
Microprocessor based digital Systems

C programming language

Guillermo Carpintero

Marta Ruiz

Universidad Carlos III de Madrid

Embedded software stuck at C

No parallel languages for multi-core on horizon

Rick Merritt EE Times 09/27/2007 8:35 PM

AUSTIN, Texas — Embedded developers are slowly moving to multi-core

architectures, but they will make the transition without much help from parallel

programming languages. A lack, and sometimes a plethora, of standards is also an

impediment, said a panel of embedded software experts at the Power.org

conference here Tuesday (Sept. 25).

"Eighty-five percent of all embedded developers use C or C++. Any other

language is a non-starter," said David Kleidermacher, chief technology officer of

Green Hills Software. "I don't have much hope a new parallel language will get a

foothold," he added.

Why learn C

Real engineers program in C

Michael Barr Embedded.com 08/01/2009 5:00 AM

A couple of months ago, I ate a pleasant lunch with a couple of young

entrepreneurs in Baltimore. The two are recent computer science graduates from

Johns Hopkins University with a fast-growing consulting business. Their firm

specializes in writing software for web-centric databases in a language called Ruby

on Rails (a.k.a., "Ruby"). As we discussed many of the similarities and a few of the

differences in our respective businesses over lunch, one of the young men made a

comment I won't soon forget, "Real men program in C.“

Clever though he is, the young man admitted he wasn't making that quote up on

the spot. That "real men program in C" is part of a lingo he and his fellow

computer science students developed while categorizing the usefulness of the

various programming languages available to them.

Why learn C

Why learn C

//---
// Load Interrupt vectors
//---

//---
// main() & user functions
//---

void main(void)
{

Setup();
// Setup peripherals and software variables.

while(1) // Loop forever
{
;
}

//end while(1)
}

//---
// Setup() initializes program variables and peripheral registers
//---
void Setup(void)
{
;
}

//---
// isr()
//---

//---
// Microprocesadores (3-IT)
// Dpto. Tecnología Electronica
// UC3M
//---
#include <p18f252.h> // Register definitions
#include <portb.h> // PORTB library function
#include <timers.h> // Timer library functions
//---
// Set configuration bits:
// - set HS oscillator
// - disable watchdog timer
// - disable low voltage programming
//---
#pragma config OSC = HS
#pragma config WDT = OFF
#pragma config LVP = OFF
//---
//Constant Definitions
//---
#define CONST 1 // Constant
#define Test_LED LATAbits.LATA5 // Test LED
//---
// Variable declarations
//---
const rom char ready[] = "\n\rREADY>"; // Program memory (Tables)
//---
// Function Prototypes
//---
void myfunc(char mydata);
void isr(void);
void isrlow(void);
void Setup(void);

Template for C

C concept

About functions and variables

As a high level language, it is oriented towards structured programming.

C lenguage has been developed to create functions (set of instrucctions which perform

a given task), that are combined in order to form a program.

The basic function of all is main, which is the function that is executed first (coming

from Power-On-Reset (POR):

void main(void)

{

}

Las variables se pasan de una a otra función, consiguiendo la operación conjunta de las

funciones.

program

void main(void)

{

sys_init();

if(coin)

coin = 0;

tune = get_tune();

play(tune);

else

waitroutine();

}

C concept

functions

Receive, process and return

data, held in variables

variables

Hold data of different types and

sizes

instructions

Data Types

HOMEWORK

How is each data type stored in Memory

Data Types

Oh yes!!!

It does matter

void main(void)

{

sys_init();

if(coin)

coin = 0;

tune = get_tune();

play(tune);

else

waitroutine();

}

Data Types

HOMEWORK

There is no Boolean data type.

How can we create coin as 1 bit variable?

The data types specify the different sizes of the values for

Constants

Definition: A constant is a value of any type that has the same value and can

never change.

and the

Variables

Definition: A variable is a way of referring to a memory location used in a

computer program. This memory location holds values- perhaps numbers or

text or more complicated types of data.

Pointer: A pointer is a special kind of variable in C that holds the address of

another variable. Pointers and arrays are two sides of the same coin. To write

any kind of non trivial application in C, pointers are needed.

Data Types

The variables must be declared before we can use them.

Declaring a variable involves specifying:

1.- Data Type (size)

2.- Name of the variable

int cont0, cont1, k;

char mode, cy;

The initialization of the variables can take place when the variable is created

int cont0 = 0;

char mode = ‘forward’;

Declaration of variables

Data Types Examples

#define chain expression

#define LightsON 0x01100110

#define LED PORTAbits.RA5

Colection of Costant Data in ROM (arrays)

const rom char *datarray = “Press button to select tune”

const rom char tunes[] = { “Cure, Feels like Heaven”, “&”,

“Dire Straits, Brothers in Arms”, ”&”}

Microcontroller positions are memory locations, therefore, Variables

keybd = PORTC; reads the pins in port C

PORTA = LightsON; sets the value of port A

PORTA = LightsOFF;

Labels to hold data

Working with Variables

Retrieving data from memory

1.- By its name

int a;

a = 17;

2.- By its address (through pointers)

We need a pointer (a variable that stores the address of another

variable), which is defined by

int *bk, a;

Then

bk = &a; & = la dirección de la variable

a = *bk; * = el contenido de la dirección

Global

Declared before the start of the main() function

Scope: is anywhere in the program (includes main and all other functions)

Life Span: While the program is running

Hint: It is usually better to avoid the use of global variables

Local

The declaration is placed after the { start brace of any function including main

Scope of a local variable is limited to the function it is declared in.

Life Span:Local variables are destroyed when a function is exited, and a new one

is created when a function is visited again, they exist in memory on a temporary

basis.

If the programmer would like the value of the variable to be remembered when

the function is revisited then that variable must be declared as static

Scope of Variables

Programming in C

Programming Structures

IF

if(expresion)

{

}

else

{

}

SWITCH

switch(variable) {

case const_expr1:

statement1;

break;

case const_expr2:

statement2;

break;

case const_expr3:

statement3;

break;

default:

statement0;

}

FOR

for(expr1;expr2;expr3)

{

}

for(i=1;i<10;i++)

sum=sum+1;

WHILE

while(expresion)

{

}

while(i<10)

{

sum=sum+1;

i++;

}

DO WHILE

do

statement;

while(expresion)

Programming in C

Programming Structures

== equal? A == 0

!= not equal?

> Greater than

>= Greater or equal

< Lower than

<= Lower or equal

&& and

|| or

! not (one’s complement)

if(PORTA==0x0F)
{

}

Conditional expressions with variables in if(expresion) & while(expresion)

Programming in C

Arithmetic

+ addition

- substraction

* multiplication

/ division

% quotient

++ increment (+1)

-- decrement (-1)

Logic

& and used to clear bits

PORTA=PORTA & B’00001111’

| or used to set bits

PORTA=PORTA | B’00001111’

^ xor toggle state

PORTA=PORTA^ B’00010000’

~ not

>> left shift

PORTA=PORTA >> 4

<<

Programming in C

Operations with variables

PIC Microcontroller C

Reference to individual bits

TRISBbits.TRISB3 = 0;

PORTBbits.RB4=1;

#pragma statements

Pragmas are special compiler commmands which control certain

features of a C-compiler. Pragma statements are specifically designed

to insert statements for the microcontroller for which we are writing

code.

//---

// Set configuration bits:

// - set HS oscillator

// - disable watchdog timer

// - disable low voltage programming

//---

/*

#pragma config OSC = HS

#pragma config WDT = OFF

#pragma config DEBUG = ON

PIC Microcontroller C

Example of a C program

Global Variable

Built-in functions

Hardware
Control devices integrated in
The chip

Software
Create devices by software

Figura del “MPLAB® C18 C COMPILER LIBRARIES”

Con permiso de MICROCHIP

Built-in functions

Figura del “MPLAB® C18 C COMPILER LIBRARIES”

Con permiso de MICROCHIP

Built-in functions

