BLOQUE I.- INTRODUCIÓN

Tema 0.- Introducción a la Ciencia de Materiales

* James F. Shackerlford "Introducción a la Ciencia de Materiales para Ingenieros". Cuarta edición. Ed. Prentice Hall (1998)

* Pat L. Mangonon

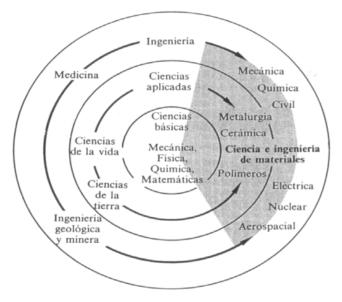
"Ciencia de Materiales: Selección y Diseño" Ed. Pearson Educación (2001)

- 1. Marco de la Ciencia e Ingeniería de los Materiales
- 2. Tipos de Materiales
- 3. Relación entre estructura, propiedades y procesado
- 4. Selección de Materiales

Materiales ⇒ "Sólidos útiles"

J.F. SHACKELFORD. "Introducción a la ciencia de materiales para ingenieros". Ed. Prentice Hall

<u>Investigación</u> continua de nuevos materiales ⇒ Ingenieros


Estudio/Mejora de propiedades de materiales: mecánicas, eléctricas, térmicas, magnéticas,

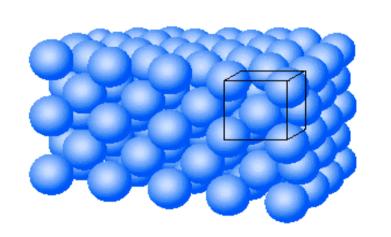
ópticas y químicas

Conocimiento Estructura

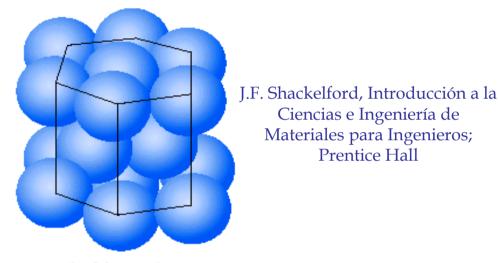
diseño de productos desarrollo de procesos fabricación

Ciencia de materiales: conocimientos básicos sobre la estructura interna, propiedades y procesado de los materiales.

Ingeniería de materiales: conocimientos fundamentales y aplicados sobre materiales para transformarlos en productos necesarios o requeridos por la sociedad.


Tipos de materiales

MATERIAL	COMPOSICIÓN	ESTRUCT.	PROPIEDADES	EJEMPLOS
Metales	Elementos metálicos +(↓↓%NM)⇒ ALEACIONES	Cristalina	 muy resistente y fácilmente conformado Poca deformación frente a cargas súbitas. Brillo metálico Conductores corriente eléctrica 	Aceros estruct. Aleaciones (Al, Mg, Ti, etc). Bronces (Cu-Sn) Laton (Cu-Zn)
Cerámicos	Metales + NM (C, N, O, P o S)	Cristalina - Amorfa (vidrios)	 • Químicamente muy estables (↑Rq) • ↑↑T_f • ↑↑ Frágiles y ↑↑ Dureza 	AI_2O_3 , Si_3N_4 , SiO_2 $YBa_2Cu_3O_7$
Polímeros	Cadenas de moléculas orgánicas	Amorfa y/o semicristalin.	 pobres propiedades mecánicas ligeros Fácilmente conformables 	Polietileno Acrílicos nylons
Materiales compuestos	Mezclas de 2 o más materiales. Material reforzante + aglomerante compatible	amorfo	 propiedades muy superiores a los materiales individuales 	Fibra de vidrio, fibra de carbono, hormigón

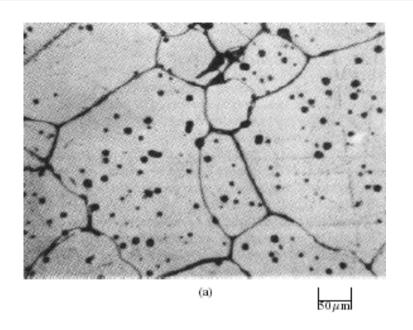

Ciencias e Ingeniería de Materiales para Ingenieros; Prentice Hall

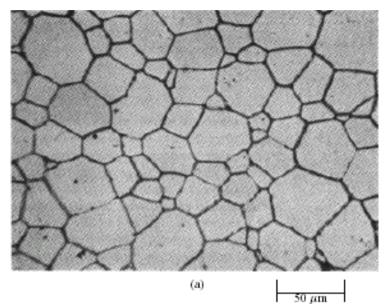
Propiedades = f (escala atómica)

Aleaciones Al dúctiles Aleaciones Mg ⇒ relativamente frágiles

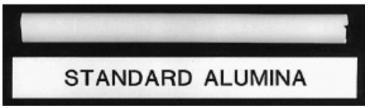
(a) Aluminum

(b) Magnesium


planos y direcciones de elevada densidad atómica ↓ facilidad deformación mecánica


Ductilidad

Al: 12 planos y direcciones COMPACTAS mayor capacidad de deformación


Mg: 3 planos y direcciones

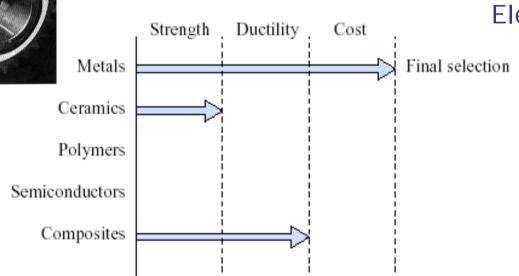
Propiedades = f (escala microscópica)

J.F. Shackelford, Introducción a la Ciencias e Ingeniería de Materiales para Ingenieros; Prentice Hall

Al₂O₃ con 3% porosidad: Material opaco

Al₂O₃ con 0.3% porosidad (añadir 0.1 MgO): Material translucido

Selección de materiales (1)

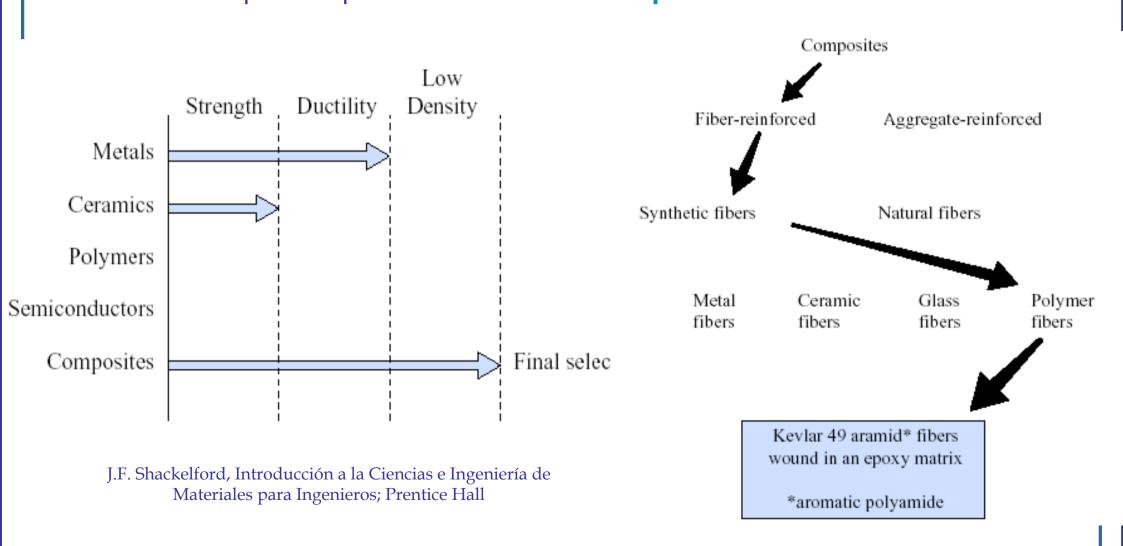

¿Qué material es el apropiado?

Dentro de un tipo determinado, ¿Cuál es el mejor?

Pasos en la selección de un material: pieza de engranaje Evaluar requisitos para elevada resistencia superficial y cierta ductilidad

Eliminar materiales que no cumplan características limitantes: $(\downarrow \downarrow R_{mecánica} \ y \downarrow \downarrow tenacidad)$: NO: "polímeros y cerámicos"

J.F. Shackelford, Introducción a la Ciencias e Ingeniería de Materiales para Ingenieros; Prentice Hall



+ 1.35 wt % Mn max + 0.035 wt % P max + 0.04 wt % S max

Selección de materiales (II)

Pasos en la selección de un material: Contenedor de la gasolina de un coche de Fórmula 1

Evaluar requisitos para un contenedor a presión

