Ppja,—a; in different colors.
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fq|A(qla2)

AN

W

Figure 3.73: Graphical illustration of the probabilities of error between symbols, Pyja, a;, para
A= as.

Finally, for the last symbol of the constellation, a3, the conditional distribution of the observa-
tion, fqa(alas), is Gaussian with mean as and variance Ny/2, which means that

2
e o2V« 1 clof2 ) of—2 )], 2
No/2 2 No/2 No/2 <
~ ~ Melag—sag ~ 7 Melag—a;

Pe|a3~>a0 m P5|33‘>a1 m

ol =)o =]|* 5

No/2 No/2 2
~ v~ -~ Melag—ag
Pe\ag%aQ m

Figure [3.74] graphically represents the meaning of the probabilities P.ja, o, in different colors.
g grap y |as J

faja(alas)

Figure 3.74: Graphical illustration of the probabilities of error between symbols, Pyja;a;, para
A = as.

Once the conditional BERs are calculated, the total BER is obtained by averaging them, which
for this example leads to

1 1 1 1
BER =1 X BER,, + 1 x BER,, + 1 x BER,, + 1 x BER,,

3 1 1 3 5)
:EQ(-%M>+5Q<<%ﬂ>“Q<-%m)

Let’s see what happens if the binary assignment is modified. If we were to use now, for example,
the binary assignment
ap =11, a; =00, a; =10, a3 = 01.

If the previous process were repeated to calculate the BER, a different result would be reached,

specifically
5 1 3
BER=-Q| —= | — =
4Q ( No/2> Q ( N0/2>
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It can be seen that this value is larger (the dominant term is the one with the smallest argument

v/ No/2

second by %. What makes an assignment better or worse with respect to the BER it produces?

of the function Q(x), in this case Q (;) , which in the first case is multiplied by %, and in the

If we observe the calculation procedure, we will see that modifying the binary assignment does
not modify the error probability terms between one symbol and another, that is

Peja;—sa; + do not change
Sin embargo, si que cambia la probabilidad de error de bit asignada a cada error de simbolo
Meja;—sq;  depend on the assignment

This means, that depending on the chosen binary assignment, the terms

me|ai —aj

m

They can take one of two values: % or % = 1. Changing the binary assignment implies changing
the terms that are associated with one or another value. What is interesting here is to associate
these values in such a way that the bit error probability is minimized. This implies trying to
assign the lowest value, 1/2, to those terms with higher values for P4, ;. And the terms that
have a higher symbol error probability value P4, 4, are those associated with symbols that are
at the minimum distance in the constellation. From here arises the rule that optimizes the binary

assignment, and which is called Gray coding.

Gray coding The binary assignment of symbols that are at minimum distance must only differ
by 1 bit, so that the terms that weigh the most in the BER (for higher values of Pe|ai_mj) are
multiplied by the value %

In other words. When a symbol error occurs, it is most likely an error with a symbol that is at
minimum distance from the transmitted one. For this reason, it is best to make the most frequent
type of error only produce a single bit error over the m coded bits. In this way, using a Gray
coding, the bit error probability can be approximated for, reasonably high signal-to-noise ratios,
as

BER =~ ) P,
m
where m = log,(M) is the number of bits per symbol in the constellation.

Any encoder must use a Gray encoding, or if this is not possible, a pseudo-Gray encoding,
where the rule is enforced for as many symbols at the minimum distance as possible. For the
most common constellations, QAM and PSK, it is always possible to find a Gray coding. In
the case of QAM this is easy because the two-dimensional encoding can be done by establishing
a one-dimensional Gray encoding with half the bits assigned independently in each direction of
space, as shown in Figure [3.75

For PSK constellations, since the points are on a circle, it is also relatively easy to find a Gray
encoding. It is enough to consider a one-dimensional Gray encoding in which the extreme symbols
differ by a single bit, and convert it into a circular assignment in 2D space, as in the example of

Figure [3.76]

OCW Universidad Carlos I1I de Madrid 220 Marcelino Léazaro, 2023



Universidad
Carlos I
de Madrid

ucdm

Communication Theory

0001 0101 1101 1001

01 [ ] [ ] [ ] [ J
0000 0100 1100 1000
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Figure 3.75: Gray coding example for a 16-QAM constellation.

A
® 000
100 @ e (001
101 011
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111 @ ® (010
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Figure 3.76: Example of Gray encoding for an 8-PSK constellation.
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M (symbols) m (bits/symbol) | Es with normalized levels (dpin = 2) | dpin with Eg = 2
4 2 2 2
16 4 10 0.8944
64 8 42 0.4364
256 16 170 0.2169

Table 3.1: Transmission with M-QAM constellations.

3.6.5 Relationship between bit rate and symbol rate

To finish with the encoder, we just remember the relationship between symbol rate and bit rate.
Since each symbol carries m bits, the relationship between bit and symbol rates is obvious.

Ry, = m X Ry bits/s,

or

R
R, = Eb bauds (symbols/s).

This means that a system with a greater number of bits per symbol (or what is the same, with
a greater number of symbols, M = 2™), will have a greater transmission capacity for the same
symbol rate. This fact could invite to consider the idea of transmitting very dense constellations
(with many symbols). However, another factor must be taken into account when choosing a
certain constellation density. If the system is energy limited, denser constellations will imply
smaller distances between symbols, which in turn will lead to poorer performance. To illustrate
it with an example, let’s analyze a system with M-QAM constellations. The Table shows for
different sizes of the constellation, how the necessary energy increases if the minimum distance is
maintained (normalized levels) or how the minimum distance is equivalently reduced if the energy
is kept constant average energy per constellation symbol. In Figure the constellations are
shown to scale for that average energy level per constant symbol, F, = 2 in this case. It can be
seen that when choosing denser constellations, although the number of bits per symbol increases,
the ratio between performance and energy decreases, so in practice, once again, a compromise
must be sought when establishing the optimal density for a constellation.

4-QAM 16-QAM 64-QAM 256-QAM
e o o oo o o o IR xxx
. . . . e00ceccccecccccce
00 00000 OGOGCONOSIEOSEOSNOSNOIOS
e 1T ° -+ LS 00000 cecv0000000e
0 00000 OCGOGCOEOSNOSNOSNOSNOIPS
° ° ° ° . o . b o . o ° 000000 OGOGCONOSIEOSEONOSNOIOS
e o o ole o o o IRyl
} i i f i i f % i | Feeebesssleseesess
O xxx
_1 +1 A e00cccccecccccce
° i i ° ° ° ° ° ° ° ° ° 000000 OGOGCONOIEOSEONOSNOIOS
IRyl
Y -1 — Y — — 0 0000 0OCGOOGOOGOEOGOSNOSNOSIS
b ° b ° ° i ° b 000000 OGOGCONOSIEOSEONOSNOIOS
° i i d e0cecccccecccccce
° b ° b hd d ° ° 000000 OGOGCONOSIEOSNOSNOSNOIOS

Figure 3.77: Different M-QAM constellations with the same mean energy per symbol (E; = 2).
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The modulator is the second functional element of the transmitter, after the encoder. Its function
is to transform the sequence of vector representations of the signals to be transmitted, A[n],
into the modulated signal s(t) that contains the information to be transmitted. This function
is illustrated in Figure [3.78. The way to do it will be transforming each vector of the sequence
Aln] into a signal of duration T that will define the shape of the signal in the corresponding
symbol interval, nT < ¢t < (n + 1)7T, in such a way that if A[n] = a; then s(t) = sx(t — nT) in
nT < (n+1)T. This means that the modulated signal is generated piecewise, by symbol intervals.

Aln] s(2)
—>‘ Modulator i—
Vectors Signal

Figure 3.78: Modulator in the transmitter of a digital communications system.

3.7.1 Design of the modulator

The basic function of the modulator, as has been said, is to generate a signal from its discrete
representation. Since the relationship between signal and discrete representation is given by the
expression

N-1
silt) =D ai; x ¢;(1),
=0

what is needed to perform this conversion is to define an orthonormal basis of N elements (dimen-
sion of the signal space). And that is what the design of the modulator consists of, in the choice
of that orthonormal basis of dimension N

Modulator design: {¢o(t), ¢1(t), -, dn_1(t)}.

If An] = a; then s(t) = sx(t — nT) in nT < (n + 1)T, so that the analytical expression of the
complete signal is

n

N-1

s(t) > ) Ajln] x ¢t —nT),
=0

where A;[n] denotes the j-th coordinate of symbol A[n], i.e.

AO [Tl]

A1 n
Aln] = .[ ]

AN—.l [’fl]

Just as the design of the modulator was made taking into account two factors, performance
and energy, the design of the modulator is made based on a single factor: the characteristics of
the channel. An orthonormal basis must be sought whose elements minimize the linear distortion
suffered by the signal during its transmission through the channel. If the channel response is h(t)
in the time domain, or equivalently its Fourier transform H(jw) in the frequency domain, ideally
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the basis must be such that there is no linear distortion. This means that the following condition
must be satisfied, expressed in the time domain and in the frequency domain

¢i(t) * h(t) = ¢i(t) & Pi(jw) x H(jw) = ®;(jw).

Although in many cases in this subject it will be considered that a perfect adaptation to the
channel conditions can be achieved, in practice this will not be possible, so we will have to settle
for selecting signals whose frequency response is in the passband of the transmission channel,
which gives rise to a distinction between baseband channels and bandpass channels.

3.7.2 Some examples of modulators and modulated signals
This section shows some examples of modulators, and the type of modulated signals that are

generated with them when it is desired to transmit a certain sequence of information bits.

The first example is a system whose constellation (ENCODER) and orthonormal basis (MOD-
ULATOR) are those shown in Figure [3.79)

Bo(t)

S

Figure 3.79: Constellation (ENCODER) and orthonormal basis (MODULATOR) of a communi-
cations system. Example A.

Taking into account that it is a one-dimensional system, the signals associated with each of the
symbols are

so(t) = —1 X ¢o(t), s1(t) = +1 x do(t).

Being a space of dimension N = 1, the two signals are scaled replicas, with different scale factors,
of the same signal, the orthonormal basis that defines the modulator, ¢y(t). The two signals are
shown in Figure [3.80]

so(t) s1(t)

+AL +A+
/\g‘ T
|
r .
t N
— A4 A+

Figure 3.80: Signals associated to each symbol in Example A.

For the following binary sequence of information
B[(]=00101101100 ---

the corresponding modulated signal is the one shown in Figure [3.81]
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Figure 3.81: Modulated signal for the information sequence transmitted in Example A.

In each symbol interval, one bit is transmitted, which is carried in one of two waveforms, sq(t)
(in blue) carries the bit 0, and s;(¢) (in red) carries the bit 1.

In the second example, a binary system is considered but now in a two-dimensional space. The
constellation (ENCODER) and orthonormal basis (MODULATOR) used in this case are those
shown in Figure [3.82

au% 0 Fooo(t) #1(t)

T TN INL

S

Sl
S

Figure 3.82: Constellation (ENCODER) and orthonormal basis (MODULATOR) of a communi-
cations system. Example B.

Taking into account that it is a two-dimensional system, the signals associated with each of the
symbols are

So(t) = +1 X ¢o(t) +0 X ¢1(t), s1(t) =0 X ¢po(t) + 1 x ¢1(t),
which, unlike the previous case, is now formed from the linear combination of two signals, the two

elements of the orthonormal basis that defines the modulator. The two signals are shown in Fig.
2.3

S0 (t) ] S1 (t)

+At +A
r N /x
— |
/. _/ .
_ A+ _A4

Figure 3.83: Signals associated with each symbol in Example B.

For the same binary sequence of information as in the previous case
By(]=00101101100 ---,

the corresponding modulated signal is the one shown in Figure [3.84

As in the previous example, in each symbol interval one bit is transmitted, which is carried in
one of two waveforms, so(t) (in blue) carries the bit 0, and s;(¢) (in red) carries the 1 bit. What
changes from the previous example is the shape of the signals used to transmit each symbol now.
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s(t)
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Figure 3.84: Modulated signal for the information sequence transmitted in Example B.

In the third example, using the same modulator as in the previous case, a constellation of M = 4
symbols will now be used. The constellation (ENCODER) and orthonormal basis (MODULA-
TOR) used in this case are those shown in Figure [3.85]

3
ay =01 Po(t) #1(t)

il +/Z -
1 +1 /\ T \ /T
T T |
I
\/ t

Sl

S
|
S

Figure 3.85: Constellation (ENCODER) and orthonormal basis (MODULATOR) of a communi-
cations system. Example C.

Once again, it is a two-dimensional system, where the signals associated with each of the symbols
are

so(t) = —1 % go(t) — 1 x n(t),
s1(t) = =1 X ¢o(t) + 1 x ¢y1(¢),
So(t) = +1 X ¢o(t) — 1 x ¢1(1),

s3(t) = +1 X do(t) +1 x ¢u(t),

which again are formed from the linear combination of two signals, the two elements of the
orthonormal basis that defines the modulator. The four signals are shown in Figure |3.86

So(t) S1 (t) Sg(t) Sg(t)

+A+ +A- +A+ +A
T \ T T T

Figure 3.86: Signals associated with each symbol in Example C.

If the binary sequence of information to be transmitted is now
By[¢] =001011011000 1100010010 ---,

where for convenience the bits have been separated into blocks of size m = 2 bits, the corresponding
modulated signal is the one shown in Figure |3.8
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Figure 3.87: Modulated signal for the information sequence transmitted in Example C.

Unlike the previous two examples, which were binary (M = 2), now in each symbol interval not
one but two bits are transmitted, which are carried in one of the four waveforms, so(¢) (in blue)
carries the pair 00, s1(t) (in red) carries the pair 01, so(t) (in green) carries the pair 10, and s3(t)
(in cyan) transports the pair 11. Now, as it is a constellation of M = 4 symbols, each symbol
carries m = log, (M) = 2 bits of information.

Finally, the fourth example uses the same four-symbol constellation as the previous example,
with the same binary assignment, but with another modulator of dimension N = 2, as shown in
Figure [3.88

y y
t t
a; =01 ¢o(t) ¢1(t)
o T+ o . .
+/2 /2 +
1 41 T T
i i P,
I
—-1 T t T t
o | o -2+ 2 r N 7 r
ag = 00 12 10

Figure 3.88: Constellation (ENCODER) and orthonormal basis (MODULATOR) of a communi-
cations system. Example D.

The analytical expression of the four signals based on the elements of the basis, as the constel-
lation does not change, is the same as in the previous example

So(t) = —1 X ¢o(t) — 1 x ¢y(t),

$1(8) = —1 x olt) +1 % 61 (1),
So(t) = 41 x go(t) — 1 x ¢y1(t),

s3(t) = +1 X ¢o(t) +1 x ¢u(t),

but with different values for the two functions that form the orthonormal basis, so the four resulting
signals are now those shown in Figure |3.89

If the same binary sequence of information is transmitted as in the previous example
By[¢] = 001011011000 1100010010 ---,
the corresponding modulated signal is the one shown in Figure [3.90

Again, in each symbol interval two bits are transmitted, which are carried in one of the four
waveforms, so(t) (in blue) carries the pair 00, s1(t) (in red ) carries the pair 01, sy(t) (in green)
carries the pair 10, and s3(¢) (in cyan) carries the pair 11. Being the same constellation of M =4
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S0 (t) S1 (t) S92 (t) S3 (t)

+AT +AT +A +A

Figure 3.89: Signals associated with each symbol in Example D.

s(t)

+AT

—A

11

o 9 g 10 op sr O g4 10 5p 00 gp 11 g 00 gp 01 g 00 4gp 10 490

Figure 3.90: Modulated signal for the information sequence transmitted in Example D.

symbols, each symbol again carries m = log,(M) = 2 bits of information. What changes is the
waveform that each pair of bits carries, as the orthonormal basis that defines the modulator has
changed.

If we compare the systems of the last two examples, which share an encoder, the performance
if it is transmitted over a Gaussian channel are identical, and the energies of the four symbols
are also identical, since these are determined by the choice of the encoder (which contains the
discrete representation of the signals). What changes from the third example to the fourth is the
waveform of the signals and therefore their frequency response. In the fourth example we have
square signals, whose frequency response is baseband (centered at 0 Hz), while in the third example
we have signals whose frequency response is centered at the frequency of the sinusoids that form
the basis, so which is a bandpass response, as shown in Fig. [3.91] The choice of one orthornormal
basis (modulator) and another will depend on the characteristics of the channel through which we
want to transmit, and in particular in this case, on the band in which the transmission is to be
carried out. If the channel has a low pass response, it will be better to use the modulator from
the fourth example, which generates adequate signals for this type of channel. If the channel has
a bandpass response, it will be better to use the modulator of the third example, which generates
signals more suitable for this type of response.
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Figure 3.91: Frequency response of the signals of examples C and D.
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Chapter 4

Fundamental limits in digital
communications systems

The main objective of a communications system is the reliable transmission of information. A
source produces the information, and the purpose of the communication system is to transmit the
output of the source to the destination of the information, as illustrated in Figure |4.1

Transmitted Information Received Information
Source (1) (Transmission Medium | 7(*) Desination
By[n] L (Channel) J By[n]
Signals Signals

Figure 4.1: Simplified functional diagram of a communications system.

There is a wide variety of information sources, and each of them produces information of a
different nature. Some types of information sources, with the corresponding type of information
they generate, could be, for example:

e Radio broadcasting: voice or audio source.
e TV broadcasting: video source.

e FAX transmission: still image.

e Communication between PCs: binary or ASCII source.

Data storage: binary source.

When analyzing a communications system and measuring its performance or its limits, it is
possible to consider quantifying the amount of transmitted information, or the reliability in the
transmission of information.

Two types of communication systems have been studied in previous chapters: analog commu-
nication systems and digital communication systems. Regarding analog communications systems,
the compromise between performance and resource consumption of the different modulation vari-
ants has already been studied, especially power and bandwidth. In this chapter, only digital
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communications systems will be considered, and the objective will be to study the fundamental
limits that can be reached in the reliable transmission of information with this type of systems.
It should be remembered that the use of a digital communications system does not imply the
exclusion of analog sources. Digital transmission generally allows greater immunity against noise,
greater flexibility, the application of encryption and makes easier the implementation of equip-
ment, which has made digital systems predominate over analog ones. But it is possible to transmit
information of an analog nature through a digital system, performing an analog-to-digital con-
version on the transmitter side and the corresponding digital-to-analog conversion on the receiver
side.

When studying the performance of digital communications systems in the previous chapter,
it has been seen that by increasing the transmission rate by increasing the number of bits per
symbol of the constellation, for a certain average energy per fixed symbol, the probability of error
increases and therefore the performance is degraded. This fact was considered unavoidable until
Claude Shannon demonstrated in the 1940s that it is possible to transmit with as low a probability
of error as desired at an arbitrary bit rate as long as that bit rate is below the so-called channel
capacity. This demonstration is considered the beginning of the so-called information theory, and
sets a limit to communication systems as to the maximum amount of information that can be
reliably transmitted. It should be noted that the proof of this result establishes the limit, but
does not specify how the limit can be reached. At the moment, information theory has no answer
to this question.

This chapter intends to analyze what is the maximum amount of information that can be trans-
mitted reliably using a digital communications system, and the factors that this limit depends on.
Although almost everyone has an intuitive notion of what information is, to carry out the analysis
of a communications system, this intuitive notion is not enough, rather it is necessary to have
quantitative measures of information. Hartley, Nyquist, or Shannon were pioneers in developing
definitions of measures for information that are useful for the purpose of this chapter. These mea-
sures of information are related to the probability distributions of the elements whose information
is to be quantified. In order to make use of them in the analysis of a digital communications sys-
tem, it is necessary to first define probabilistic models that can be used to represent the behavior
of digital information sources. Since the information will be transmitted through a channel using
the communications system, it will also be necessary to have probabilistic models that allow rep-
resenting the behavior of the channel and the behavior of the communications system at different
levels. From these probabilistic models, and using quantitative measures of information, it will
finally be possible to obtain the limits that a certain communications system can reach.

This chapter is divided into four parts:
e In the first part, probabilistic models will be presented to represent the behavior of infor-
mation sources.

e Next, probabilistic models will be defined to represent the behavior of the communications
channel and the elements of the communications system at different levels. All these models
will be referred to generically as channel models, since the different elements of the commu-
nications system can be considered in some way as part of the channel through which the
information is transmitted.

e The third part will present different quantitative measures of information.

e Finally, in the last part, making use of the probabilistic models for sources and channels,
and of the quantitative measures of information presented in the third part, the fundamental
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limits achievable by a digital communication system will be obtained.

4.1 Modeling of information sources

A source of information produces something as output, which will be generically called information,
which is of interest to a potential receiver, who does not know it in advance. The mission of the
communications system is to ensure that the information is transmitted correctly.

As the output of the information source is a time varying function that is unpredictable (if it is
predictable, there is not much interest in transmitting it). This output can be modeled by means
of a random process. The characteristics of this random process will depend on the characteristics
and nature of the specific source. For example, it could be a continuous time or discrete time
random process depending on whether the source generates information of analog or digital nature,
as shown in Figure 4.2]

X(1)
Source
X(n|

Figure 4.2: Statistical model of an information source: a random process.

Although this chapter will focus on the study of digital systems, and the most relevant mod-
els will therefore be the models for digital sources (analog sources will be converted to digital
format before transmission), the models used for analog sources will also be briefly studied for
completeness.

4.1.1 Analog sources

The model used to characterize an analog source is usually continuous time random process, X (t),
whose statistical properties depend on the nature of the source. The modeling of a voice source
can be taken as an example. It is known that the voice signal has most of its power essentially
distributed in the frequency band between 300 and 4000 Hz. Therefore, this source can be modeled
by a random process whose power spectral density adjusts to these characteristics, as illustrated
in Figure

Sx (jw)

| | | | | |
T u T T T

—4000 —3000 —2000 —1000 0 1000 2000 3000 4000 5=

Figure 4.3: Example of a power spectral density that represents the typical frequency components
of a voice signal.
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It is usually considered that the mean behavior does not change over time, which allows us to
assume that the process is stationary. As the mean of the signal is also zero, the random process
used to model the voice signal could be a stationary random process, with zero mean, and a power
spectral density function like the one in the figure. Being a stationary process, its autocorrelation
function will be given by the inverse Fourier transform of this power spectral density.

The same procedure is applicable to different analog sources. For example, for TV signals,
depending on the system (PAL, SECAM or NTSC), the band is between 0-6.5 MHz or between
0-4.5 MHz. A stationary random process would be used to model them, whose power spectral
density represents the mean behavior of the frequency response of the squared signal.

Although each analog signal will have different spectral characteristics, there are some common
aspects in most of the models:
1. Band-limited processes are considered.

2. This allows them to be sampled following the Nyquist criteria and can later be reconstructed.

4.1.2 Digital sources

In the case of a digital source, its output can be modeled by a discrete time random process. The
source is modeled as a discrete time random process, X[n]. The source alphabet can be:

e Discrete: For example to model a digital data source or sampled and quantized analog
signals.

e Continuous: For example to represent sampled analog sources (such as a speech signal)
before quantization.

Depending on the type of source, the statistical parameters of the random process will be different.
In this section we are going to study the simplest source model, which allows us to carry out all
the subsequent development of the chapter. This model is the discrete memoryless model.

Discrete memoryless source model

The discrete memoryless source model, or DMS, of an information source is a discrete time random
process. All the random variables that make up the random process X|[n] are independent and
have the same distribution (i.i.d.: independent and identically distributed). Thus, a DMS source
generates a sequence of i.i.d. random variables which take values from a discrete alphabet. To
fully describe this type of font, it is enough to know its alphabet and its distribution, that is,

L. Ax =A{xo,z1, - ,xm—1}-

2. px(z;) = P(X =ux;) fori=0,1,--- ,M — 1.

An example of a DMS is provided below.

Example
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A binary information source uses as a model a DMS that is described by the alphabet
Ax ={0,1},
and the following probabilities for the binary symbols
P(X=1)=pand P(X =0)=1—p.

In the particular case where p = 1/2, this type of source is called binary symmetric source
or BSS.

4.2 Probabilistic channel models

In Chapter |3 the general model of a digital communication system has been presented, whose
functional elements are shown in Figure [4.4]

Bp[¢] — Bln] Aln] s(¢)
Bits S Encoder Modulator .
ymbols Vectors Signal

(m bits) Digital Transmitter Channel

By[t) «— Bln aln] r(1)
Bits Symbols — Demodulator Signal

m bi . . .
bt Digital Receiver

Figure 4.4: General model of a digital communication system.

In this scheme, the abstraction of the physical transmission medium was called channel, and a
Gaussian additive channel model was used as a simplified model to represent it. In this section
the term channel will have a broader meaning than the one considered in the diagram of Figure
[4.4] Several probabilistic models will be defined, which will be generically called channel models.
These models will establish the probabilistic relationship between the received information and the
transmitted information at different levels of the communication system, which can be understood
as the definition of various channels on the system, each one at a different level of abstraction.

The characterization of these models will be given by the conditional distribution of the output
given the input. In all cases, conditional independence will be considered between inputs and
outputs for different time instants, so that the time dependency can be eliminated. This means
that the input value at a certain instant will be modeled by a random variable X, and the
corresponding output value at the same instant will be modeled by another random variable, Y.
In this case, the probabilistic model will be characterized by the conditional distribution

fY\X(ylx)'

The difference between the models that are going to be presented is in the definition of what in
each case is considered input and output for each channel. Four different probabilistic models
(or channels) will be presented, each one considering what the channel is with a different level of
abstraction on the general model of the communications system. Specifically, the four models are
those shown in Figure .5 and which are listed below:
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Symbols Vectors Signal
(m bits) J
Gaussian channel Gaussian channel

with digital input

Figure 4.5: Definition of the different channel models on a digital communications system.

1. Gaussian channel. It is the model for representing the physical channel itself, which
transforms the transmitted signal by adding additive noise, modeled by a stationary, ergodic,
white, Gaussian random process, with zero mean and power spectral density Ny/2, so that

r(t) = s(t) + n(t).

In this model, the values of the transmitted signal and the received signal, at the same time
instant, are considered as the input and the output, respectively

X =s(t), Y =rt).

In both cases, the random variables are continuous random variables, since the transmitted
and received signals can take on values over a continuous range of amplitudes.

2. Gaussian channel with digital input. This model coincides with what in the previous
chapter was called equivalent discrete channel, which presents as input a sequence of symbols
from a discrete alphabet (constellation) of M symbols. As output, it has an observation with
a continuous domain, the output of the demodulator. In the previous chapter it was seen
that the relationship between both was an additive relationship with the noise term at the
demodulator output.

aln] = Aln] + z[n].
The statistical characteristics of the noise vector z[n] were studied in the previous chapter.
Therefore, in this model the input is the transmitted symbol at a discrete instant n, and the
output is the observation at the output of the demodulator at that same instant. Therefore,
they are symbols and vector observations of dimension N, so multidimensional random
variables (vectors) of the same dimension will be used to represent them.

X =Aln], Y =qnl.

3. Digital channel. This model considers the set formed by the encoder, modulator, channel,
demodulator and detector. The input is the transmitted symbol, from an M-ary alphabet,
and the output is the estimated symbol, which has the same alphabet: B[n] and B[n] (or
A[n] and An], since there is a one-to-one equivalence between symbols as blocks of M bits
and N-dimensional vectors of the constellation that carry them). Therefore, in this model
the input and output will be defined as

~

X = B[n], Y = B[n] or equivalently X = A[n], Y = Aln).
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4. Binary digital channel. This is the last level of abstraction, in which the entire communi-
cations system is considered as a channel, whose inputs and outputs are binary symbols. It
represents the highest level of abstraction of a communications system: the complete system
seen as a vehicle or channel for the transmission of bits. In this case, therefore, the input
and output will be defined as the transmitted and received bit, at the same time instant

X = Bylf], Y = By[(].

Once these four channels have been presented, the probabilistic model (conditional distribution
of the output given the input) that will be used to represent each one of them will be obtained.

4.2.1 Gaussian channel

The input-output relationship of the Gaussian channel is
r(t) = s(t) + n(t),

where the noise term n(t) is modeled as a stationary, ergodic, white, Gaussian, random process
with zero mean and power spectral density S, (jw) = Ny/2. The autocorrelation function of the
noise is therefore

R,(7) = % o(7).

To obtain the probabilistic model given by the conditional probability of the output given the
input, the first thing to take into account is that the power of the noise process, being white, is
strictly infinite. This implies that in practice, to minimize the effect of noise on the receiver, a
frequency selective filter must be used. Ideally, this filter will not introduce any distortion into
the signal s(¢), which will be considered band limited, with bandwidth B Hz, and at the same
time should minimize the noise power at its output. The filter that meets these conditions is
an ideal low-pass filter, with a bandwidth equal to that of the received signal. In this way the
Gaussian channel will actually model the relationship between the transmitted signal and the
received signal after this filtering, as illustrated in Figure [4.6] where the response h,,(t) (or its
frequency equivalent H,(jw)) is that of the ideal filter used to limit the noise power.

s~ — ()
\-IT-/ Lhn (1) / Hy 0w)J—>

n(t)

Figure 4.6: Gaussian channel with receiver filtering to limit noise power.

If the signal has a bandwidth of B Hz, the filter’'s bandwidth will be B Hz, so its frequency
response is
H(jw) =11 (57 )
n\Jw) = )
J oW

where W = 27 B denotes the bandwidth in radians per second, and its impulse response
h,(t) = 2B sinc(2Bt).
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The power of the noise term at the output of this filter, as seen in Chapter 2, is obtained by
integrating the power spectral density of the filtered noise process, which for ideal filters involves
multiplying Ny by the bandwidth in Hz of the filter

> N
o’ = / Sy (jw) | Hy(jw)|? dw = 70 X 2B = NyB.

Taking this into account, the Gaussian probabilistic channel is defined as the one that relates two
random variables X and Y with continuous probability density functions on IR that represent
the value of s(t) and r(t) at a certain instant of time. Given that the value of the output at an
instant will be that of the input plus the value of the filtered noise at that instant, and that this
noise has a Gaussian distribution with power NyB, this probabilistic model is characterized by
the conditional probability density function

1 _w—a)?
e 202 ,

frix(ylz) = S

where 0% = NyB.

4.2.2 Gaussian channel with digital input

Figure [4.7] conceptually illustrates the Gaussian channel with digital input, which models the
relationship between the constellation symbols being transmitted and the observation at the de-
modulator output at a given time.

Aln] ) s(z) )

{ Modulator ]
Channel

Vectors Signal

q[n] r(1)
T{ Demodulator ]

Signal

Gaussian channel
with digital input

ﬂ) Gaussian Channel| 47]
with digital input

Figure 4.7: Gaussian channel with digital input.

As seen in Chapter [3] the observation g[n] (the output of this channel) cab be written as
q[n] = Aln] + z[n],

where z[n| is the noise component of the observation noise, which is a discrete-time, multidimen-
sional stochastic process (of the dimension of the system signal space, N), made up of N jointly
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Gaussian random variables, and independent of A[n|. In addition, its components are in turn
statistically independent from each other. This makes it possible to remove the time dependency
and use the representation

q=A+z,

where z has a Gaussian probability density function, N-dimensional, with zero mean and variance
Ny/2 in all directions of space

PO A S R
fa(z) = N (07 2)_(7TN0)N/26 '

From here, obtaining the probabilistic model is simple. It is formally defined as the one that
relates the N-dimensional random variables X and Y, the first with a discrete alphabet {x;},
with 7 = 0,--- , M — 1, where each value of the alphabet will be identified with one of the
N-dimensional vectors that form the constellation of the system, and the second with an N-
dimensional continuous probability density function over IR. Under this premise, the probabilistic
model is given by the conditional probability density function

1 7\|y7vx,-u2
SFrx(ylxi) = GRS

that is, an N-dimensional jointly Gaussian distribution with mean equal to the transmitted symbol
and variance 02 = Ny/2 in each direction of space. As seen, it agrees with the probabilistic model
that defines the equivalent discrete channel, now using a slightly different notation in terms of the
random variables X and Y to denote, respectively, A and q.

4.2.3 Digital channel

Figure represents the digital channel. Usually, we work with the vectors of the constellation
Aln] instead of with the symbols Bin|, although given the one-to-one relationship, it can be
applied to the latter in the same way.

In this model, each symbol in the sequence Bn| is considered to be statistically independent
of the rest of the symbols in the sequence. On the other hand, it has already been seen that
given that the signals only occupy the intervals of duration 7" dedicated to a symbol and that
the noise is independent at each moment, the reception of each symbol is independent of the rest
of the symbols. Under these conditions, the probability of having a given symbol at the output
of the digital channel, B[n], depends solely on the symbol B[n] that is transmitted at that same
instant. Therefore, it is possible to eliminate the time dependency and only analyze the case of the
transmission of an isolated symbol, understanding that every time the channel is used to transmit
a symbol, the channel will not modify its behavior.

When the symbol b; is transmitted, at the output of the channel symbol b; is decided with a
specific probability: this is the conditional probability

P (031b4)-

Due to the one-to-one assignment between a symbol and the vector representation of the signal
that transmits it, this probability satisfies that

pB|B(bj|bz‘) = pA\A(aj|ai>'
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in](Digital Channel} Binl Aln) {Digital ChannelJﬂ

Figure 4.8: Conceptual representation of the digital channel.

In the previous chapter, we studied how these probabilities are calculated by integrating the
conditional distribution of the observation for the transmitted symbol in the corresponding decision
region I;. Since in this model the input and output were X = B and Y = B, if these probabilities
are known for all possible combinations of transmitted and received symbols, the channel will be
fully characterized.

There is a widely used probabilistic model that contemplates the digital channel as a particular
case and is called discrete memoryless channel or DMC.The DMC is a statistical model that relates
a random variable X with a discrete probability density function that we call input and another
random variable Y with a discrete probability function that we call output. In the particular case
of the DMC, the input and output alphabets may be different. In our application they share the
same alphabet.

X

pY|X(?Jj |1‘z')

Figure 4.9: Probabilistic model: discrete memoryless channel (DMC).

The DMC can be represented by the diagram in Figure 4.9 In the block that represents the
channel, neither impulse responses nor frequency responses appear, but rather the conditional
probabilities of the output given the input. The discrete term comes from the nature of X and Y,
which have a discrete alphabet. The term memoryless comes from the probabilistic model of the
input and output, random variables instead of random processes (there is no time dependence of
the statistics). Formally, a discrete memoryless channel is defined through the following elements:

1. The input alphabet (of Mx possible values)
AX:{ZL’ZlZ:O, ,MX—l}.
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2. The output alphabet (of My possible values)

A ={yi|i=0,--- My — 1}.

3. The set of conditional probabilities
pyx (y5]:)-

These probabilities are called transition probabilities, and they are usually grouped in the so-
called channel matriz, which is a matrix of My rows and My columns that arranges the transition
probabilities as follows

pY|X(y0’9C0) pY\X(Z/l’xO) T PY\X(?JMYA\I'O)
P pyix (Yolz1) [)Y\A\’(!h \'1‘1) ce P)'L\'(!/;\/\ _1|z)
pY\X(yo|$MX—1) pY\X(yl‘xﬂlX—l) ce pY|X(yJ\Jy—1|IMX—1)

In this matrix, a row is associated with a certain input, while a column is associated with a
certain output. Therefore, the sum of the elements of a row results in 1 (we have the sum of the
conditional probability distribution over the entire observation space). Furthermore, if two DMCs
are concatenated, the channel matrix of the concatenation will be obtained by the product of the
channel matrices of each of the channels:

PZ|X =PY|X x PZ|Y.

Sometimes, instead of the channel matrix, a graphical representation is used to specify the
transition probabilities, using an arrow diagram or trellis diagram, such as the one shown in
Figure [£.10] In this case, the transition probabilities are included in the weights associated with
the different arrows that form the diagram joining elements of the input with the output. Given
the definition of these probabilities, the probabilities associated with the arrows coming out of the
same node add up to unity.

py|x (yolzo)

X

0 Py |x (yolz1) Yo

. ' Py |x (y1lzo)
Py |x (yilz1)
T n
Py |x (Unmy —1lz1)
py|x (Wolzrry —1) Py | x (Umy —1l70)
TMx—1 — YMy —1

Py |x (UMy —11TMy —1)

Figure 4.10: Representation of a DMC using an arrow diagram.
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It should be noted that in the definition of a discrete memoryless channel, the input and output
alphabets appear, but not the probability distributions of the input, px(z;), nor of the output,
py (y;), since these probabilities are not part of the nature of the channel.

The following shows how to obtain a DMC that represents the digital channel for a certain
communication system. The model is obtained from the symbol error probabilities defined in the
previous chapter. In the first place, for a DMC that models a communications system, both the
input and output alphabets correspond to the alphabet of symbols of the system, either A[n]
or B[n], given their equivalence. For convenience we will use the vector representation of the
symbols, that is

T; = ag,

Yy; = ay,

and now My = My = M. In this way, the association of the alphabet with the symbols of the
constellation is implicit in the subscripts. Regarding the transition probabilities, it is evident that

py|x (yslz:) = PA|A(aj|az')-

That is, the transition probability py|x(y;|#;) indicates the probability of receiving the symbol
a; when the symbol a; has been transmitted. In this case, the elements of the main diagonal of
the channel matrix, for which j = 4, correspond to the conditional accuracies (probabilities of a
correct decision) for each symbol

pyix (Yilzi) = paja(@ilai) = Poja, = 1 = Peja,.

The elements out of the diagonal, on the other hand, correspond to the error probabilities between
different symbols.
pyix (yjlzi) = pA\A<aj|ai) = Peja;»a;-
JF#i j#i
Consequently, the sum of the elements of each row outside the main diagonal is equal to the
conditional error probability for the symbol associated with that row.

M-1 M-1
Z pY|X(y]’xz) = Z Pe\ai%aj = Pe|a¢-
3=0 7=0
J# j#

This means that in an ideal system, the channel matrix or trellis diagram should be as shown in

Figure a diagonal matrix, or a trellis diagram with a single arrow from each input symbol
to the same output symbol.

1
X0 e———e@ Y0
1 0 --- 0 1
01 --- 0 XL &———————— @ Y1
P=1I= )
o1
00 1
1

Figure 4.11: Ideal values of a DMC that models a Gaussian channel.
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To illustrate the procedure for obtaining the channel matrix for a communications system, a
system with a constellation of four symbols, M = 4, in a one-dimensional space, N = 1, will be
used as an example, with coordinates ag = —3, a; = —1, a, = +1, a3 = +3 and equiprobable,
with which the decision regions are given by the thresholds q,; = —2, quo =0, qu3 = +2

I() = (—OO7 —2], .[1 = (-2,0], _[2 = (0, +2], .[3 = <+2,—|—OO)

as shown in Figure [£.12]

ap a a a3
e | e | e | e q[n]
3 2 -1 0 1 2 3 .

I A :

Figure 4.12: One-dimensional constellation of four equiprobable symbols and their corresponding
decision regions.

In this case we have the following association
X =An|, Y =An|,
so the input and output alphabets match
v, =a;, y;=a; fori,je{0,1,--- ,M—1}.

The transition probabilities py|x (y;|;) probabilistically defining the system correspond in this case
to the probability of receiving the index symbol j when the index symbol ¢ has been transmitted.
These values define the probability of succeeding in the transmission of a symbol, if 7 = ¢, or the
error probability between two symbols, if j # i. Using the notation from the previous chapter, we
have

pY\X(yz’xz) = Pa|ai =1- Pe\aia

and
pY\X(yj|37i) = P€|ai4>aj for j # .

In the previous chapter it was explained how these values were obtained, and will be obtained
again for this constellation.

We start with the transition probabilities appearing in the first row of the channel matrix,
py|x (yjl®o), V4. In this case, they are the probabilities of receiving each of the 4 symbols when
ay (the symbol associated with z) is transmitted. The distribution of the observation when the
symbol ag is transmitted is Gaussian, with mean ag and variance Ny/2. So to get the conditional
probabilities, you just have to integrate that Gaussian distribution in each of the 4 decision regions,

as illustrated in Figure [4.13]

These probabilities are then calculated:
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Figure 4.13: Calculation of the transition probabilities associated with the first row of the channel

matrix.

e Distribution fqa(qlag): Gaussian, mean ag = —3 and variance Ny/2

leX(yO’$O) =1— Py, =1— Q (

1
N0/2

pyix(Y1|20) =Pejag—a; = @ Nz, Q
3

pY|X(y2’$O) :Pe|a0—>a2 =Q N0/2 -Q
5

leX(y3’x0) :Pelao—>a3 =Q N0/2

(
(v

3

\)

/

o 2

)
)

\)

It can be seen that these four probabilities add up to unity, as expected.

Next, the transition probabilities in the second row of the channel matrix, py x(y;|®1), Vj.
In this case there are the probabilities of receiving each of the 4 symbols when a; (the symbol
associated with x;) is transmitted. The distribution of the observation given that a; is transmitted
is Gaussian, with mean a; and variance Ny/2. The transition probabilities are the integrals in the

4 decision regions, as shown in Figure [£.14]

fqia(alar)

2 -1 0 1 2 3

A
v
L 4
A
v
A

I() 11 12 ]3

L 4

Figure 4.14: Calculation of the transition probabilities associated to the first second of the channel

matrix.

These probabilities are then obtained:
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e Distribuiton fqa(qla;): Gaussian, mean a; and variance Ny/2

1
pY|X<yO|x1) =Peja;—ay = € ( N0/2>

pyix(W1]71) =1 = Peja, =1 -20Q (

pY|X(?J2’$1) Pe\alﬁazz (

()

pY|X<y3’371) Pe\alﬁagz (

In the third row of the channel matrix we have the transition probabilities py|x (y;|z2), Vj. The
distribution of the observation given that a, is transmitted is in this case Gaussian with mean
a; = +1 and variance Ny/2. As in the previous cases, to obtain the conditional probabilities, this
Gaussian distribution must be integrated in each of the 4 decision regions, as illustrated in Figure

4. 10]

fqlA(q|a2)

A
L &
L 4
A
L &
A
L 4

Figure 4.15: Calculation of the transition probabilities associated with the third row of the channel
matrix.

Now:

e Distribution fqa(qlaz): Gaussian, mean a, and variance Ny/2

3
X Peag ag —
pY|X(y0| 2) lag—ag Q ( N0/2>

1 3
pyix (Y1l22) =Pejaz-sar = Q ( N0/2> ¢ ( No/2>

1
T9) =1—Pa,=1-2
pyix (Y2|2) | Q( N0/2>

1
pY|X(y3|$2) Pe\a2—>a3 =@ ( N0/2>
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Finally, in the fourth and last row of the channel matrix we have the transition probabilities
py|x(yjl®2), Vj. The conditional distribution of the observation when az is transmitted is in
this case Gaussian with mean a3 = 43 and variance Ny/2. The transition probabilities are as
represented graphically in Figure |4.16

Jaa(alas)

A
L &
A
L 4
A
L &
A
L 4

Figure 4.16: Calculation of the transition probabilities associated with the fourth row of the
channel matrix.

These probabilities are:

e Distribution fqa(qlas): Gaussian, mean az and variance Ny/2

No/

5
pY|X(yO|x3) :Pe\a3—>ao = Q N0/2
3 5
z :Pea a; — -
pY|X(y1| 3) laz—a; Q N0/2 Q N0/2>
1 3
pY|X(y2|$3) :Pe\a3—>a2 =Q 5 -Q N0/2

23) =1 —= P, =1—
pY|X(y3| 3) lag Q( N0/2

For this example, given the symmetry of the constellation, once the values of the transition
probabilities for the first two rows are obtained, those of the next two rows can be obtained
immediately. In any case, grouping all the transition probabilities, the DMC that represents
the communication system that uses the 4-symbol constellation of the example has the following
channel matrix:

() () e(vin) @) e(in) ez

| el 1) e(gs) e
Q(As) eluts) Qi 1-2Q
(=) elvim)-e(sn) o(wm)-e(Fn) e(#s) |

7N

For different values of Ny, the array will have different values. As N, decreases, the matrix
approaches the identity matrix, which is the ideal channel matrix.
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4.2.4 Binary digital channel

The binary digital channel is the probabilistic model that involves a greater abstraction by con-
sidering the entire communications system as a channel that transmits and receives bits.

By[f] - Bln] Alr] 1)
Bits Encoder Modulator ,
Symbols Vectors J Signal

(m bits)
Channel

B[] ~{— Bln] qlr (1)
Bits [ Detector J—{ Demodulator W
Vectors J

Symbols Signal
(m bits)

ﬂ Binary Digital| Bl‘l
Channel

Figure 4.17: Conceptual representation of the binary digital channel.

It is therefore a model in which the probabilistic description is given by the probability of
receiving each of the possible values of the binary sequence B, [{] given the transmitted sequence
By[f]. In the case in which time independence is assumed, g =0, 21 = 1, yo = 0 and y; = 1 are
used, and taking into account that by definition

pyix (Yolzi) = 1 — pyix (y1|zs),

the transition probabilities are reduced to only two relevant probabilities: the conditional proba-
bility of error (or, alternatively, the accuracy) for each bit. In this case, a DMC particularized for
the case Mx = My = 2 can be used as a model of the binary digital channel, which will have the
form
P— pY|X(y0|I0) PY\X(Z/l’l’o) } _ [ 1—pe\0 Delo

pyix(Wolz1) pyix(vilz1) Pet 1 —pep
The probabilities p.|o and pe; denote the bit error probability when a zero or a one is transmitted,
respectively. In most communication systems these two probabilities are equal

Pejlo0 = Pej1 = €,
in which case the channel matrix is symmetric

P— pyix (olzo) pyix(y1]2o) ] _ { 1—¢ ¢ }
pY|X<y0|x1) pY|X(y1|ZL’1) c 1—¢ |-

This case is known as Binary Symmetric Channel or BSC.The trellis diagram representation for
this model is shown in Figure [£.1§]

OCW Universidad Carlos I1I de Madrid 247 Marcelino Lazaro, 2023



Universidad
ucdm | Carlos il

de Madrid Communication Theory @020

1—¢
To e ® Yo

T * Y1
1—¢

Figure 4.18: Trellis diagram representation of a binary symmetric channel or BSC.

The BSC is a probabilistic model that may be appropriate to represent the binary digital channel.
However, before concluding the equivalence between binary digital channel and BSC, the following
points should be discussed:

1. For binary systems, M = 2, a symbol of the sequence B[n| carries a single bit, and if the
symbols are transmitted independently in B[n] that implies a bit-independent transmission
in the sequence By[¢f]. In this case, the BSC model accurately represents the binary digital
channel.

2. For M-ary systems with M > 2, the BSC represents the average behavior over time of the
binary digital channel, because in the real system the transmission is carried out by blocks
of m = log, M bits, symbol by symbol (sequence B[n| and its vectorial representation A[n]).
It can therefore be said that while the digital channel does not have memory (because the
transmission is carried out symbol-by-symbol, independently) and fits perfectly into the
DMC model, the binary digital channel has the memory introduced by the encoder that
transforms the sequence By[¢] into the sequence B[n]. This means that it cannot strictly be
considered a channel without memory. From this point of view, the BSC is an approximation
to the binary digital channel that represents its average behavior over time.

3. The value of the error probability ¢ defined for the BSC is in both cases is the bit error rate
(BER) of the system.

Despite this discrepancy between the assumptions of the BSC model and the nature of the binary
digital channel, the equivalence of both is usually accepted in practice, assigning to € the BER of
the system
p_ 1-BER BER

BER 1—BER |’

4.3 Quantitative measures of information

Once the probabilistic models have been established for sources and channels, in this section
various types of quantitative measures of information are introduced. On the one hand, measures
that can be applied to a random variable, which can be, for example, the one that models the
input or output of a channel. On the other hand, measures that are applied simultaneously to
two random variables, which in our problem would take into account the relationship between the
input and output of a channel. Through these measurements it will be possible to subsequently
calculate the maximum amount of information that can be reliably transmitted with a digital
communications system.
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4.3.1 Information and entropy

First of all, the information that a certain discrete random variable has is going to be quantified.
In the application for the study of communication systems, this random variable can represent
both the output of an information source and the input or output of a digital channel.

In order to obtain a quantitative measure of the information that a random variable contains,
we will first look for a measure for the information that contains an event of that random variable,
that is, the fact that the random variable takes on a certain value within its alphabet, such as
X = x;. Before establishing a quantitative information measure for this case, some of the basic
properties that this measure must fulfill will be intuitively presented, with the aim of later finding
some function that fulfills these properties.

e An intuitive notion of information indicates that the amount of information about a certain
event is related to the probability with which it occurs.

e Moreover, it must be a decreasing function fo this probability: To know that an unlikely event
has occurred generally provides more information than the knowledge of a more probable
event.

e Small changes in the probability of the event should lead to small changes in its information,
or alternatively, events with a similar probability should have similar information.

e Finally, it must be additive for independent events, if a joint event is defined as the simul-
taneous occurrence of two independent events. Intuitively, the information that they have
as a whole should be the sum of the information of each one of them separately.

Starting from these intuitive notions about some characteristics that a measure of information
about a certain event must have, we arrive at the so-called self-information, or surprisal, which is
a quantitative measure of the information contained in an event of a random variable.

Self-information (surprisal)

The self-information or surprisal of the event X = z; is denoted as Ix(z;). In order to obtain
the analytical expression of this function, the intuitive notions about said measure that have been
commented above have been translated into mathematical notation, which gives rise to the four
conditions that said function must satisfy.

1. The information measure of an event should depend on its probability, and not on the value
of the event itself, that is

Ix(x;) = f(px (@)
2. It must also be a decreasing function of the probability of the event
px(x;) > px(z;) will imply that Iy (z;),
which means that the function f(-) must be a decreasing function

f(a) < f(b) for all a > b.
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3. The function f(-) used for self-information must also be a continuous function of its argu-
ment, so that the variation of information will be continuous over the probability of events.

4. Finally, if two random variables are independent, and a joint event X = z; and Y = y; is
defined, the information of the joint event must be the sum of the information of each event

Ixy(z3,y;) = Ix(25) + Iy (y;)-

Since for independent random variables the joint probability can be written as the product
of the marginal probabilities of each variable

pX,Y(fEu?/j) = px(z;) X pY(?Jj)a

this means that the function f(-) chosen for the information measure must be additive over
the product of the arguments, that is

flaxb) = f(a) + f(b).

It can be shown that the only function that satisfies these properties is the logarithmic function.
Therefore, self-information is defined as

Ix(7;) = —log(px(z:)).

Taking into account the properties of the logarithmic function, the self-information can alterna-
tively be written as
1
Ix(z;) = log ( ) .
px (z;)

The base of the logarithm does not determine the characteristics of the information measure,
but defines its units. The most frequently used bases are 2 and the natural base, or Euler number
e (natural logarithm). If the base is 2, the units are bits, and if the natural logarithm is used, the
units are nats. Henceforth, when the base is not specified, base 2 logarithms will be assumed and
therefore bits as units of information. In any case, the change of the base, and therefore of units,
does not imply more than a scaling, since in general the logarithms in a certain base are related
to the logarithms in the natural base through the following relation

log.z Inx
log,b Inb’
which directly supposes a linear relation between the logarithms in two different bases.

Entropy

Self-information provides a quantitative measure of information about an isolated event. If you
want to quantify the information of a random variable (for example to model a source of in-
formation), all possible events must be taken into account. A reasonable option is to average
the information of each event considering its probability. The information content of a random
variable thus calculated is called entropy and is denoted by H(X). Therefore, the entropy of the
random variable X is obtained by averaging the self-information of each of the events that are
part of the alphabet of the random variable

HOO == Y (e logpx(e) = 3 plon)dog ().

i=0 (1’1)
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The units will be bits or nats per symbol, depending on the base that is used.

For the purposes of the computation, it must be taken into account that 0log(0) = 0 will
be considered. The entropy is a function of the probability of each event, i.e., of the discrete
probability density function, and provides a number that represents the information content of
that source. It should not be confused with a function of a random variable which is another
random variable, as the notation may make it appear.

Entropy can be interpreted as a quantity that represents the uncertainty about the specific value
that a random variable X takes, which can model, for example, the output of an information
source. If X always takes the same value x;, that is, if px(z;) = 1, there is no uncertainty about
the value of the random variable and the entropy is equal to 0. If X stops always taking the same
value, then the uncertainty increases and with it the entropy.

Two important properties of the entropy of a discrete random variable are:

1. The entropy of a discrete random variable is a non-negative function, that is
H(X)>0.

This is evident since the range of values of a probability is 0 < px(z;) < 1 and log(z) <0
for 0 <z < 1. The value H(X) = 0 only occurs if one of the elements of the alphabet has
probability one and therefore the rest have probability zero.

2. The maximum value that the entropy of a discrete random variable can take is the logarithm
of the number of elements of its alphabet

H(X) <log(Mx).

That maximum value occurs only if the symbols are equiprobable, px(z;) = 1/Mx, which
is the situation of maximum uncertainty.

These two properties establish the limits for the minimum and maximum values that the entropy of
a random variable X can take, and indicate under which distributions the minimum and maximum
values are obtained, respectively. To illustrate these properties, entropy is calculated below in a
very simple case: a binary random variable, Mx = 2, where the probabilities of each symbol
are parameterized with the probability of one of the two elements of the alphabet, px(zq) = p,
px(z1) =1 — p. In this case the entropy is equal to

H(X) = —p log(p) — (1 —p) log(l —p) =p log]% + (1 =p)log ! 5= Hy(p) = Q(p)

This function, denoted as Hy(p), or alternatively as €2(p), is called binary entropy function, and
is represented in Figure 4.19| as a function of its argument. Remember that this argument rep-
resents the probability of one of the two elements of the alphabet of the binary random variable.
Sometimes, the binary entropy function is also called the horseshoe function, because of the shape
of the function, which can be seen in the figure.

If there is no uncertainty, p = 0 or p = 1, the entropy is null. Outside of these cases, the value
is always greater than zero, taking the maximum value, 1 bit per symbol, when the symbols are
equiprobable, which represents the situation of maximum possible uncertainty. Furthermore, since
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Figure 4.19: Binary entropy function, H,(p) or £2(p), expressed in bits per symbol.

entropy depends only on the values of the probability distribution and not on the alphabet, it is
a symmetric function with respect to p = %, which is evident since by definition

Q(p) = Q1 —p).

The binary entropy function can serve as a reference to define an information bit: a bit is the
information that is obtained when two symbols are transmitted with equal probability.

Below is an example of calculating the entropy of a random variable with an alphabet of more
symbols, specifically five symbols.

Example

A source can be modeled with the DMS model with an alphabet
Ax ={-2,-1,0,1,2},
and probabilities
1 1 1 1 1

px(—Z) = 5’ pX(il) = Z’ pX(O) = gv pX(]-) = E? pX(Q) = E

In this case the entropy is
1 1 1 1 15 .
H(X)= 3 log(2) + 1 log(4) + 3 log(8) + 2 x 6 log(16) = < bits/symbol.

It can be seen that the value of entropy depends only on the probabilities of the possible
elements of the alphabet, and not on the concrete values of the alphabet. For example, a
font with a different alphabet

Ax ={0,1,2,3,4},
but with the same set of values for the probabilities, although with a different assignment to
each element of the alphabet

1 1 1 1 1

0) == 1) =- 2)=— 3

has the same entropy as the previous one.
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4.3.2 Joint entropy

The definition of entropy can be extended to more than one random variable, which would be
applicable, for example, to measure the joint entropy of the input and output of a communication
system. The joint entropy of two random variables X and Y, generally with different alphabets
and probabilities, Ay = {xi}i]\i’é_l, px(z;), and Ay = {yi}ij\iyo_l, py (i), is defined as a trivial
extension of the entropy of a random variable, considering in this case that there are as many
events as joint cases and that the probability of each of them is given by the joint probability,
which leads to the expression

Mx—1 My —1
Pxy mz,y log ( ) .
Z Z ! pXY(xuy])

=0 j5=0

As for the entropy of a random variable, given the properties of the logarithm function, a change
in the sign and the inversion of the argument of the logarithm provide the same value

Mx—1 My—1
HX,Y)== Y > pxy(ziy) log(pxy(xiy;))-
1=0 7=0

Like entropy, it is also measured in bits or nats per symbol. The concept can be extended to N
random variables. In this case

X = (XlaXla"' 7XN)>

and
H(X) = - Z px (21,22, xn) log(px (@1, 2, -+, 2N)).
T1,X2, " TN
In this notation, the sum indicates the N sums contemplating all the possible combinations of the
alphabets of each random variable.

The interpretation of joint entropy does not differ from that of entropy for a random variable.
After all, a pair of variables X and Y can be thought of as a single vector random variable with
an alphabet of Mx x My symbols.

If the random variables X and Y are independent, the joint probability is

pX,Y(fEhyj) px(z )XPY(?JJ)

In this case, their joint entropy is the sum of the individual entropies. This had been pointed out in
the definition of the conditions that the information measure had to meet, and it is demonstrated
in a very simple way, as can be seen in the following development

Mx—1 My —1 1
px (i) py(y;) log ————
; ]ZO i) px (i) py (y;)
Mx—1 My—1 Mx—1 My -1
Z Z pX xz by y]) log + Z Z pX xl Py yj) log ( )
i=0 j=0 =0 j=0 Yi
Mx—1 My —1 1
px(z;) log ——— + py (y;) log ——
Z ( Z ’ py (v5)
:H(X) + H(Y).

As we will see in more detail in the next section, it should be noted that this relationship is only
fulfilled under the hypothesis of independence between the random variables.
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4.3.3 Conditional entropy

Independent random variables produces the greatest entropy if they are independent, since if both
variables were not independent, knowledge of the value of one of them would eliminate uncertainty
about the value of the other. To measure this uncertainty, the conditional entropy of two random
variables X and Y, H(X|Y) is used, which averages the value of the conditional entropy of X
given Y over all values of the alphabet of Y

My —1

H(X[Y) = Z py(y;) H(X|Y =y;).

Considering the definition for the entropy H(X|Y = y;) from the conditional distribution of X
given Y, pxy(x;|y;), the following equivalent expression is obtained

My —1 Mx—1
H(X|Y) = Py (Y5) pxyy (zi]y;) log ————
Z ! Z | ’ px\y(:rzly])
MX 1 My —1
D D TR e — —
=0  j=0 pxy (ily;)

According to Bayes’ rule, this probability satisfies the relation

x|y (zly;) py (y5) = pxy (T4, y5).

In general, this definition can be naturally extended when the conditioning is with respect to
several random variables.

H(Xn[X1, Xo, -0, Xyoa) =

- E px L1, T2, 755N) longN|X1,X2,~--,XN71(xN‘xhx27'" 75CN71>-

L1,L2, ",

Conditional entropy can be interpreted as a measure of the uncertainty of a random variable,
X, when the value of another random variable, Y, is known. Or in another way, the comparison
between H(X) and H(X|Y') quantifies the information that the knowledge of Y gives about X.
When the random variables X and Y are independent, knowing the value of one of them does not
provide knowledge about the other and therefore does not eliminate uncertainty about its value.
Therefore, in this case

H(X|Y) = H(X).

Conversely, if the knowledge of Y completely determines the value of X, knowing the value of Y
there is no uncertainty about the value of X, and the conditional entropy would be H(X|Y') = 0.

The joint entropy is related to the entropy and to the conditional entropy through the following
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Mx—1My—1 1
E E pX Y xza y] log (SU )
=0 =0 Pxy (T, Yj
Mx—1 My —1

= Z Z pX,Y(fEiayj) Ing !

X(iﬂz) PY\X(?/;"%‘)

i=0  j=0
Mx—1 My —1 Mx—1 My —1

E E px,y (i, yj) 108; + E E px,y (T4, ;) 10g—
=0 7=0 1=0 7=0 pY|X(y]|xl)
Mx—1 Mx—1 My —1

+ Z ZpXY (z3,9;) log ————

o i=0 PY|X(yJ|$z)

= Z px (z;) log
i=0
=H(X) + H(Y|X).
With an equivalent expansion, it is easy to show that the following relation also holds
HX,)Y)=H(Y)+ H(X|Y).

This does not mean that H(X|Y) is equal to H(Y'|X), in general. This relationship only holds
when H(X) = H(Y).

The joint entropy is obtained as the sum of the entropy of a random variable plus that of the
other conditioned on the first. Therefore, the uncertainty of one of the random variables is added
to that of the other when the first is known. This means, as we have seen previously, that the
joint entropy will only be equal to the sum of the entropy of each of the random variables when
the random variables are independent.

In general, this relationship can be extended to the case of a larger number of random variables,
in which case applying the chain rule we have the following general relationship

H(X)=H(Xy)+ H(Xo|Xh) + HX3| Xy, Xo) + - + HXN| X1, Xo, -+, Xvoa).

When (X7, Xy, -+, Xy) are independent random variables, the joint entropy of all of them will
be the sum of the entropy of each of the random variables

4.3.4 Mutual Information

Entropy represents a measure of uncertainty about the value of one or more random variables.
Another concept that we could define as “complementary” is the so-called mutual information
between two random variables X and Y, which is denoted 7(X,Y"). Mutual information represents
the information provided by Y about the knowledge of X. The formal definition from the marginal
distributions of each random variable and their joint distribution is

Mx—1My—1

I(X,)Y) = Z Z pxy (Ti, yj) logM

=0 =0 x (i) py (y;)
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and is measured in bits.

Mutual information is a non-negative measure, I(X,Y) > 0, which can be expressed in terms
of entropy and conditional entropy, since the following relationship holds:

Mx—1 My —1

v T Y
=30 3 ey g L0
i—0  j—=0 Py \Y;
My —1 My —1
e e pxy (@i, y5)
=D D pxy(Ey) 108§T
=0 j=0 Px (i
Mx—1 My —1 . Mx—1 My —1
Z Z pxy (%, y;) log —— px () + Z Z px,y (i, y;) log(pxy (i, y;))
=0 j5=0 =0 j=0
Mx—1 Mx—1My—1

Z Z Pxy xz,y] log

=~ = pxw(:vz,yg)

= Z px (i) 10g
—H(X) - H(X|Y).

Equivalently
I(X,)Y)=H(Y)—-HY|X).

On the other hand, from the very definition of mutual information
I(X.Y) = I(Y, X),
and taking into account the relationship between marginal, conditional and joint entropies
HX,)Y)=HY)+ H(X|Y),
it is straightforward to see that the mutual information can also be obtained as
IX,)Y)=HX)+HY)-H(X,Y).

These relationships between mutual information and the different entropies are usually represented
graphically by a Venn diagram, like the one shown in Figure

H(X,Y)

Figure 4.20: Venn diagram illustrating the relationships between entropies and mutual informa-
tion.

The area of a circle represents the entropy of a random variable, H(X) or H(Y), and the
intersection between them is the mutual information I(X,Y’), while the area covered by both
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circles is the joint entropy, H(X,Y"). The difference between a circle and the intersection represents
the conditional entropy. If the random variables are independent, the circles would have zero
intersection. If both variables are equal, the intersection is complete and the conditional entropy
is zero. Figure [4.21]| shows more clearly how each of the measurements is identified on the Venn
diagram with a simple color code.

H(X,Y)

Figure 4.21: Identification with a simple color code of the different entropies and mutual informa-
tion on the Venn diagram.

Below is an example in which different entropies and mutual information are calculated for two
simple random variables..

Example

There are two binary random variables, X and Y, with the same alphabet xo = y9 = 0,
x1 = y1 = 1, and with the following joint distribution

1 1 1
pX,Y(OaO) = ga pX,Y(Oa 1) = gv pX,Y(lvo) = 57 pX,Y(lv 1) =0.

To calculate the entropy of each random variable, it is necessary to know the marginal
distributions, which are easily obtained from the joint distribution

My -1 Mx—1
px(zi) = > pxy(@iy) and py(y) = > pxy (@i ;).
=0 i=0

In this case )

px(0) = py(0) = ; px(1) =0y (1) = .

Therefore, as in this case the two variables have the same distribution, the entropy of both
variables, parameterized through the binary entropy function (since the binary random vari-
ables)

H(X) = H(Y) = H, (;) _H, (é) — 0.919.

The joint entropy, applying its definition, will be given by
1
H(X,Y)=3x <§ log, (3)> + 0logy(0) = logy(3) = 1.585.

This result can also be interpreted as (X,Y") being a vector of two random variables with an
alphabet of three events, (0,0), (0,1) and (1,0), all of them equally likely.
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From the previous results, the conditional entropy can be obtained through the relation
HX|Y)=H(X,Y)—-H(Y) =1.585—0.919 = 0.666.
Similarly, mutual information could be obtained, for example, through the relationship

I(X,Y) = H(X)— H(X|Y) = 0.919 — 0.666 = 0.253.

Mutual information between discrete random variables has a number of properties that should
be taken into account. Among them, the following should be highlighted:

1. It is non-negative
I(X,)Y)=1(Y,X) >0.

The minimum value /(X,Y) = 0 is obtained if X and Y are independent.
2. Its maximum value is bounded by the value of the entropy of each of the random variables,
so in practice it is bounded by the minimum value of the entropy of the random variables
I(X,Y) < min(H(X), H(Y)).

Mutual information can never be greater than the measure of information that each of the
variables has individually.

3. Conditional mutual information can be defined as the average of the mutual information
given each of the possible values of the random variable with respect to which it is conditioned
M, -1

I(X,Y|2) = Z pz(z) I(X,Y|Z = z).

4. The conditional mutual information I(X,Y|Z) can also be obtained through the conditional

entropies as
I(X,Y|Z)=H(X|Z)— H(X|Y, Z).

5. The chain rule for mutual information is defined from
I((X,Y), 2) = I(X, Z) + (Y, Z|X).

6. In general, the chain rule is

[(X0, X, Xn),Y) = (X0, Y) + I(Xa, YIX) 4+ I(Xn, YIX, - X)),

7. From the definition of mutual information we obtain the definition of entropy as mutual
information of a random variable with itself. This relationship is easily demonstrated by
taking into account that the distribution of a random variable with itself takes the form

px.x (@i, ;) = 6[i — j] px (i),

so the mutual information of the random variable X with itself is

S dli — j] px (i)
N)= 2 2 dimdlexte) e T )
RSy px (z:)

= 2 o) los N

MX 1 1

S e
:H(X).
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This is why the name auto-information is sometimes used to name the entropy.

4.3.5 Differential entropy and mutual information

Until now, the measurements that have been presented refer to discrete random variables, which
serves to model discrete time information sources with a discrete alphabet. For these variables, the
entropy, H(X) and the mutual information I(X,Y"), as well as the conditional and joint entropies,
H(X|Y) and H(X,Y), have been presented.

To model a source discrete in time but with a continuous alphabet, for example a sampled audio
source, it is necessary to use a continuous random variable. In this case, the analog of entropy
for discrete random variables is called differential entropy. However, this measure does not have
the intuitive meaning that entropy had, which is due to several aspects, such as the fact that in a
continuous random variable, by definition the probability of a particular continuous value is zero.

Formally, the differential entropy of a continuous random variable X, with a probability density
function fy(x), is defined as

1
fx(z)

b0 = [ fe(o) log o o

where, again, 0log(1/0) = 0.

Example

Differential entropy of a uniformly distributed random variable in an interval [0, a].

Using the definition of differential entropy directly, and taking into account that the proba-
bility density function of the random variable is 1/a between 0 and a, the entropy is equal

to
1

a
h(X) = / —log(a) dz = log(a).
o a
From this example you can see some interesting properties:

1. For a < 1 we have h(X) < 0, which goes against the non-negativity property of the
entropy of a discrete random variable.

2. For a =1, we have h(X) = 0, and in this case X is not deterministic, so it has a certain
degree of uncertainty. This also goes against the properties of entropy for discrete
random variables.

Example

If X has a Gaussian probability density function with zero mean and variance o2

1 «?
fx(x)= e 202,
(@) V2mo?

Using natural logarithms, the differential entropy for this random variable in nats is computed
as

h(X):—/_ZfX(x) ln\/;T?d:z—/_(:fx(x) In <e222> da

2

1
=In(V2mo2) + ;— = In(V27o?2) + =
o

2 2

1
=3 In(27wec?) nats.
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To arrive at this expression, the following properties of the Gaussian distribution have been
used

oo o
| @@=ty [ 2 @) do=o,
—o0 —o0
Changing the base of the logarithm to 2, we have the differential entropy in bits

1
h(X) = 3 log, (2mec?) bits.

. . . . . 2 1 .
Depending on the variance, in particular when compared with 0° = 5, this entropy can
take positive, negative or zero values.

As for discrete random variables, joint and conditional entropies are also defined for continuous
random variables. The joint differential entropy between two random variables X and Y is defined

as
1
h(X,Y) / / fxy(z,y) logf (x,y)dm dy.

As for the conditional differential entropy, its definition is

1
h(X]Y) = / / fxy(z, y)logfx‘ @ ‘y)dw dy.

The alternative but equivalent definition is often used

RXIY) = / Frly / iy aly) oz 7 Hy)dxdy.

It can be seen that they are the natural extensions of the definitions for discrete random variables.
Therefore, the same relationships hold. Specificly

h(X,Y) = h(Y) + h(X]Y).

Similarly, the mutual information for continuous random variables can be defined as

for@y)
I(X,Y) = //fxy:vy)log—fx( e ay

which is also measured in bits, and where to avoid ambiguities we define 0 log% =0.

As in the case of discrete random variables, mutual information can be expressed in terms of
entropies

[(X,Y) = h(Y) — h(Y|X) = h(X) — h(X]Y) = h(X) + h(Y) — h(X,Y).

Unlike for differential entropy for continuous random variables, where the intuitive interpreta-
tion of entropy for discrete random variables as a measure of uncertainty or information is not
maintained, for mutual information it is maintained and has the same meaning. The mutual infor-
mation indicates the knowledge that one variable contributes about the other. Furthermore, most
of the basic properties of mutual information for discrete random variables hold. In particular,
given its definition, the following properties are satisfied:

1. I(X,Y) > 0, that is, it is a non-negative function.

N

I(X,Y) = 0 only if the variables X and Y are independent.
3. I(Y,X) = I(X,Y).

OCW Universidad Carlos I1I de Madrid 260 Marcelino Léazaro, 2023



Universidad
Carlos I

de Madrid Communication Theory @020

ucdm

4.4 Channel capacity

Once the concepts of entropy and mutual information have been defined, in this section we will
try to determine the maximum amount of information that can be transmitted through a channel
using these information measures. Firstly, the concept of channel coding will be introduced as a
mechanism to achieve reliable communication through a certain unreliable channel, to then define
the capacity of a channel and study how this value is obtained for two types of channels: the
digital channel modeled by means of a DMC and the Gaussian channel.

4.4.1 Channel coding for reliable transmission

The main objective when transmitting information over any communication channel is reliability.
This reliability in digital communication systems is measured by the error probability at the
receiver. As in any communication channel, apart from possible distortions, noise is introduced.
At first glance, it may seem that the error probability will always be bounded by a non-zero value
that will depend on the noise level, that is,

PeZK:f(O-Z)u

where o2 is the noise power at the receiver input. However, as already outlined in the introduc-
tion, a fundamental result of information theory says that reliable transmission, meaning reliable
transmission as one in which there is a probability of error below any fixed limit, is possible even
on noisy channels as long as the transmission rate is below a certain value called channel capacity.
This result was presented by Shannon in 1948 and is known as the noisy channel-coding theo-
rem. As a summary, what the channel coding theorem says is that the basic limitation introduced
by noise in a communications channel is not in the reliability of the communication, but in its
transmassion rate. Thus, it will be possible to obtain a communication with an arbitrarily low
probability of error as long as information is transmitted at a rate below a limit value that will
depend on the characteristics of the channel.

In the first place, we will see how to obtain this limit in an intuitive way, following the same
line of argument that is presented in [Proakis and Salehi, 2002], to later formulate it in terms of
information theory.

Figure shows a discrete memoryless channel or DMC, with an input alphabet consisting of
four elements, Ay = {a,b, c,d} and the same output alphabet Ay = Ax.

0.5
00=a a =00

0.5

Ol=0be b=01

11

Figure 4.22: Example of a discrete memoryless channel.
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Since this is not an ideal channel, if this channel is used for transmission in the usual way, the
receiver will not be able to identify with zero error probability the transmitted symbol by looking
at the received symbol. When the value a is present at the output, the receiver cannot discern
whether a or b has been transmitted, since the transmission of both can produce the symbol a at
the output of the channel. The same is true for the other possible output values. If b is observed,
it is not possible to discern without error whether it is due to the transmission of a or b, and so
on. Therefore, there is an error probability that is fixed by the characteristics of the channel, in
this case by the transition probabilities that define it.

However, given the special characteristics of this channel, it will be possible to transmit informa-
tion without errors. It is evident that the impossibility of discerning without error the transmitted
symbol by looking at the output value is due to the fact that the sets that form the possible out-
put values associated with the transmission of each symbol “overlap”. Thus, there is an overlap
between the outputs when a is transmitted (which can be a and b) and when b is transmitted
(which can be b and ¢). So when b is observed in the output it is not possible to know with
absolute certainty which symbol has been transmitted.

But for this channel it is possible to choose a subset of the input alphabet whose outputs do not
overlap. As it can be seen in Figure[£.23] if only the symbols a and ¢ are transmitted, in view of the
output there will be no possible ambiguity about the transmitted symbol: if the output contains
a or b, it is known with certainty that the transmitted symbol is a; the same thing happens if
we have ¢ or d in the output, in which case it is certain that ¢ has been transmitted. Therefore,
by transmitting this subset of possible values of X, the error probability is zero. The price to
pay for this reliability is the transmission rate. By transmitting the 4 symbols that are part of
the alphabet of X, two bits of information are transmitted per channel use. However, if only 2
symbols are transmitted, only a single bit of information will be transmitted per channel use (the
number of information bits per transmitted symbol is log, M, where M is the number of elements
of the alphabet of symbols that are transmitted).

0.5

Figure 4.23: Reliable transmission over an ureliable channel.

The mechanism used in this example to be able to transmit with zero probability of error
illustrates the fundamental idea underlying the channel coding theorem for a reliable transmission:
to use in transmission only those symbols whose corresponding outputs are disjoint. Here it is
necessary to clarify that the objective of channel coding is not really to achieve a transmission with
zero error probability, but with an error probability below a certain value, which can be arbitrarily
low. With this purpose, the subset of transmitted symbols can have outputs that overlap with a
sufficiently low probability.

A problem that arises with this idea for transmission with arbitrarily low probability of error,
is that in practice real channels do not behave like in Figure [£.22] where there are input symbols
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whose outputs do not overlap. In the vast majority of cases there is not even a subset of symbols
whose outputs overlap with a sufficiently low probability. However, channel coding theory proposes
a simple mechanism to artificially generate a situation similar to this. Although this mechanism
can be used for digital channels with M-ary alphabets, for simplicity this mechanism will be
illustrated using a binary case as an example. Specifically, the binary symmetric channel model
or BSC, in which the bit error probability (BER) will be denoted by &, as shown in the trellis
diagram on the left side of Figure [4.24]

000 000
1—¢

0 e e 0 001 001

i 010 010

c 011 011

1 e o 1 100 100
1—¢

101 101

110 110

111 111

Figure 4.24: Binary Symmetric Channel (BSC) and its corresponding extended channel of order
n=.3.

If the BSC channel is observed and one tries to apply the procedure applied to the channel in
Figure [4.22] it can be seen that it is not directly possible, since the outputs of the two symbols
overlap completely with an arbitrary probability (given by ¢) and also because there are only
two symbols (if only one of them is transmitted, there will not really be any information in the
transmission). In general, it’s not going to be possible to apply that procedure directly to almost
any real DMC channel. To use this idea, what is done is to apply it not directly on the channel
but on the so-called extended channel of order n. The extended channel of order n is defined as a
channel in which blocks of n symbols are grouped to form extended symbols (of order n), giving
rise to input alphabets A% and A}.. The idea is to transmit the information not in each individual
use of the channel, but jointly in n uses of the channel. The diagram on the right of Figure 4.24
illustrates the idea of order extension n = 3 for the BSC. The information will be transmitted by
blocks making 3 uses of the channel, so that the alphabet of this extended channel is now made
up of 8 possible extended symbols, corresponding to the 8 possible values that the symbols of the
original channel can take on in the 3 uses that define the extended channel. Therefore, we have
gone from working with a system with an alphabet of two symbols

Ax = Ay ={0,1},
to an extended system with alphabet of 2" symbols, in this case 23 = 8 symbols
A3 = A3 = {000,001,010,011, 100,101,110, 111}.
The transition probabilities on this extended channel are obtained as products of the n transition
probabilities through the original channel associated with each case on the extended channel. If

the extended symbols are defined as vectors of n elements, statistically represented by the vector
random variables X and Y, with alphabets

Xe{x;|i=0,1,--- My -1}, Ye{y;|j=0,1,--- , My — 1}
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with
x; = [z;[0], (1], - -+ wiln = 1], vy = [;]0], ys[1], - -+, yy[n — 1]]

the transition probabilities on the extended symbols are

pyx(vilx) = [ pvix wld0).
/=0

In the figure, the branches with the transition probabilities have not been labeled due to lack of
space, but these probabilities are obtained very easily, with 4 possible values:

If the input and output extended symbols coincide, the associated transition probability is

pyx(yilxi) = (1 —¢)>.

If the Hamming distance between the input extended symbol and the output symbol is 1
(only one bit changes), the associated transition probability is

pyx(yjlxi) =€ (1 —¢)*

If the Hamming distance between the input extended symbol and the output symbol is 2
(two bits change), the associated transition probability is

pyx(yjlxi) =€ (1 —¢).

Finally, if the Hamming distance between the input extended symbol and the output symbol
is 3 (the three bits change), the associated transition probability is

pY,X(yj|Xi) =&’

Basically, the probability that a bit coincides between input and output is 1—¢, and the probability
that it is different is e, from which these four probabilities are directly obtained.

Clearly, for low bit error probabilities e, the first two probabilities are much higher than the
last two (it is much more likely to have zero or one error over all three bits than two or three
errors). Therefore, transitions could be divided into high-probability and low-probability transi-
tions. This division is shown in Figure by means of a color code: high probability transitions
are represented in black and low probability transitions in green.

Having made this distinction, it is now possible to search for a subset of input extended symbols
whose outputs are disjoint in terms of high probability transitions, which happens for example with
the extended symbols 000 and 111, as illustrated in the figure. Now, when one of the two extended
symbols is transmitted, if only the most likely transitions occur, the transmitted extended symbol
will be correctly identified from the output. Obviously, some low probability transition may also
occur, in which case an error will occur in identifying the transmitted extended symbol. In this
case, the error probability will be given by the probability that any of the unlikely transitions will
occur, which for this example will be

P.=1x(1-¢)’+3xe(l-¢)
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Figure 4.25: Distinguishing between high (black) and low (green) probability transitions and
selecting a subset of non-overlapping extended symbols on high probability links.

This value is obtained taking into account that low probability transitions are those corresponding
to two or three bit errors in the transmission, and that there is only one pattern of three errors
and three of two errors for each block of three bits transmitted.

As a numerical example to illustrate the benefit obtained, if a binary communications system
has a BER ¢ = 0.1, one out of every 10 bits will be in error (10% percentage). Using this system
as a base and an extension like the one in the order example n = 3, the probability of error will
become P, = 0.028; that is, a bit error rate of 2.8% can be achieved using a system with a 10%
error rate as a base for transmission. For the case ¢ = 0.01 the percentage of error bits of the
system will be 1%. In that case P, = 2.98 x 10~*, which means an error rate of approximately
0.03%. If € = 10® (one error out of a thousand), P, = 2.998 x 107 (three errors out of a million).

This technique makes it possible to reduce the probability of a system error, but naturally it does
so at the cost of the information transmission rate. If the system is used without the extension,
each time the channel is used, one bit of information is transmitted. If the extended system is
used, since only 2 of the 8 possible extended symbols are transmitted, each of them will carry one
bit of real information, e.g., 000 will carry “0” and 111 will carry “1”. In this way, a single bit of
information will be sent per three channel uses, which means that the effective rate is 1/3 (1 bit
of information for every 3 uses of the channel), has decreased with respect to direct transmission
without the extension.

The choice of the non-overlapping subset of elements in low-probability transitions need not be
restricted to two extended symbols. For example, it would be possible to make an extension of
order n = 5, and choose 4 extended symbols whose high probability transitions (defined as those
in which zero errors or one bit error occur over the five bits transmitted) do not overlap; For
example, they could be the symbols 00000, 10101, 01110 and 11011. In this case, since there are 4
extended symbols, every 5 uses of the channel will send 2 bits of real information, so the effective
information transmission rate will be 2/5.

Channel coding

In general, this technique based on the definition of extended symbols of order n that is used to
carry out a transmission with a sufficiently low error probability on a system that inherently has a
higher error probability is called channel coding. The technique is not limited to its use on binary
systems, as in the examples that have been used for its presentation, but it can also be used on
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M-ary systems. Figure illustrates the operation of a system that uses channel coding as a
mechanism to control the probability of system error.

Example of dictionary for two binary codes

Index set (k) Code words (n) Index set (k) Code words (n)
0 000 00 000000
1 111 01 000111
10 111101
11 111010
Example code C(1, 3) Example code C(2, 6)
. k
Encoder Code rate: R = n Decoder
DMC DMC .
B[/ 4 X[ Y 4 Bl
—([ [ ] DMC D dl-[—
12 k 12 n 12 n 12 k

Figure 4.26: Channel encoder and decoder for transmission on a digital channel modeled by a
DMC, and two examples of dictionaries for the code.

A binary channel coding system is composed of an encoder on the transmitter side, which
performs channel coding, and a decoder on the receiver side, which performs channel decoding.
The encoder takes as input a vector of k£ bits, which defines an input alphabet, formally called
index set, of 2F elements. In the above examples, this set of indices would be composed of the
effective information blocks that are going to be transmitted in each n uses of the channel. For
each input, the encoder generates as output a vector of n bits that are sent over the DMC, making
each of the combinations of k£ bits that make up the set of indices correspond to a combination
of n DMC symbols or codewords. In the above examples, these codewords would be the subset
of extended symbols whose outputs overlap with low probability. Under these conditions, this is
said to be a code C(k,n), where the value n is often called the length of the code. The set of all
code words (2%), is called dictionary. The decoder works reciprocally. Formally, a code is defined
by the set of indices and the encoding and decoding functions.

A very important parameter in any channel code is ratio between the number of symbols at the
encoder input, k, and the number of times the DMC is used to transmit the code word, n, since
it defines the actual amount of information that is transmitted in each use of the channel. This
parameter is called transmission rate or simply coding rate. It is usually denoted by R and is
measured in symbols by use of the DMC

R = — symbols per use.
n

For binary systems, the units of this code rate are bits per channel use.

An intuitive reasoning is that if both &£ and n increase, but maintaining the ratio k/n, the
performance will improve (for instance, by replacing the C(1,3) code with the C(2,6)). This
intuition is correct, but it has a limit: the channel capacity.
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Noisy channel coding theorem

When presenting the principle of channel coding, it has been seen that there is a compromise
between the transmission rate or code rate and the obtained error rate. Some questions naturally
arise regarding the performance that can be obtained with this technique. Is it possible to reduce
the error probability as much as desired using this technique on any type of channel? What
limitations do the channel characteristics impose on the performance that the channel capacity
can offer? The answer to these questions is found in the so-called channel coding theorem, presented
by Claude Shannon in 1948.

The channel coding theorem shows that there is a limit to the maximum transmission rate over
a DMC, which is called channel capacity, and is formally obtained as the maximum value, over
all possible distributions for the channel input alphabet, of the mutual information between the

channel input and output, that is
C = max I(X,Y),
px (i)
where 1(X,Y) is the mutual information between the input X and the output Y of the channel.
The theorem also proves the following aspects:

1. If the transmission rate R is less than the capacity of the channel C, then for any arbitrarily
low value § > 0 there exists a code with a sufficiently long block length n whose probability
of error is less than J.

2. If R > C, the error probability of any code with any block length is limited by a non-zero
value that depends on the characteristics of the channel.

3. There are codes that allow reaching the channel capacity R = C.

It is important to clarify the third point here. The theorem, although it shows that it is possible
to achieve such a capacity, does not answer the question of how such codes can be obtained in
practice. In a practical problem, this capacity will not be reached, but in general codes that are
below this limit are used.

In the next section we will study how to calculate the channel capacity first for a digital channel,
and then for the Gaussian channel. Practical channel code design and analysis is not within the
scope of this course, but will be covered in the course “Digital Communications”.

4.4.2 Channel capacity for the digital channel

In the first place, the case of the binary digital channel is going to be studied, in which n bits
are grouped to form the new extended symbols that will be grouped at the input and output of
the system to implement the channel coding. For this case, the maximum amount of information
that can be reliably transmitted through the channel is going to be obtained in two ways: through
an intuitive explanation based on the definition of high probability transitions along the lines
of the explanation used previously to explain the principle of channel coding, as presented in
[Proakis and Salehi, 2002]; and by the definition presented by Shannon in the channel coding
theorem.

Applying the law of large numbers, for sufficiently large values of n, when a sequence of n bits
is transmitted over a binary channel with bit error probability ¢, the output will have with high
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probability n x e bit errors; that is to say, the received sequence will have with high probability
n x ¢ different bits with respect to the transmitted sequence. The number of possible sequences
of n bits that differ by n ¢ bits is given by the combinatorial number

()

Considering that a combinatorial number can be obtained as

(1) = mm

and using Stirling’s approximation for the factorial numbers, which is given by

n! =~ n"e "V 2mn

that combinatorial number can be approximated as

n ~ 2n Hy(¢)
ne ’

where Hy(e) is the binary entropy function with argument . This means that for every possible
sequence of n bits transmitted there are approximately 2" 7+() highly probable sequences in the
output.

On the other hand, the total number of highly probable sequences of length n bits at the output
depends on the uncertainty of each of the bits that make up the sequence, measured through its
entropy, which in turn depends on the probability of having a one or a zero at the output. If both
symbols are equiprobable, all possible sequences will have the same probability, and the number
of highly probable sequences will be 2". But if the bits in the output are not equally likely, the
probability of the output sequences will be different for each sequence. For example, if the “0”
bit is less likely than the “1” bit, sequences with many zeros will be less likely. In that case, the
number of highly probable bit sequences can be approximated from the entropy measure of the
output, H(Y'), which will be H(Y') = Hy(py(0)), using the expression

2n H(Y)

Therefore, the maximum number of sequences of n bits in the input without overlap between the
highly probable outputs that they generate in the output, and which will be denoted as M,,,, will
be the quotient between the number of highly probable sequences in the output and the number
of sequences that with high probability are generated in the output when a certain sequence is
transmitted in the input, that is to say

2nH(Y)

M, — _ on(H(Y)=Hy ()

onHy(e)

The number of information bits that can be associated with those non-overlapping M,,, sequences
is
logy My, =n (H(Y) — Hy(e)) bits of information.

Therefore, the resulting code rate will be the quotient between the information bits and the number

of uses of the channel. low. M
R =820 _ p(yy _fy(e).

n
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The maximum possible value of this rate R is the one that defines the so-called channel capacity,
which is denoted as C'. The entropy of the bits at the output of the binary channel will be
maximum when the bits “0” and “1” are equally likely, in which case H(Y) = 1. Therefore,
intuitively it has been arrived at that the channel capacity for a symmetric binary digital channel
with bit error probability ¢ is

C' =1 — Hy(e) bits per channel use.

This result has been reached intuitively for the case of the BSC channel. The same result will
then be obtained from information theory. To do this, the mutual information between the input
and the output of the channel is calculated and through it an attempt will be made to find out
what part of the information is transmitted and what part is lost as it passes through the channel.

To calculate the information between the input, X, and the output, Y, of the DMC channel, it
is necessary to know the distributions of both variables. Knowing the input distribution, px(x;),
as the transition probabilities are known, the joint distribution of the input and output is known

px,y (%5, ;) = pyix (yj|z:) px(z5).

From this, the output distribution is obtained as

Mx—1 Mx—1
py(y;) = Z pxy (i, y;) = Z pyix (Yjlzi) px (i)
i=0 i=0

In this way, the complete input/output characterization is obtained. Note that for a BSC

l—e sij=i
pY|X(yj|$z') = .. -
€ sij#i

From these distributions the mutual information between input and output I(X,Y’) can be
calculated, for example through the relations with the different entropies, by means of

I(X,)Y)=H(X)+H(Y)-HX,Y)=H(X)—- HX|Y)=H(®Y) - HY|X).

The mutual information between the input and the output represents the information that the
output of the channel provides about the input, or the uncertainty that is eliminated about the
value of the input when the output is known: in short, the information that is transmitted by the
channel.

To clarify this idea, we will use I(X,Y) = H(X) — H(X|Y) and we will analyze two extreme
cases of the simplest DMC, the BSC. In this case, the best possible channel is the one free of errors,
that is, ¢ = 0, or alternatively ¢ = 1. Keep in mind that in a binary system, being always wrong
is a way of always being right, if just the binary decision is changed. The worst possible case is
the case where e = 1/2 (any e greater than 1/2 can be assimilated, by changing the decision, to
al— e case).

For the case € = 0, the joint input-output distribution is

px,y (T, Y;) ‘ Zo 1 ‘ py (y))
Yo px (o) 0 Px ()
yi 0 px(z1) | Px(z1)
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or considering that no errors occur, py(y;) = px(x;) or you can simply set the equality Y = X.
Therefore,

I(X,Y) = (X, X) = H(X),
which means that H(X|Y) = 0.

On the other hand, the joint distribution when e = 1/2 is

pxy(iy) | w0 1 | pyv(y)
Yo px(20)/2 px(z1)/2] 1/2
1 px(z0)/2 px(z1)/2| 1/2

In this case, Y has an equiprobable distribution independently of the distribution of X, as
expected. This means that X and Y are statistically independent, and the joint probability can
be written as

pxy (T, y5) = px (i) py (y5)-
As already deduced previously, if X and Y are independent, their mutual information is null,

I(X,Y) =0,
which means that H(X|Y) = H(X).

The following conclusions can be drawn from these two cases:

1. The mutual information between input and output of the channel is the amount of infor-
mation that passes from the input to the output when the channel is used. In the case
where the probability of error is zero, all information is passed (I(X,Y) = H(X)), and in
the case where the input and output are statistically independent, all information is “lost”
(I(X,Y)=0).

2. H(X|Y) can be interpreted as the information that is “lost” in the channel, and thus the
information that “passes” the channel, I(X,Y’), is equal to the information at the input,
H(X), minus the information that is lost, H(X|Y). When the probability of error is zero,
the loss is zero, and when the input and output are statistically independent, the loss is
total, that is, equal to the information at the input of the channel.

These conclusions can be extended to any DMC with input and output alphabets of My and My
symbols, respectively.

However, the mutual information between the input and the output of the channel depends on
the probability distribution at the input. If we want to know what is the maximum amount of
information capable of passing through a certain channel, it is necessary to consider all the possible
distributions and the one that produces the greatest mutual information will be the optimal one,
and the mutual information for that distribution will be the maximum information capable of
passing through the channel, that is, the channel capacity.

Formally, the channel capacity, C, of a DMC is defined as
C'=max I(X,Y).

px (i)

Its units are bits (or bits per channel use).

Some properties of the channel capacity, which derive from its definition through mutual infor-
mation, are those that define the bounds for its minimum and maximum value:
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1. C >0, because I(X,Y) > 0.

2. C <log Mx, because C' = max I(X,Y) < max H(X) = log Mx.

3. C <log My, for the same reason.
For some simple cases, such as the binary symmetric channel, it is possible to directly calculate

the channel capacity. For the BSC, mutual information is

[(X,Y)=H(Y)— H(Y|X)

=H(Y) - pr(xi)H(Y|X = ;)

=H(Y) - pr () <— > pyix (yjla:) logpnx(yj\a:i))

J=0

=H(Y) - pr(xi)(—flog(ﬁ) — (1 —¢)log(1 —¢))

=H(Y) - ZPX($i)Hb<5)
H(Y) — Hy©)

This is the same previously obtained result. The maximum of this mutual information is obtained,
given that the parameter ¢ is fixed and cannot be acted upon, when the entropy H (Y') is maximum.
This occurs for an equiprobable output distribution, which for the BSC is equivalent to having an
equiprobable input distribution. In this case, H(Y) = 1 and the channel capacity is therefore

C=1- Hb(€).

It is easy to represent this dependency with the error probability considering the variation form
of Hy(e). In a channel with zero error probability we can transmit one bit per channel use, while
in a channel with error probability 1/2 no information can be sent.

It must be taken into account that the problem of calculating the channel capacity in general
can be posed as a constraint maximization problem. Maximization of mutual information, which
depends on the input probabilities, with the restrictions imposed by these probabilities, since the
following 2M x + 1 restrictions must always be fulfilled:

e px(z;) >0, fori=0,1,--- Mx — 1.

e px(z;) <1, fori=0,1,--- Mx — 1.

Mx—1

o Z px(z;) = 1.

In some simple channels it will be possible to calculate the channel capacity analytically. For
other types of more complicated channels, sometimes it is not possible to easily find the solution
analytically. In this case, numerical techniques are used, which sweep all the possible input
distributions until finding the one that maximizes the mutual information.

Example
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Figure 4.27: An example of DMC channel

The channel capacity of the channel shown in Figure is obtained.

To obtain the capacity, the first thing is to obtain an expression of the mutual information.
One option is through H(Y) and H(Y|X). From the input-output relationship, it can be
seen that for the three cases, given X = a, X = b or X = ¢, the output random variable Y
has three symbols with probabilities 1/2, 1/4 and 1/4 respectively. Therefore,

1 1
HY X=a)=HY|X=b0=HY|X=c¢) = §log2(2) +2x Zlog2(4) = 1.5.
Since the same thing is obtained for all symbols, regardless of Py (z;) we have that
H(Y|X)=1.5.

Finally,
IV, X)=H(Y)-15

To maximize I(X,Y’), one must maximize H(Y), and this involves finding the probability
distribution of the input random variable that produces equally likely outputs. In this case
this happens for equally likely input symbols. In this case

H(Y') =logy(3) = 1.585.
Therefore, the channel capacity is

C' = 1.585 — 1.5 = 0.085 bits/channel use.

It is observed that it is relatively low, but it is normal if one takes into account that trans-
mitting symbols through this channel fails 50% of the time.

4.4.3 Channel capacity for Gaussian channel

Having studied the digital channel and how its capacity is obtained, this section extends the study
to the case of the Gaussian channel, where its output at a given instant is a continuous random
variable instead of a discrete random variable. It is taken into account in this analysis that in a
real communications system there are usually two important limitations on the use of resources:

e A limitation on the maximum power that can be transmitted, which is applied on the
communications signal generated by the transmitter.

e A limitation on the bandwidth of the transmitted signal.
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Therefore, in this section we will study what is the maximum amount of information that can
be reliably transmitted in a digital communications system over a Gaussian channel when the
maximum power of the transmitted signal is limited to Px watts and the available bandwidth
is B Hz. As in the previous section, the analysis will be performed in two ways. On the one
hand, a more intuitive demonstration will be made in terms of the number of symbols that can
be transmitted with low probability of overlap of their outputs, along the lines of the treatment
followed in [Proakis and Salehi, 2002], and on the other hand, the channel capacity will also be
obtained by a development based on information theory, along the lines of the analysis performed
in [Artés-Rodriguez et al., 2007].

Gaussian channel capacity: intuitive proof

In a Gaussian channel the output of the channel is modeled by a random variable Y which is

related to the input, modeled by a random variable X, through the additive relationship
Y=X+7Z7,

where Z is a random variable that models the effect of noise, with a Gaussian distribution, zero
mean and variance (noise power) Py.

The idea to obtain the channel capacity is similar to the one followed in the digital channel. We
are going to sample the transmitted and received signals at n time instants with the objective of
seeing what is the maximum number of possible values of the transmitted signal that gives rise in
the output to values with low probability of overlapping in the limit when n tends to infinity. The
power constraint on the transmitted signal implies that if one has n realizations of the random
variable X, which are grouped into a vector x.

X = {1’1,372,"' 73771}7

which would model the value of the transmitted signal at n instants. For a sufficiently large n
value, the following is true
1 n
n-
=1

where Py is the signal power. In this case x; does not denote the alphabet of a discrete random
variable, but the n realizations of the continuous random variable X that models the amplitude
of the transmitted signal, s(¢), at n time instants.

For blocks of length n of input, output and noise values, grouped in the vectors x, y and z,
respectively, one can write the vector relation

y=X-+2.

If n is sufficiently large, by the law of large numbers, the power limitation of the noise term implies

the restriction
1 1 )
- E 2 _ = E _ ) < P,.
L E N = b

Finally, given the independence between X and Z, the power of Y will be the sum of the powers of
X and Z, i.e. Py = Px + Py, so that over the n samples of the output we will have the restriction

1 n
EZ?J?SPY:P){+PN-
i—1
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Bearing in mind that the sum of squared coordinates of a vector gives its squared norm, the
constraints imposed by the transmitted signal power and noise power can be written as follows

Ix[[* < nPx, [ly —x|* < nPy, |ly|I* < n(Px + Py).

The geometric interpretation of the restrictions imposed by the power of the transmitted signal
and the power of the noise signal leads to the following conclusions when n increases asymptotically

e The vector representation of the n samples of the transmitted signal, x, is located in an
n-dimensional hypersphere of radius v/nPx centered on the origin.

e The vector representation of the n samples of the output signal, y, lies in an n-dimensional
hypersphere of radius v/n Pz and centered around the vector representation of the n samples
of the transmitted signal, x.

e The vector representation of the n samples of the received signal, y, is located in an n-
dimensional hypersphere of radius /n(Px + Pz) centered on the origin.

Making use of this geometric interpretation, illustrate in Figure [£.28]the calculation of the channel
capacity is equivalent to finding how many different sequences of n samples of the transmitted
signal x can be obtained in such a way that the outputs they give rise to do not overlap on the
output space. Obviously, if this condition is met, then the output streams can be reliably decoded.
Therefore, the question to be answered to establish the value of the channel capacity is: How many

spheres of radius \/nPy can be packed in a sphere of radius \/n(Px + Pz)?

n-dimensional hyper-sphere: radius /nPx
n-dim. hyper-sphere: radius /n(Px + Pz)

Figure 4.28: Geometric interpretation of the range of the n samples in the output when a certain
value is transmitted for the n samples of the input for the calculation of the capacity of a Gaussian
channel.
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The answer, in an approximate way, can be obtained by means of the relation between the
volumes of the two hyper-spheres. The volume of a hyper-sphere of dimension n and radius r is
proportional to its radius raised to the power n,

V, = K,r",

where K, is a radius independent constant that depends on the dimension of space. In this case,
the maximum number of symbols, understood as blocks of n samples of the transmitted signal,
that can be faithfully transmitted through a Gaussian channel is approximated by the quotient
between the volume of the sphere in which the representation of the n samples of the channel
output is contained, which has radius y/n(Px + Pz), and the volume of the sphere in which the
representation of the output is contained when a certain symbol x has been transmitted, which
has radius v/nPz. This quotient is therefore

Ko (n(Px + P)"? [ Px + Pz \"?
K,(nPy)"/? - Py

PX n/2
=14+ = .
(+PZ>

Since log, M, bits of information can be encoded with M,,, non-overlapping sequences, the capac-
ity of the Gaussian channel with power restriction Py and noise power Py is given by the quotient
between this number of bits and the number of uses of the channel, which will be n, that is to say

logy M, 1n Px
= = ——1 14+ —=
¢ n n2 o8 ( * PZ)

1 Px
==1 1+—=).
5 082 ( + PZ)
Now we must remember that when working with a bandwidth limitation, the received signal is

filtered in the receiver with an ideal filter of bandwidth B Hz to minimize the effect of the noise,
so that the power of the filtered noise is

Mno -

P; = NyB.

Therefore, the capacity of the Gaussian channel is
1 P
C= §log2 (1 + WXB) bits/use.

If this result is multiplied by the number of uses (transmissions) per second, which according to
Nyquist’s theorem is 2B, the channel capacity in bits/s is obtained,

P
= Bl 1 i :
C 0g2( +NOB> bits/s

This is the well-known Shannon formula for the capacity of a channel with additive white and
Gaussian noise.

Gaussian channel capacity through mutual information

The same result can also be reached through a more formal derivation based on information theory.
In the Gaussian channel model the relationship between input and output is given by

Y=X+2,
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where Z is a Gaussian random variable of zero mean and variance P, = NyB. Thus the conditional
distribution of Y given X, fy|x(y|z), is a Gaussian distribution of mean z and variance 0® = Py.
The channel capacity will be obtained through the mutual information in the same way as for
the digital channel, maximizing the mutual information between the input and output of the
channel, but including the constraint on the maximum power for the transmitted signal (without
this constraint, the capacity would be theoretically infinite). In other words, the channel capacity
is defined as

C = max I(X,)Y),
Ix (@) E[X?]<Px
where the power constraint is given by the constraint E[X?] < Py.

The mutual information between input and output can be calculated through its relation to the
differential entropies

I(X,Y) = h(Y) — h(Y|X) = h(X + Z) — h(Z).

The differential entropy of the noise is calculated in a very simple way, since its distribution is
Gaussian with zero mean and variance 02 = Py, a case that has already been considered previously,
so that

> 1 1
hZ) = /_Oo fz(2)log, 70 dz = élog2 2mePy.

This differential entropy depends only on the variance of the noise term, P, = NyB. Therefore,
the mutual information can be written as follows

1
1(X,Y) = WX + Z) — 5 log, 2mePy.

To obtain its maximum, the following property on the differential entropy will be used:

e If a random variable has a fixed value of variance, the probability density function that
makes its differential entropy maximum is the Gaussian distribution.

The demonstration of this property can be seen, for example, in [Artés-Rodriguez et al., 2007],
Chapter 9, page 565.

Since X and Z are statistically independent and Z has zero mean, the variance of Y is the sum
of the variances of X and Y, so that

E[Y?| = E[(X + Z)?] = E[X?| + E[Z°] < Px + P;.

Since the variance of Y is bounded, the capacity is reached when Y has a Gaussian distribution,
in which case the maximum value of the mutual information, and therefore the capacity, is

1 1 1 P
C = =log, 2me(Px 4 Pz) — = log, 2mea? = = log, 1+ —~ ) bits/use.
2 2 2 Py

This result is the same as that obtained previously.

4.5 Limits of a digital communications system

In the previous section the channel capacity for the Gaussian channel has been obtained.

P
C = B log, (1 + ﬁ) bits//s.
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In addition to Ny, the channel capacity depends on two relevant parameters of any communication
system: the power of the transmitted signal, Px, and the available bandwidth, B Hz. In this
section we will first analyze the dependence of the channel capacity on these two parameters of
the communications system.

As for the transmitted signal power, the analysis is straightforward. If the transmitted power
is increased, the channel capacity increases: obviously, the higher the power, the more levels (or
symbols of length n samples) can be put, and the more bits/usage are possible. However, it should
be noted that the increase follows a logarithmic law, so that in order to obtain a linear increase in
capacity, an exponential increase in transmitted power is required. In any case, it is theoretically
possible to increase the capacity to infinity by increasing the power of the transmitted signal.

The effect of bandwidth on channel capacity is different. Increasing B has two opposing effects.
On the one hand, higher bandwidth increases the transmission rate, but on the other hand it
increases the noise level and thus reduces performance. By taking B to the infinite limit, and
applying LL’Hopital’s rule, we obtain the limit of the channel capacity when the bandwidth tends
to infinity

. PX PX
Bh_r}r;oC = FologQ(e) = 1.44F0.

This result means that, unlike with the power of the transmitted signal, increasing the channel
bandwidth alone cannot increase the capacity to any desired value, but there is a maximum
achievable limit that depends on the signal to noise ratio (Px/Ny).

Shannon’s channel coding theorem establishes a maximum limit on the information transmission
rate with a digital communication system. This means that in a practical communication system,
it must always be satisfied that the effective transmission rate (defined over the information bits)
is below the channel capacity, R < C. For the case of the Gaussian channel this implies that the
bit rate, R, bits/s, has to be below the channel capacity. Defining the signal-to-noise ratio as the
ratio between the transmitted signal power and Ny

Py Py
SNR == = X
P;  NoB’

this means that the following relationship must be fulfilled

P
B1 1+ — i .
Ry < og( + NOB) bits/s

Dividing both sides of this inequality by B, defining the spectral bit rate, or spectral efficiency, as
Ry
= — bit H
0= — bits/s/Hz,
the following limit for the spectral efficiency in a practical communications system is obtained
Px
<lo 1+ .
Ui g2 < Ny B)

If the average energy per bit is now defined as the ratio between the power of the transmitted
signal and the bit rate of transmission

Px
E,=—
b Rb 3
and the corresponding relation among FEj, and Nj is,
E, SNR
N() n ’
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the spectral binary rate or spectral efficiency can be rewritten in terms of this relationship as

<1 1+ b
O PR .

This constraint relating the signal-to-noise ratio and the spectral efficiency of the system is written
in the literature with several equivalent alternative expressions, for example
E, 21-1
—_— >
No n

This expression indicates that there is a minimum FEj, /Ny ratio that is necessary in order to have
reliable communication. In the case of this expression, if its limit is computed when 7 tends to
infinity we have

lim & =In2=0.693 ~ —1.6 dB.

n—oo 0

Figure [4.29] splits the 7 vs E,/N, plane in two regions. In a region, below the curve, reliable
communication is possible (understood as communication in which the use of channel coding
techniques allows the probability of error to be reduced to arbitrarily low levels). In the other
region, above the curve, it is not possible to have reliable communication. The performance of
any system can be represented by a point in the plane of this curve. The closer the point is to the
curve, the higher the efficiency of the system.

n = 5 bits/s/Hz

: 4 10+ Ry > C
: Ry < C
1
i f f f f
E ) 10 15 20 % (dB)
R ol (U
—1.592

Figure 4.29: Spectral binary rate (spectral efficiency) n (bits/s/Hz) versus ratio Ej/N, for a
Gaussian channel. The region where reliable communication is possible (in green) is distinguished
from the region where it is not possible (in red).

It can be seen that this curve, when 7 tends to zero, the ratio Ej, /Ny tends to the value calculated

above E
b
— =1n2=0.693 ~ —1.6 dB.
Ny O
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This is an absolute minimum for reliable communication, i.e., in order to have reliable communi-
cation, the ratio Ej,/Ny has to be above this limit.

In this figure, two things can also be seen regarding the value of n:

1. When n << 1, the bandwidth is large and the only limitation is power. In this case we
speak of power-limited systems. In this case it is necessary to use simple constellations.

2. When n >> 1 the channel bandwidth is small and it is called bandwidth-limited systems. In
this case, very dense constellations are used (eg 256-QAM).

The previous expression indicates a minimum limit that the ratio between the energy of the signal
and that of the noise must reach in order to be able to transmit reliably with a certain spectral
efficiency. Although in the literature this limit is usually expressed through the relationship £,/Ny,
on other occasions it is expressed from the signal-to-noise relationship, in which case the resulting
expression is

SNR > 2"—1.

Given this minimum SNR limit, the so-called “normalized signal-to-noise ratio” is sometimes
defined, which basically compares the working signal-to-noise ratio to that minimum required

level.
SNR

21 —1°
By the definition of this normalized signal to noise ratio, in a practical system it must take values

greater than unity, i.e., greater than 0 decibels. It is therefore a relative measure that indicates
how close or far the system is from the limit operating value of the reliable zone.

SNRnorm -
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Appendix A

Tables of interest

Some tables of interest in the subject are shown in this appendix. Specifically:

e Pairs and properties of the Fourier transform.
e Function Q(z), especially useful in calculating error probabilities.

e Relationships and integrals for some trigonometric functions.
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Time Domain (x(t))

Frequency Domain (X (jw))

NI SlL

1
27 §(w)

e_thO
27 §(w — wp)
T 6(w —wo) + 7 0(w + wo)

m e
55(00—@00) - ;5(W+Wo)

_ wT
T sinc [ —
2T

wT

TII| —
2

—jm sgn(w)

om = 2k
?25<“_T)

k=—o00

Table A.1: Fourier transform pairs (in jw).
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Time Domain (z(t)) Frequency Domain (X (jw))

a x(t) +by(t)
x(t —to)
ewot x(t)

z*(t)
z(—1)

z(at)

(t) * y(t)

t z(t)
x(t) real

a X(jw)+bY(jw)
e X (ju)

X(w — wp)
X (-w)
X(—w)
1

X(jw) Y (jw)

L () s v(0)

Jw X (jw)

jiw X(w)+ 7 X(0) 6(w)
X ()
X (juw) = X*(—jw)

Parseval relationship for non-periodic signals
oo 1 oo
O dt=— [ |X(w) d
| P at= o [ xG)? @
Duality property

fw) = [ g e ao

—0o0

g(t) & f(w)
F(t) & 21 g(~w)

Table A.2: Properties of the Fourier Transform.
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Q(x)

Q(x)

Q(x)

Q(x)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

5.00000x 1071
4.80061x10~!
4.60172x10!
4.40382x 101
4.20740x 101
4.01294x101
3.82089x 10!
3.63169x10!
3.44578x 101
3.26355%x 101
3.08538x 10!
2.91160x10~1
2.74253x107!
2.57846x10~1
2.41964x 107!
2.26627x1071
2.11855x107!
1.97663x 10!
1.84060x 107!
1.71056x 1071
1.58655x 107!
1.46859x 101
1.35666x 10!
1.25072x 101
1.15070x 1071
1.05650x 107!
9.68005% 102
8.85080x 102
8.07567x102
7.35293x102
6.68072x1072
6.05708x 102
5.47993% 102
4.94715x102
4.45655% 1072
4.00592x10~2
3.59303x 102
3.21568x 102
2.87166x 102
2.55881x 102
2.27501x102

2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
4.05

2.01822x10~2
1.78644x 1072
1.57776x1072
1.39034x 102
1.22245x10~2
1.07241x1072
9.38671x103
8.19754x1073
7.14281x 103
6.20967x103
5.38615x103
4.66119x103
4.02459x103
3.46697x10~3
2.97976x1073
2.55513%x 103
2.18596x1073
1.86581x 1073
1.58887x 1073
1.34990x 103
1.14421x1073
9.67603x10~*
8.16352x10~*
6.87138x107*
5.77025x10~4
4.83424x10~4
4.04058x10~*
3.36929x 104
2.80293x 104
2.32629x10~4
1.92616x 104
1.59109x 104
1.31120x10~*
1.07800x 10~
8.84173x107°
7.23480%107°
5.90589x10~°
4.80963x107°
3.90756x10°
3.16712x107°
2.56088x10~°

4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95
6.00
6.05
6.10

2.06575x107°
1.66238x10~°
1.33457x107°
1.06885x10~°
8.53991x 106
6.80688x 106
5.41254x10~¢
4.29351x106
3.39767x 106
2.68230x 106
2.11245x10~6
1.65968x 106
1.30081x 10~
1.01708x10~6
7.93328%x 107
6.17307x10~7
4.79183x10°7
3.71067x 107
2.86652x10~7
2.20905%x 107
1.69827x10~7
1.30243%x10~7
9.96443x10~8
7.60496x10~8
5.79013x 108
4.39771x1078
3.33204x 108
2.51849x10~8
1.89896x 108
1.42835x10~8
1.07176x10~8
8.02239x 109
5.99037x10~*
4.46217x1079
3.31575x107?
2.45787x 109
1.81751x107?
1.34071x107°
9.86588x 1010
7.24229x 1010
5.30342x10~10

6.15
6.20
6.25
6.30
6.35
6.40
6.45
6.50
6.55
6.60
6.65
6.70
6.75
6.80
6.85
6.90
6.95
7.00
7.05
7.10
7.15
7.20
7.25
7.30
7.35
7.40
7.45
7.50
7.55
7.60
7.65
7.70
7.75
7.80
7.85
7.90
7.95
8.00

3.87415x1010
2.82316x1010
2.05226x 1010
1.48823x10~10
1.07657x10~10
7.76885x10~ 11
5.59251x 1011
4.01600x 10~ 11
2.87685x10~11
2.05579x10~ 11
1.46547x 1011
1.04210x 1011
7.39226x 10712
5.23096x 1012
3.69250x 1012
2.60013x1012
1.82643x10712
1.27981x 10712
8.94589x 1013
6.23784x 1013
4.33890x 1013
3.01063x10~13
2.08386x 1013
1.43884x10~13
0.91034x10~™
6.80922x 10~
4.66701x10~14
3.19089x 1014
2.17629x 1014
1.48065%x 10~ 14
1.00490x 10~ 14
6.80331x1015
4.59463x 1015
3.09536x 1015
2.08019x 1015
1.39452x10~15
9.32558 x 1016
6.22096x 1016
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TRIGONOMETRIC RELATIONSHIPS

sin?(a) + cos?(a) = 1

[~}

tan?(a) + 1 = sec®(a)
(

cot?(a) +1 = csc
cos(a) cos(b) = os(a — b) +

sin(a) sin(b) =

o= NI o) =

cos(a) sin(b) = = sin(a +b) — % sin(a — b)

(b)
(0)
sin(a) + sin(b) = 2 sin (a ; b) cos (a ; b
cos(a) + cos(b) =2 cos (a _2|— b) cos (a —b

sin(a) — sin(b) = 2 cos (a;rb) sin (a ; b

cos(a) — cos(b) = —2 sin (CL;L”) i <a . b)

sin®(a) — sin?(b) = sin(a + b) sin(a — b)
(a+

sin(a + b) = sin(a) cos(b) & cos(a) sin
sin

cos(a = b) = cos(a) cos(b) F sin(a)

[\)

cos?(a) — sin?(b) = cos(a + b) cos(a — b)
etia 4 e—ia etia — g—ja
cos(a) = ——— sin(a) = ————
2 2j

e = cos(a) + jsin(a)

INTEGRALS OF SOME TRIGONOMETRIC FUNCTIONS

/cos(a t) dt = 1 sin(a t)

a

/sin(a t) dt = —% cos(a t)

t 1 t 1
/cos =3 + %a cos(a t) sin(at) = 3 + 1 sin(2a t)
t 1 t 1
/s =55, cos(a t) sin(a t) = S 1a sin(2a t)
/COS (at) cos(bt) dt = Lsin(fa=)#) 1 sin((a+b)?)
2 a—b 2 a+b
[snta)snpy a1 e =0 1 sinta iy
2 a—1b 2 a+b
. _Llcos((a—b)t) 1 cos((a+b)t)
/cos(at) sin(b t) dt—2 p— ~3 P>

Table A.4: Relationships and integrals for some trigonometric functions.
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Time domain (z(t)) Frequency domain (X (f))

5(t) 1
1 5(f)
5(t — to) e /it
ei2mfot o(f = fo)
cos(2m fot) 50(f — fo) + 50(f + fo)
sin(27 fot) %5(f — fo) — %5(f + fo)
1, |t <3
M) =4 &, t=+1 sinc(f)
0, in other case
sinc(t) II(f)
trl, —1<t<0
At)y=¢{ —t+1, 0<t<1 sinc?(f)
0, in other case
sinc2(f) A(f)
—at 1
e *u(t), a >0 ot jonf
t —at (t) >0 ;
¢ ), a (a + g2 f)>?
ool 2c
a? + (27 f)?
6—7Tt2 6—7|'f2
1, t>0 .
sgn(t) =< —1, t<0 .
0, t= il
1
5'(t) j2rf
5™ (1) (j2m f)"
% —jmsgn(f)
3" 6t —nTy) Tiozé(f—%)

Table A.5: Fourier transform pairs (in f)
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