Ingeniería Estructural

Inestabilidad elástica

Pandeo de piezas rectas

- Imaginemos una hoja de sierra
 - $-\sigma_v = 520 \text{ MPa}$
 - Sección transversal 12mm x 0.5mm
 - La hoja de sierra resistiría una carga de compresión de 3120 N
- Sin embargo, esta pieza puede perder su estabilidad a una carga mucho menor

La hoja de sierra perdería su estabilidad estructural para una carga que podríamos calcular:

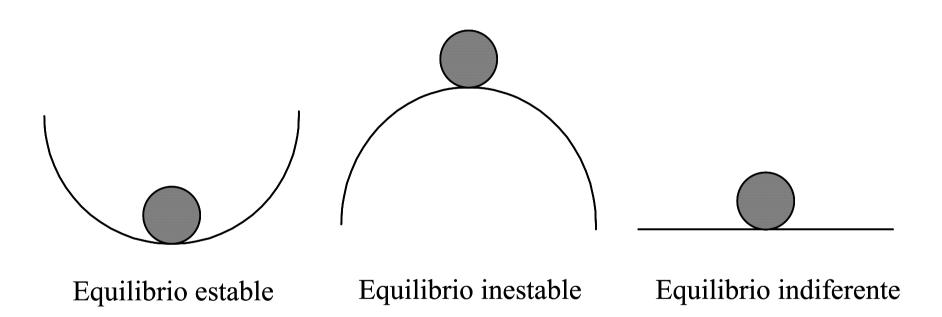
Supongamos:

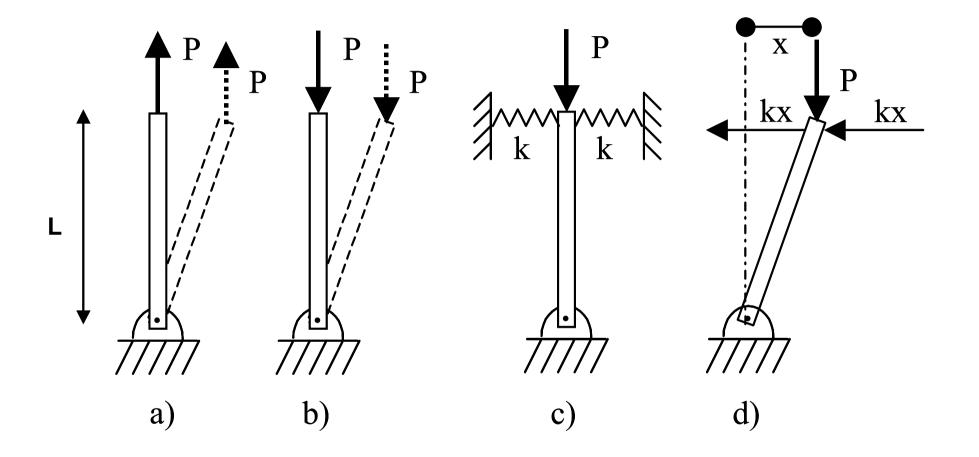
 $I = bh^3/12$ (sección rectangular) = 1,25 x 10⁻¹³ m⁴

E = 200 GPa y L = 300 mm

La carga que produciría el pandeo sería: P = 2,74N

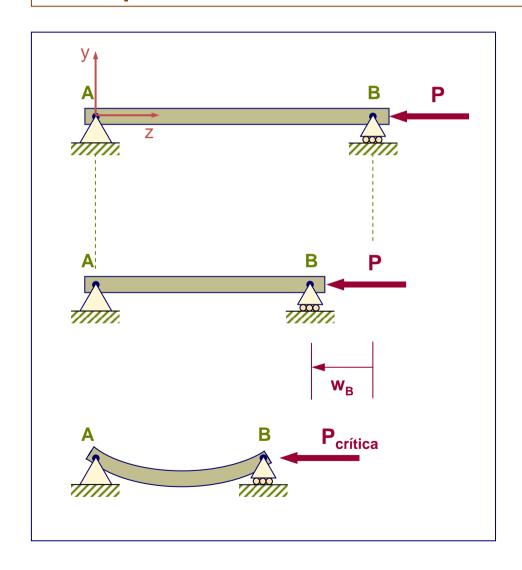
ESTABILIDAD E INESTABILIDAD DEL EQUILIBRIO





Si: 2(kx)L>Px (lo que implica P<2kL) el equilibrio es **estable**. Si: 2(kx)L<Px (lo que implica P>2kL) el equilibrio es **inestable**.

Concepto de inestabilidad estructural



Para cargas bajas

$$w_B = w_A + \int_A^B \frac{N}{E \cdot A} dz$$

$$\mathbf{w}_{\mathbf{B}} = -\frac{\mathbf{P} \cdot \mathbf{L}}{\mathbf{E} \cdot \mathbf{A}}$$

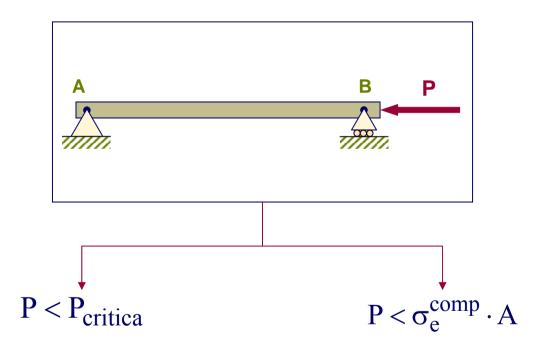
Para una cierta P_{crítica} se producen grandes desplazamientos transversales

Aparecen fenómenos no lineales

Pandeo

Concepto de inestabilidad estructural

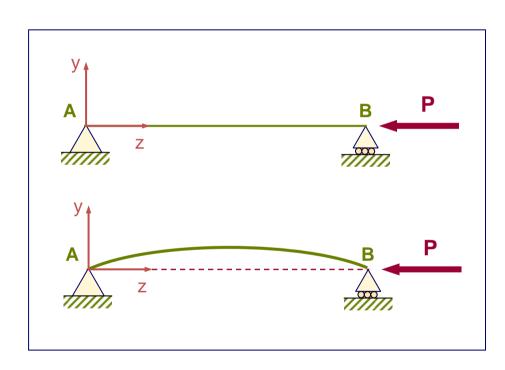
El pandeo aparece en barras esbeltas para cargas menores que las que producen la plastificación del material



Puede ser la condición de diseño crítica

Teoría de primer orden

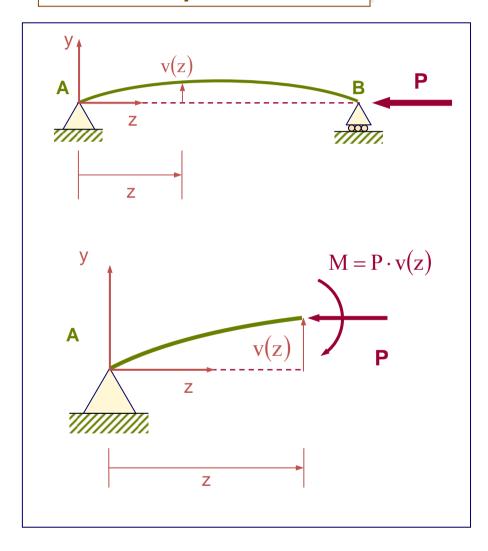
Problema de Euler



Hipótesis:

- Viga esbelta de sección constante
- Ejes principales de inercia
- Sólo existen esfuerzos de compresión
- Comportamiento lineal elástico
- Pequeños desplazamientos de flexión
- Deformaciones pequeñas
- No existen tensiones residuales

Teoría de primer orden



Aplicando la ecuación de la elástica

$$\frac{d^2v}{dz^2} = -\frac{M}{E \cdot I}$$

$$\downarrow$$

$$\frac{d^2v}{dz^2} + \lambda^2 \cdot v = 0 \qquad \lambda^2 = \left(\frac{P}{E \cdot I}\right)$$

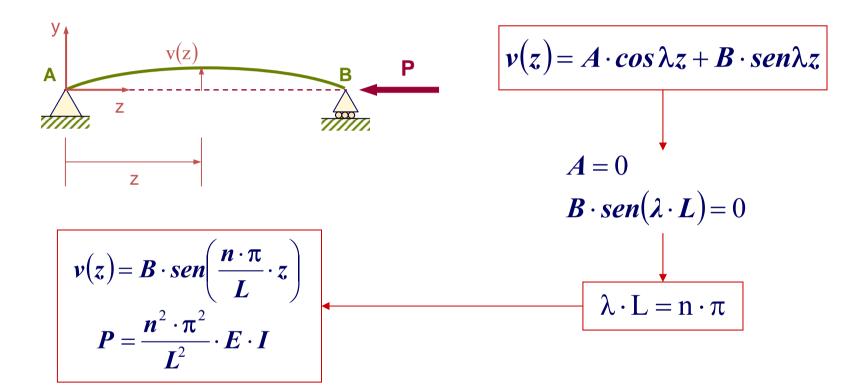
$$v(z) = A \cdot \cos \lambda z + B \cdot \operatorname{sen} \lambda z$$

Con las condiciones de contorno:

$$z = 0 \qquad \mathbf{v} = \mathbf{0}$$

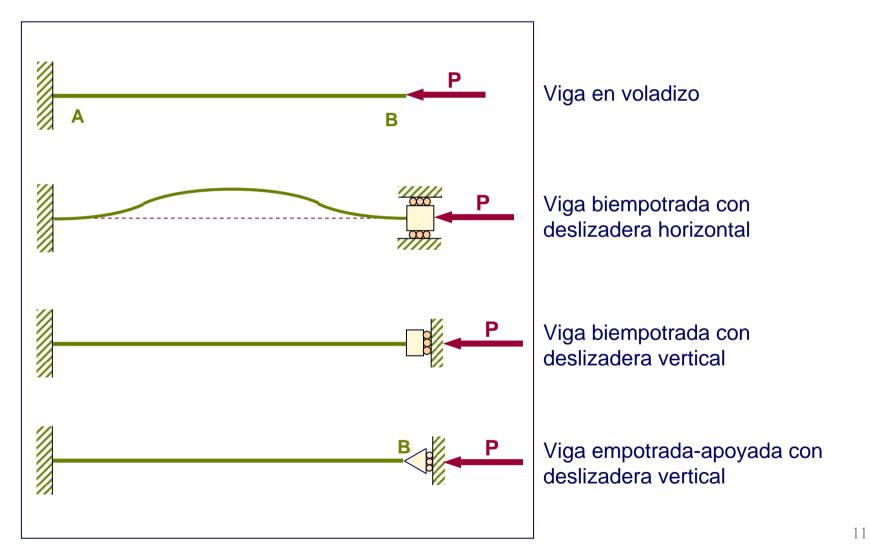
$$z = L$$
 $v = 0$

Teoría de primer orden

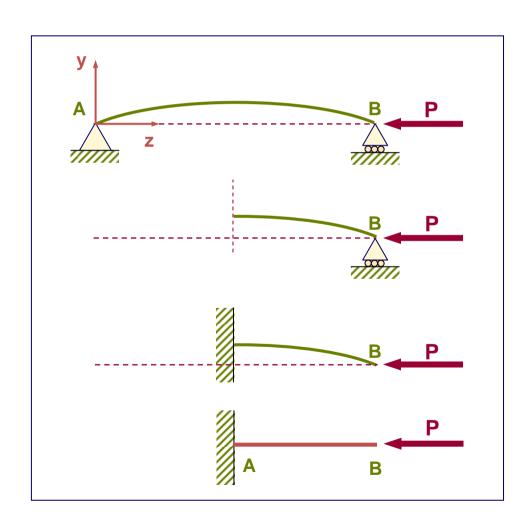


$$P_{critica} = \frac{\pi^2}{L^2} \cdot E \cdot I$$

Carga crítica de Euler (1744)



Viga en voladizo

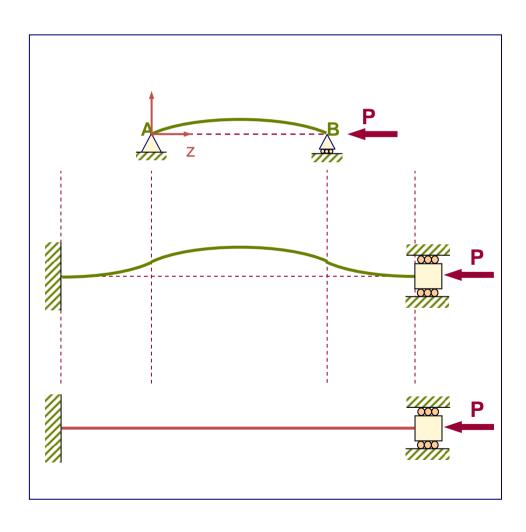


La carga de pandeo coincide con la de una viga biapoyada de longitud doble

$$\boldsymbol{P_{critica}} = \frac{\boldsymbol{\pi}^2}{(2 \cdot \boldsymbol{L})^2} \cdot \boldsymbol{E} \cdot \boldsymbol{I}$$

$$P_{critica} = \frac{P_{Euler}}{4}$$

Viga bi-empotrada con desplazamiento longitudinal en un extremo

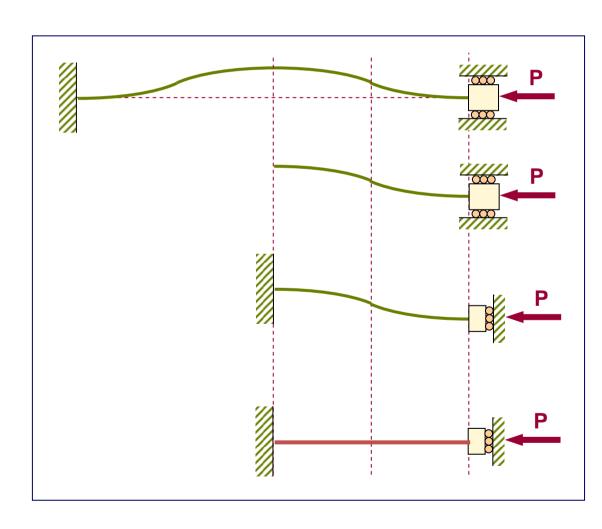


La carga de pandeo coincide con la de una viga biapoyada de longitud mitad

$$P_{critica} = \frac{\pi^2}{\left(\frac{L}{2}\right)^2} \cdot E \cdot I$$

$$P_{critica} = 4 \cdot P_{Euler}$$

Viga bi-empotrada con desplazamiento transversal en un extremo

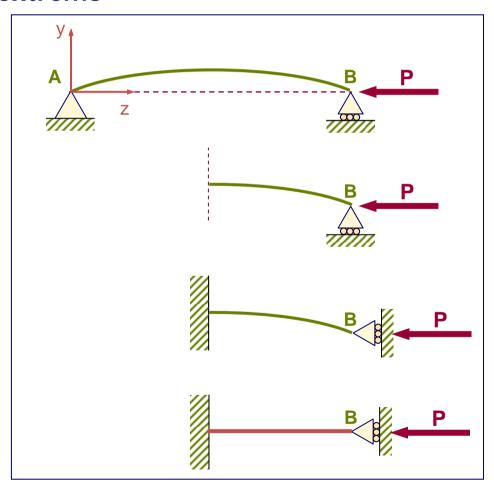


La carga de pandeo coincide con la de una viga biempotrada de longitud doble

$$\boldsymbol{P_{critica}} = \frac{4 \cdot \boldsymbol{\pi}^2}{\left(2 \cdot \boldsymbol{L}\right)^2} \cdot \boldsymbol{E} \cdot \boldsymbol{I}$$

$$m{P}_{critica} = m{P}_{Euler}$$

Viga empotrada-apoyada con desplazamiento transversal en un extremo

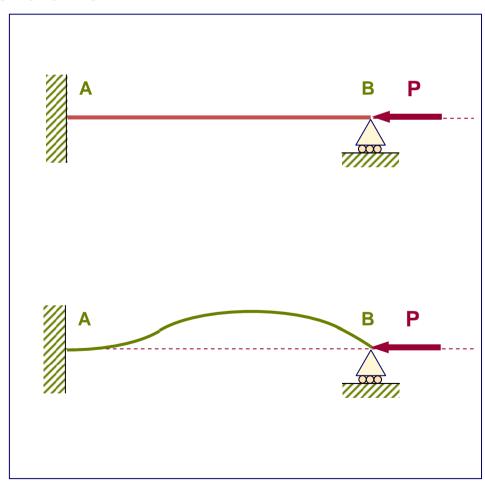


La carga de pandeo coincide con la de una viga biempotrada de longitud doble

$$P_{critica} = \frac{\pi^2}{(2 \cdot L)^2} \cdot E \cdot I$$

$$P_{critica} = \frac{P_{Euler}}{4}$$

Viga empotrada-apoyada con desplazamiento longitudinal en un extremo



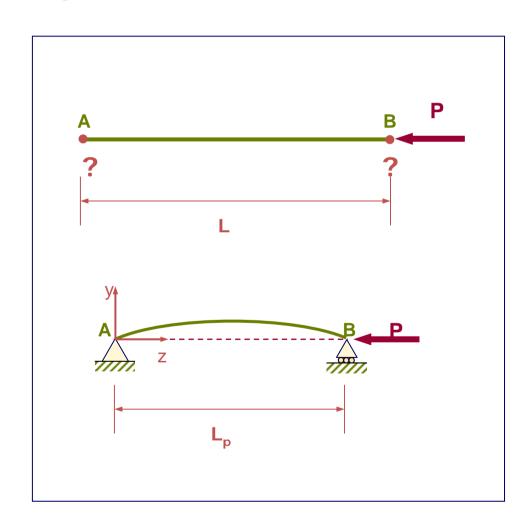
No es posible aplicar simetrías

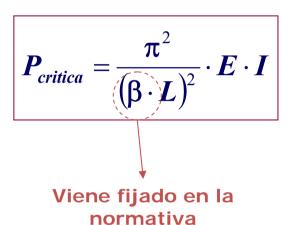
$$\frac{d^2v}{dz^2} + \lambda^2 \cdot v = 0 \qquad \lambda^2 = \left(\frac{P}{E \cdot I}\right)$$

condiciones de contorno

$$\boldsymbol{P_{critica}} = \frac{\boldsymbol{\pi}^2}{\left(0, 7 \cdot \boldsymbol{L}\right)^2} \cdot \boldsymbol{E} \cdot \boldsymbol{I}$$

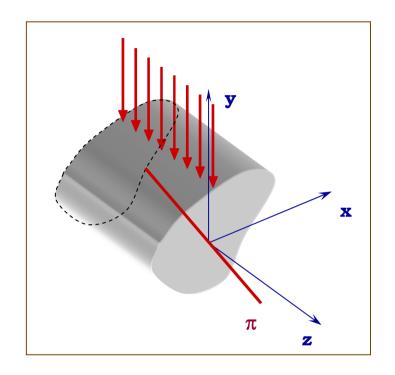
En general:

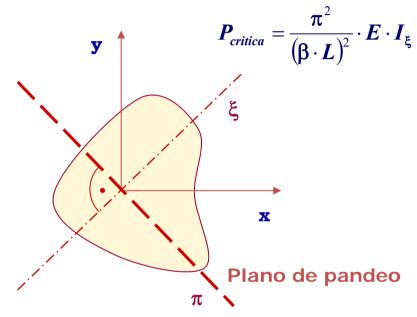




Longitud de pandeo:

$$P_{critica} = \frac{\pi^2}{(\beta \cdot L)^2} \cdot E \cdot I = \frac{\pi^2}{L_p^2} \cdot E \cdot I$$



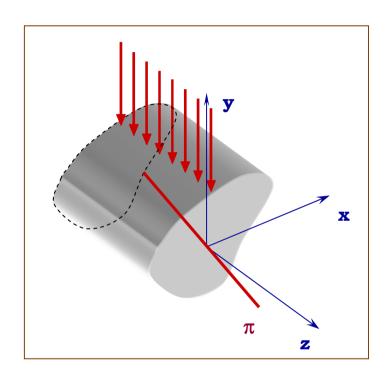


$$oldsymbol{i}_{\xi} = \sqrt{rac{oldsymbol{I}_{\xi}}{A}}$$

 $m{i}_{\xi} = \sqrt{rac{I_{\xi}}{A}}$ Radio de giro de la sección respecto al eje ξ

$$\sigma_{critica} = \frac{\pi^2 \cdot E}{\left(\frac{\beta \cdot L}{i_{\xi}}\right)^2}$$

 λ_{ξ} : Esbeltez mecánica



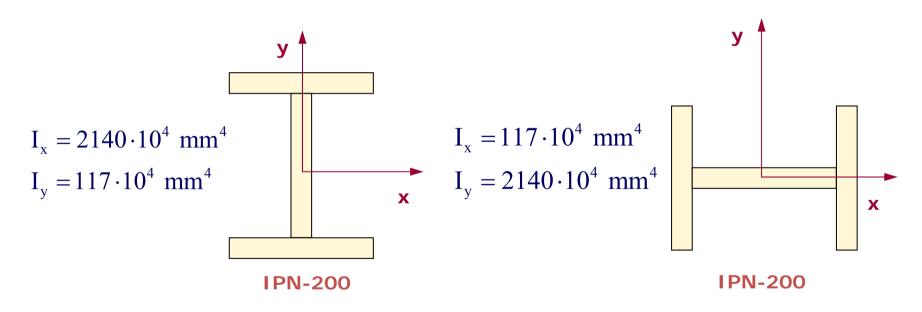
$$\sigma_{critica} = \frac{\pi^2 E}{\lambda_{\xi}^2}$$

$$\lambda_{\xi} = \left(\frac{\boldsymbol{\beta} \cdot \boldsymbol{L}}{\boldsymbol{i}_{\xi}}\right)$$

La viga pandea en el plano perpendicular al eje de mayor esbeltez mecánica

Ejemplo:

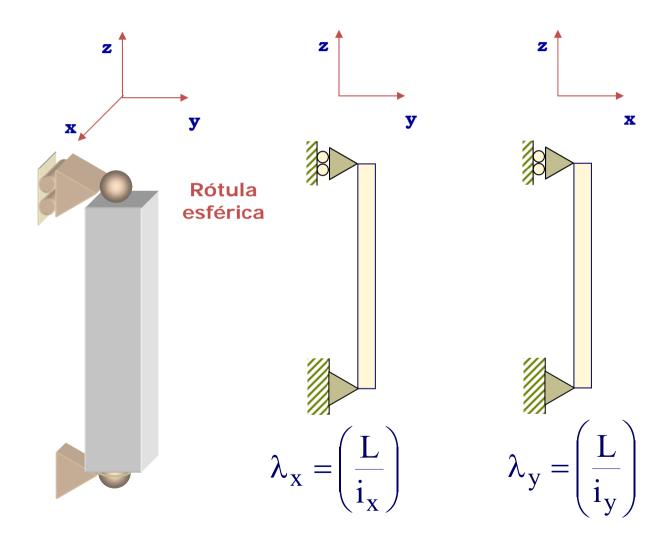
Para una viga biapoyada sobre rótulas esféricas, determine la configuración más estable frente a pandeo



Configuración I

Configuración II

Ejemplo



Ejemplo

Configuración I

$$\lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{0.8 \cdot 10^{-2}} = 12.5 \cdot L$$

$$\lambda_{y} = \left(\frac{L_{p}^{xz}}{i_{y}}\right) = \frac{L}{1,87 \cdot 10^{-2}} = 53,47 \cdot L \qquad \lambda_{y} = \left(\frac{L_{p}^{xz}}{i_{y}}\right) = \frac{L}{0,8 \cdot 10^{-2}} = 12,5 \cdot L$$

Pandea respecto al eje x

Configuración II

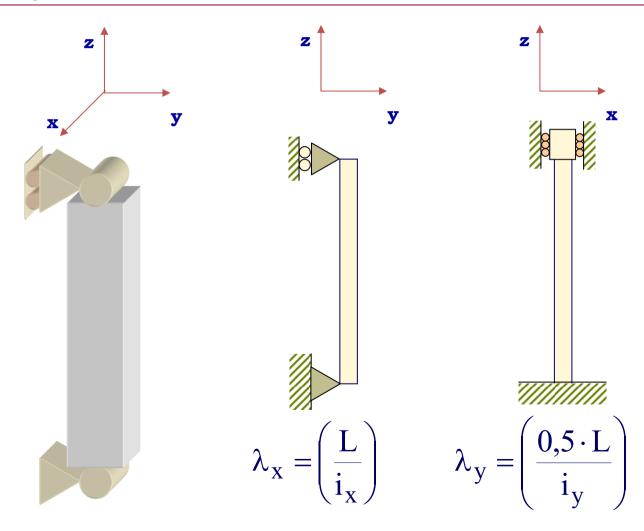
$$\lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{0.8 \cdot 10^{-2}} = 12.5 \cdot L \qquad \qquad \lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{1.87 \cdot 10^{-2}} = 53.47 \cdot L$$

$$\lambda_y = \left(\frac{L_p^{xz}}{i_y}\right) = \frac{L}{0.8 \cdot 10^{-2}} = 12.5 \cdot L$$

Pandea respecto al eje y

Ambas configuraciones tienen la misma carga crítica

Ejemplo: Repetir los cálculos si las rótulas son cilíndricas



Ejemplo

Configuración I

$$\lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{0.8 \cdot 10^{-2}} = 12.5 \cdot L$$

$$\lambda_{y} = \left(\frac{L_{p}^{xz}}{i_{y}}\right) = \frac{0.5 \cdot L}{1.87 \cdot 10^{-2}} = 26.7 \cdot L \qquad \lambda_{y} = \left(\frac{L_{p}^{xz}}{i_{y}}\right) = \frac{0.5 \cdot L}{0.8 \cdot 10^{-2}} = 6.25 \cdot L$$

Pandea sobre el plano xz

Configuración II

$$\lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{0.8 \cdot 10^{-2}} = 12.5 \cdot L \qquad \lambda_{x} = \left(\frac{L_{p}^{yz}}{i_{x}}\right) = \frac{L}{1.87 \cdot 10^{-2}} = 53.47 \cdot L$$

$$\lambda_y = \left(\frac{L_p^{xz}}{i_y}\right) = \frac{0.5 \cdot L}{0.8 \cdot 10^{-2}} = 6.25 \cdot L$$

Pandea sobre el plano yz

La configuración II es más inestable

Material de apoyo

REFERENCIAS COMPLEMENTARIAS

1. Celigüeta, J.T. "Curso de Análsis Estructural"

EUNSA. 1998

Cap 14. Introducción a la estabilidad estructural

2. Garrido, J.A. Y Foces, A. "Resistencia de Materiales".

Secretariado de Publicaciones. Universidad de Valladolid. 1994

Cap.15 La torsión en los problemas de pandeo

Cap.16 Pandeo global de pórticos planos

3. Marti Montrull, P. "Análisis de estructuras. Métodos clásicos y matricial

Horacio Escarabajal Editores. 2003

Parte 6. Pandeo global de estructuras