


DEF. (SERIES)

Zan:al+az+a3+a4+~-~.
n=1

S,=a1+a + a3+ ---a, — partial sum of n terms is
If limS,=S5<o0= )2, a, converges.

n—oo

S=IlmS,=a+a+tastas+---.
n—oo

Otherwise — the series diverges

Properties

o Zan, Z b, conv = Z(qan + b)) =qa Z an+ o Z b, conv
@ lima,#0= > a, div

(5] Zan conv = nIer;Oan =0. (But n[rr;oa,, =0 Za,, conv)
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THEOREM (THE GEOMETRICAL SUM)

Converges if 0 < |r| <1 —

= 1
Zrn:l—r

n=0

THEOREM (THE TELESCOPING SERIES. (a, = b, — byt1)

oo

> (bn = bat1) = (b1 — by) + (bo — bs) + (bs — ba) + (bs — bs) + - -

n=1

— Spi=bi— bn+1-
This series converges <= |im b, < oo and S = b; — lim b,

n—oo n—oo

THEOREM (THE P-SERIES. p = 1 — HARMONIC SERIES)

n=1
@ converges if p > 1
© diverges if0 < p<1

v,
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CONVERGENCE TEST FOR SERIES

© Direct comparison test: {a,} and {b,} — positive terms

Z b, conv = Z a, conv
Zan div=> Z b, div

© Limit comparison test: {a,} and {b,} — positive terms

O<ap<b, Vn —

. a .. ..
lim =2 =L, L finite and positive
n—oo bn

Z an and Z b, have the same behaviour

both converge or both diverge
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CONVERGENCE TEST FOR SERIES

@ Root test: {a,} — positive terms

lim /a, <1= Za,, conv

n—oo
nILngo Va,>1= Zan div

( lim /a, = 1 the test does not conclude)

n—oo

© Quotient test: {a,} — positive terms

. an+1
lim L<1:>z:a,,conv

n—oo ap

. a .
lim 271 51 = Za,, div

n—oo ap

. a
lim 221 — 1 the test does not conclude)
n—oo  a,

5/11



CONVERGENCE TEST FOR SERIES

@ Leibniz test for alternating series: {a,} — positive terms

If ay11 < apand lim a,=0
n—oo
I

The alternating series Y (—1)"a, converges conditionally

(Z(_l)n+lan)

DEF.

AC. )" ap is absolutely convergent if > |a,| is convergent
CC. > a, conv but > |a,| div then Y a, conditionally convergent

Absolute convergence —>  Conditional convergence

No conditional convergence = No absolute convergence
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Error. Alternating series

N
S=Sv+Rv=> (-1Ma,+ Ry = [Ru| < ans

n=1

Note. We can differentiate or integrate an infinite series to obtain
another series.
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POWER SERIES

A power series at xp is an infinite series of the form

F(x) = an(x —x0)" = a0+ a1(x—x0) + a2(x — x0)* + a3(x — x0)* + - -
n=0

THEOREM (CONVERGENCE OF A POWER SERIES)

A power series at xp verifies only one of the following:
@ The series converges only at xg.

@ There is a real number p > 0 such that the series is

o absolutely convergent for |x — c| < p
o divergent for |x —c| > p

@ The series is absolutely convergent for every x € R

8 /11



Radius of convergence: p (p =0, p < 0o or p = )

1
= limsup /|an|

° —
14 n—oo
1 . an+1| . e . .

e — = lim , if this limit exists
P n—o0 an

Interval of convergence: the set of all x for which the series converges

IfFf(x) =Y 0an(x—x0)" hasp >0 =
f(x) is continuous, differentiable and integrable on (xo — p, xo + p).

The derivative and the integral — computed term by term.
Same radius as . (The interval of convergence may be different)

Properties. Let f(x) =) 1 a.x" and g(x) = > .7 box".
Q f(kx) = Ziio ank"x".
Q f(xN) =327 anx".
Q af(x)+ ag(x) = > o(cran + cabn)x".
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DEF.

If £ has all the derivatives at xg,

s f(")(xo)

(x —x0)"
I
—~ nl

is the Taylor series of f at xg

(for xo = 0 also called the Mac Laurin series of f)

THEOREM

| \

If f has all the derivatives on an open interval | containing xg then

0 £() (x,
fo) =3 )y,

n!
n=0

<= 3¢ between x and xg such that

2 2 f(n+1)(£) n+1
nleooR"(X) = nin;om(x —x)"" =0, Vxel.

A\
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TAYLOR SERIES

2 X3 x"
e* —1—|-x—|———|———|— =, —o0o < x <00
3! n!
B35 KT K2n+1
1 f— _ —_—— — DEEEEY _ ni"' f—
sinx=x-—grtg gt N Gy oS xS
2t 6 20
cosx—l—j—i-—| o -+ (-1) o —00 < x < 00
35 T K2+l
tanx =X — = 4+ (1) —1<x<1
arctan x = x 3+5 7+ +( )(2n+1) ) <x<
L_ 2 3 n _
1 =l4+x+x+x4+---4+x"--- l<x<1
—x
In (1 + x) i (1) l<x<l1
n X)) =X — — —_— . — —_— . — X
2 3 n ’ -
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