DERIVATIVES

The derivative

Def.

A function f is **differentiable** at $x \iff$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists and is a finite number.

If f is differentiable then
$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \to \frac{derivative}{h}$$
 of f at x.
 $f' \to \text{new function.}$

Def. (Alternative def.)

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

The tangent line to f(x) at x_0 : $y = f'(x_0)(x - x_0) + f(x_0)$.

Properties

THEOREM (THE CHAIN RULE)

If g is differentiable at x and f is differentiable at g(x), then the composite function $f \circ g$ is differentiable at x and verifies

 $(f \circ g)'(x) = f'(g(x))g'(x)$

Basic derivatives

•
$$c' = 0$$

• $(x^n)' = nx^{n-1}$
• $(e^x)' = e^x$, $(\log x)' = \frac{1}{x}$
• $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = \frac{1}{\cos^2 x}$
• $(\arctan x)' = \frac{1}{1 + x^2}$, $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$
• $(\sinh x)' = \cosh$, $(\cosh x) = \sinh x$

Theorem

f differentiable \Rightarrow f continuous

THEOREM (ROLLE'S THEOREM)

Let f be differentiable on (a, b) and continuous on [a, b]. If f(a) = f(b), then there is at least a number $c \in (a, b)$ such that

f'(c) = 0

THEOREM (MEAN VALUE THEOREM)

Let f be differentiable on (a, b) and continuous on [a, b], then there is at least a number $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

or, equivalently f(b) - f(a) = f'(c)(b - a)

THEOREM (L'HÔPITAL'S RULE)

Let f and g be differentiable functions on (a, b), except possibly at the point $x_0 \in (a, b)$. If $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ is the indeterminate form $\frac{0}{0}$, then

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)},$$

whenever
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 exists or it is infinite.

Extensions. L'Hôpital's Rule can be applied also in the following cases:

- If the indeterminate form is $\frac{\infty}{\infty}$ with all the possible signs.
- If the limit is taken when $x_0
 ightarrow \pm \infty$
- To one-sided limits

• Implicit differentiation:

$$F(x,y) = 0,$$

 $\frac{d}{dx}$ both sides of the equation $\rightarrow \frac{dy}{dx}$

• Higher order derivatives:

$$\frac{d^2f}{dx^2} = f''(x), \qquad \frac{d^3f}{dx^3} = f'''(x), \cdots, \frac{d^nf}{dx^n} = f^{(n)}(x)$$