Continuity

CONTINUITY

A cont. function: small changes in input \Rightarrow small changes in output.

Def.

Let f be a function defined on $\left(x_{0}-p, x_{0}+p\right), p>0$

$$
f \text { is continuous at } x_{0} \Longleftrightarrow \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

f MUST be defined at x_{0}.
If f is not continuous \rightarrow discontinuous at x_{0} :

- $\lim _{x \rightarrow x_{0}} f(x)$ does not exist, or
- the limit exist but is not equal to $f\left(x_{0}\right)$
- A function $f(x)$ is continuous on \mathbb{R} if it is continuous $\forall x \in \mathbb{R}$.
- $f(x)$ is continuous on (a, b) if it is continuous at each point in (a, b).
- $f(x)$ is continuous on $[a, b]$ if it is continuous on (a, b) and

$$
f(a)=\lim _{x \rightarrow a^{+}} f(x), f(b)=\lim _{x \rightarrow b^{-}} f(x) .
$$

BASIC PROPERTIES

Let f, g be continuous at x_{0}, then the following functions are continuous at x_{0}

- $\alpha f+\beta g$
- fg
- $1 / f$ if $f\left(x_{0}\right) \neq 0$.
- Composite function: if g cont. at x_{0} and f cont. at $g\left(x_{0}\right)$, then $f \circ g$ is continuous at x_{0}.

Some continuous functions

The following functions are continuous on their domains

- polynomials: $p(x)$
- rational functions: $p(x) / q(x)$
- trigonometric functions: $\sin (x), \cos (x), \tan (x), \arcsin (x), \ldots$
- hyperbolic functions $\sinh (x), \cosh (x), \ldots$
- $\exp (x), \ln (x)$ and $\sqrt[n]{x}$

Theorem (Intermediate Value Theorem)

If $f(x)$ is a continuous function on $[a, b]$ and K is a number between $f(a)$ and $f(b)$, then there is a $c \in[a, b]$ such that $f(c)=K$.

Theorem (Bolzano's Theorem)

If $f(x)$ is a continuous function on $[a, b]$ and $f(a) \cdot f(b)<0$, then there is a $c \in(a, b)$ such that $f(c)=0$.

A function f is bounded if the set of its values is bounded. That is, if there exists a number $M>0$ such that $|f(x)| \leq M$, for all x in its domain.

Theorem (Extreme Value Theorem)

If $f(x)$ is a continuous function on the closed interval $[a, b]$, then f attains its maximum and minimum value. That is, there exist numbers x_{m} and x_{M} in $[a, b]$ such that:
$f\left(x_{M}\right) \geq f(x) \geq f\left(x_{m}\right) \quad$ for all $x \in[a, b]$.

