SERIES

Def. (Series)

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

$S_{n}=a_{1}+a_{2}+a_{3}+\cdots a_{n} \rightarrow$ partial sum of n terms is
If $\lim _{n \rightarrow \infty} S_{n}=S<\infty \Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges.

$$
S=\lim _{n \rightarrow \infty} S_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots .
$$

Otherwise \rightarrow the series diverges

Properties

(1) $\sum a_{n}, \sum b_{n}$ conv $\Rightarrow \sum\left(c_{1} a_{n}+c_{2} b_{n}\right)=c_{1} \sum a_{n}+c_{2} \sum b_{n}$ conv
(2) $\lim _{n \rightarrow \infty} a_{n} \neq 0 \Rightarrow \sum a_{n}$ div
(3) $\sum a_{n}$ conv $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=0$. (But $\lim _{n \rightarrow \infty} a_{n}=0 \nRightarrow \sum a_{n}$ conv)

Theorem (The geometrical sum)

Converges if $0<|r|<1 \rightarrow$

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Theorem (The telescoping series. $\left(a_{n}=b_{n}-b_{n+1}\right)$

$$
\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)=\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\left(b_{4}-b_{5}\right)+\cdots
$$

$\rightarrow S_{n}=b_{1}-b_{n+1}$.
This series converges $\Longleftrightarrow \lim _{n \rightarrow \infty} b_{n}<\infty$ and $S=b_{1}-\lim _{n \rightarrow \infty} b_{n}$
ThEOREM (THE P-SERIES. $p=1 \rightarrow$ HARMONIC SERIES)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots
$$

(1) converges if $p>1$
(2) diverges if $0<p \leq 1$

CONVERGENCE TEST FOR SERIES

(1) Direct comparison test: $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\} \rightarrow$ positive terms

$$
0<a_{n} \leq b_{n}, \forall n \rightarrow \begin{aligned}
& \sum b_{n} \text { conv } \Rightarrow \sum a_{n} \text { conv } \\
& \sum a_{n} \operatorname{div} \Rightarrow \sum b_{n} \text { div }
\end{aligned}
$$

(2) Limit comparison test: $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\} \rightarrow$ positive terms

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L, \quad L \text { finite and positive } \\
\Downarrow \\
\sum a_{n} \text { and } \sum b_{n} \text { have the same behaviour } \\
\text { both converge or both diverge }
\end{gathered}
$$

CONVERGENCE TEST FOR SERIES

(3) Root test: $\left\{a_{n}\right\} \rightarrow$ positive terms

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1 \Rightarrow \sum a_{n} \text { conv } \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1 \Rightarrow \sum a_{n} \text { div } \\
& \left(\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 \text { the test does not conclude }\right)
\end{aligned}
$$

(9) Quotient test: $\left\{a_{n}\right\} \rightarrow$ positive terms

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1 \Rightarrow \sum a_{n} \text { conv } \\
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1 \Rightarrow \sum a_{n} \text { div } \\
& \left(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1\right. \text { the test does not conclude) }
\end{aligned}
$$

CONVERGENCE TEST FOR SERIES

(0) Leibniz test for alternating series: $\left\{a_{n}\right\} \rightarrow$ positive terms

$$
\text { If } a_{n+1} \leq a_{n} \text { and } \lim _{n \rightarrow \infty} a_{n}=0
$$

\Downarrow
The alternating series $\sum(-1)^{n} a_{n}$ converges conditionally

$$
\left(\sum(-1)^{n+1} a_{n}\right)
$$

Def.

AC. $\sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ is convergent
CC. $\sum a_{n}$ conv but $\sum\left|a_{n}\right|$ div then $\sum a_{n}$ conditionally convergent

Absolute convergence $\quad \Longrightarrow$ Conditional convergence
No conditional convergence $\Longrightarrow \quad$ No absolute convergence

Error. Alternating series

$$
S=S_{N}+R_{N}=\sum_{n=1}^{N}\left(-1^{n}\right) a_{n}+R_{N} \quad \Rightarrow\left|R_{N}\right| \leq a_{N+1}
$$

Note. We can differentiate or integrate an infinite series to obtain another series.

Power Series

Def.

A power series at x_{0} is an infinite series of the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

Theorem (Convergence of a power series)

A power series at x_{0} verifies only one of the following:
(1) The series converges only at x_{0}.
(2) There is a real number $\rho>0$ such that the series is

- absolutely convergent for $|x-c|<\rho$
- divergent for $|x-c|>\rho$
(3) The series is absolutely convergent for every $x \in \mathbb{R}$

Radius of convergence: $\rho(\rho=0, \rho<\infty$ or $\rho=\infty)$

- $\frac{1}{\rho}=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$
- $\frac{1}{\rho}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$, if this limit exists

Interval of convergence: the set of all x for which the series converges

Theorem

If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has $\rho>0 \Rightarrow$
$f(x)$ is continuous, differentiable and integrable on $\left(x_{0}-\rho, x_{0}+\rho\right)$.
The derivative and the integral \rightarrow computed term by term.
Same radius as f. (The interval of convergence may be different)
Properties. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
(1) $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$.
(2) $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{N n}$.
(3) $c_{1} f(x)+c_{2} g(x)=\sum_{n=0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right) x^{n}$.

DEF.

If f has all the derivatives at x_{0},

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is the Taylor series of f at x_{0}
(for $x_{0}=0$ also called the Mac Laurin series of f)

Theorem

If f has all the derivatives on an open interval I containing x_{0} then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n},
$$

$\Longleftrightarrow \exists \xi$ between x and x_{0} such that

$$
\lim _{n \rightarrow \infty} R_{n}(x)=\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0, \quad \forall x \in I
$$

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \cdots, \quad-\infty<x<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \cdots, \quad-\infty<x<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} \cdots, \quad-\infty<x<\infty \\
& \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)} \cdots, \quad-1 \leq x \leq 1 \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n} \cdots, \quad-1<x<1 \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n+1} \frac{x^{n}}{n} \cdots, \quad-1<x \leq 1
\end{aligned}
$$

