DERIVATIVES

The Derivative

DEF.

A function f is differentiable at $x \Longleftrightarrow$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists and is a finite number.
If f is differentiable then $f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \rightarrow$ derivative of f at x.
$f^{\prime} \rightarrow$ new function.

Def. (Alternative def.)

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

The tangent line to $f(x)$ at $x_{0}: y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Properties

(1) $\left(c_{1} f+c_{2} g\right)^{\prime}=c_{1} f^{\prime}+c_{2} g^{\prime}, \quad c_{1}, c_{2} \in \mathbb{R}$
(2) $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$
(3) $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Theorem (The Chain Rule)

If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f \circ g$ is differentiable at x and verifies

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Basic derivatives

(1) $c^{\prime}=0$
(2) $\left(x^{n}\right)^{\prime}=n x^{n-1}$
(3) $\left(e^{x}\right)^{\prime}=e^{x}, \quad(\log x)^{\prime}=\frac{1}{x}$
(4) $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x, \quad(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$

- $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$,
$(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
(6) $(\sinh x)^{\prime}=\cosh , \quad(\cosh x)=\sinh x$

Theorem

f differentiable $\Rightarrow f$ continuous

Theorem (Rolle's Theorem)

Let f be differentiable on (a, b) and continuous on $[a, b]$. If $f(a)=f(b)$, then there is at least a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=0
$$

Theorem (Mean Value Theorem)

Let f be differentiable on (a, b) and continuous on $[a, b]$, then there is at least a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently $f(b)-f(a)=f^{\prime}(c)(b-a)$

Theorem (L'Hôpital's Rule)

Let f and g be differentiable functions on (a, b), except possibly at the point $x_{0} \in(a, b)$. If $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}$ is the indeterminate form $\frac{0}{0}$, then

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

whenever $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or it is infinite.
Extensions. L'Hôpital's Rule can be applied also in the following cases:

- If the indeterminate form is $\frac{\infty}{\infty}$ with all the possible signs.
- If the limit is taken when $x_{0} \rightarrow \pm \infty$
- To one-sided limits
- Implicit differentiation:

$$
\begin{aligned}
& F(x, y)=0 \\
& \frac{d}{d x} \text { both sides of the equation } \rightarrow \frac{d y}{d x}
\end{aligned}
$$

- Higher order derivatives:

$$
\frac{d^{2} f}{d x^{2}}=f^{\prime \prime}(x), \quad \frac{d^{3} f}{d x^{3}}=f^{\prime \prime \prime}(x), \cdots, \frac{d^{n} f}{d x^{n}}=f^{(n)}(x)
$$

