Continuity

CONTINUITY

A cont. function: small changes in input \Rightarrow small changes in output.

Def.

Let f be a function defined on
$$(x_0 - p, x_0 + p)$$
, $p > 0$

f is continuous at
$$x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$$
.

f MUST be defined at x_0 .

If f is not continuous \rightarrow **discontinuous** at x_0 :

• $\lim_{x \to x_0} f(x)$ does not exist, or

• the limit exist but is not equal to $f(x_0)$

- A function f(x) is continuous on \mathbb{R} if it is continuous $\forall x \in \mathbb{R}$.
- f(x) is continuous on (a, b) if it is continuous at each point in (a, b).
- f(x) is continuous on [a, b] if it is continuous on (a, b) and

$$f(a) = \lim_{x \to a^+} f(x), \ f(b) = \lim_{x \to b^-} f(x).$$

BASIC PROPERTIES

Let f, g be continuous at x_0 , then the following functions are continuous at x_0

- $\alpha f + \beta g$
- fg
- 1/f if $f(x_0) \neq 0$.
- Composite function: if g cont. at x₀ and f cont. at g(x₀), then f ∘ g is continuous at x₀.

Some continuous functions

The following functions are continuous on their domains

- polynomials: p(x)
- rational functions: p(x)/q(x)
- trigonometric functions: sin(x), cos(x), tan(x), arcsin(x),...
- hyperbolic functions sinh(x), cosh(x),...
- $\exp(x)$, $\ln(x)$ and $\sqrt[n]{x}$

THEOREM (INTERMEDIATE VALUE THEOREM)

If f(x) is a continuous function on [a, b] and K is a number between f(a) and f(b), then there is a $c \in [a, b]$ such that f(c) = K.

THEOREM (BOLZANO'S THEOREM)

If f(x) is a continuous function on [a, b] and $f(a) \cdot f(b) < 0$, then there is a $c \in (a, b)$ such that f(c) = 0.

A function f is **bounded** if the set of its values is bounded. That is, if there exists a number M > 0 such that $|f(x)| \le M$, for all x in its domain.

THEOREM (EXTREME VALUE THEOREM)

If f(x) is a continuous function on the closed interval [a, b], then f attains its maximum and minimum value. That is, there exist numbers x_m and x_M in [a, b] such that: $f(x_M) \ge f(x) \ge f(x_m)$ for all $x \in [a, b]$.