REAL SEQUENCES

Def.

A real sequence $\{a_n\}$ is a map:

 $a_n \colon \mathbb{N} \to \mathbb{R}.$

 $a_1, a_2, a_3 \dots \rightarrow$ terms of the sequence. $a_n \rightarrow$ general term. Also with n = 0: $a_0, a_1, a_2 \dots$

Def.

A sequence $\{a_n\}$ is **convergent** if $\lim_{n\to\infty} a_n = L$, for L finite.

The **limit** of a sequence $\{a_n\}$ is *L* if for every $\epsilon > 0 \exists N \in \mathbb{N}$ such that if $n > N \Rightarrow |a_n - L| < \varepsilon$. There is an alternative def. for *L* infinite.

If the sequence is not convergent \rightarrow divergent. Properties of limits of sequences are the same of functions.

TO COMPUTE LIMITS

• Use the concept of the limit of a function:

Let
$$f(x)$$
 be a function and $\{a_n\}$ the sequence $f(n) = a_n$.
If $\lim_{x \to \infty} f(x) = L$ then $\lim_{n \to \infty} a_n = L$

 \rightarrow All the tools of limits of functions, such as L'Hopital Rule.

• The Sandwich lemma of sequences:

If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ (finite or infinite) and $\{c_n\}$ verifies $a_n \le c_n \le b_n$, $\forall n \in \mathbb{N}$, then $\lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$

Def. (A sequence $\{a_n\}$ is:)

- **1** bounded from above if $\exists C \in \mathbb{R}$ such that $a_n \leq C$.
- **2** bounded from below if $\exists C \in \mathbb{R}$ such that $a_n \geq C$.
- **bounded** if it is bounded from above and below (∃ C₁, C₂ ∈ ℝ, s. t. C₁ ≤ a_n ≤ C₂).

Def. (A sequence $\{a_n\}$ is)

- **(**) monotonically increasing if $a_n < a_{n+1}$ (non decreasing if $a_n \le a_{n+1}$).
- 2 monotonically decreasing if $a_n > a_{n+1}$ (non increasing if $a_n \ge a_{n+1}$).
- **o** monotonic if it is one of the previous cases.

Theorem

$$\{a_n\}$$
 monotonic and bounded $\Rightarrow \{a_n\}$ convergent.

THEOREM (STOLZ TEST)

If $\{a_n\}$ and $\{b_n\}$ verify one of the following:

• $\{b_n\}$ is monotonically increasing with $\lim_{n\to\infty} b_n = \infty$,

② { b_n } is monotonically decreasing, with $b_n \neq 0$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$

Whenever $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$, exists for L finite or infinite, then

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

THEOREM (STIRLING'S FORMULA)

$$\lim_{n\to\infty} \frac{n!}{n^n e^{-n}\sqrt{2\pi n}} = 1$$