

Def. (Series)

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots.$$

 $S_n = a_1 + a_2 + a_3 + \cdots + a_n \rightarrow \text{partial sum of } n \text{ terms is}$ If $\lim_{n \to \infty} S_n = S < \infty \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges.}$

$$S = \lim_{n \to \infty} S_n = a_1 + a_2 + a_3 + a_4 + \cdots$$

 $Otherwise \rightarrow the \ series \ diverges$

Properties

•
$$\sum a_n$$
, $\sum b_n \operatorname{conv} \Rightarrow \sum (c_1 a_n + c_2 b_n) = c_1 \sum a_n + c_2 \sum b_n \operatorname{conv}$
• $\lim_{n \to \infty} a_n \neq 0 \Rightarrow \sum a_n \operatorname{div}$
• $\sum a_n \operatorname{conv} \Rightarrow \lim_{n \to \infty} a_n = 0$. (But $\lim_{n \to \infty} a_n = 0 \Rightarrow \sum a_n \operatorname{conv}$)

THEOREM (THE GEOMETRICAL SUM)

Converges if $0 < |r| < 1 \rightarrow$

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

THEOREM (THE TELESCOPING SERIES. $(a_n = b_n - b_{n+1})$

$$\sum_{n=1}^{\infty} (b_n - b_{n+1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + (b_4 - b_5) + \cdots$$

$$\rightarrow S_n = b_1 - b_{n+1}.$$

This series converges $\iff \lim_{n \to \infty} b_n < \infty \text{ and } S = b_1 - \lim_{n \to \infty} b_n$

THEOREM (THE P-SERIES. $p = 1 \rightarrow$ HARMONIC SERIES)

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$

• converges if p > 1

2 diverges if 0

CONVERGENCE TEST FOR SERIES

O Direct comparison test: $\{a_n\}$ and $\{b_n\} \rightarrow$ positive terms

$$0 < a_n \leq b_n, \, orall \, n \quad \longrightarrow \quad \sum b_n \, \mathrm{conv} \Rightarrow \sum a_n \, \mathrm{conv}$$

 $\sum a_n \, \mathrm{div} \Rightarrow \sum b_n \, \mathrm{div}$

2 Limit comparison test: $\{a_n\}$ and $\{b_n\} \rightarrow$ positive terms

CONVERGENCE TEST FOR SERIES

3 Root test: $\{a_n\} \rightarrow$ positive terms

$$egin{aligned} & \lim_{n o \infty} \sqrt[n]{a_n} < 1 \Rightarrow \sum a_n ext{ conv} \ & \lim_{n o \infty} \sqrt[n]{a_n} > 1 \Rightarrow \sum a_n ext{ div} \ & (\lim_{n o \infty} \sqrt[n]{a_n} = 1 ext{ the test does not conclude}) \end{aligned}$$

Quotient test: $\{a_n\} \rightarrow \text{positive terms}$

$$\begin{split} &\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \Rightarrow \sum a_n \text{ conv} \\ &\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \Rightarrow \sum a_n \text{ div} \\ &(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \text{ the test does not conclude}) \end{split}$$

CONVERGENCE TEST FOR SERIES

O Leibniz test for alternating series: $\{a_n\} \rightarrow$ positive terms

If
$$a_{n+1} \leq a_n$$
 and $\lim_{n \to \infty} a_n = 0$
 \downarrow
The alternating series $\sum (-1)^n a_n$ converges conditionally
 $\left(\sum (-1)^{n+1} a_n\right)$

Def.

AC. $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent CC. $\sum a_n$ conv but $\sum |a_n|$ div then $\sum a_n$ conditionally convergent

Absolute convergence	\implies	Conditional convergence
No conditional convergence	\implies	No absolute convergence

Error. Alternating series

$$S = S_N + R_N = \sum_{n=1}^N (-1^n) a_n + R_N \quad \Rightarrow \ |R_N| \le a_{N+1}$$

Note. We can differentiate or integrate an infinite series to obtain another series.

Def.

A **power series** at x_0 is an infinite series of the form

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \cdots$$

THEOREM (CONVERGENCE OF A POWER SERIES)

A power series at x_0 verifies only one of the following:

- The series converges only at x_0 .
- 2 There is a real number $\rho > 0$ such that the series is
 - absolutely convergent for $|x c| < \rho$
 - divergent for $|x c| > \rho$
- **③** The series is absolutely convergent for every $x \in \mathbb{R}$

Radius of convergence: ρ ($\rho = 0$, $\rho < \infty$ or $\rho = \infty$)

•
$$\frac{1}{\rho} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

• $\frac{1}{\rho} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, if this limit exists

Interval of convergence: the set of all x for which the series converges

Theorem

If
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 has $\rho > 0 \Rightarrow$
 $f(x)$ is continuous, differentiable and integrable on $(x_0 - \rho, x_0 + \rho)$.

The derivative and the integral \rightarrow computed term by term. Same radius as f. (The interval of convergence may be different)

Properties. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$. a) $f(kx) = \sum_{n=0}^{\infty} a_n k^n x^n$. b) $f(x^N) = \sum_{n=0}^{\infty} a_n x^{Nn}$. c) $c_1 f(x) + c_2 g(x) = \sum_{n=0}^{\infty} (c_1 a_n + c_2 b_n) x^n$.

Def.

If f has all the derivatives at x_0 ,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

is the **Taylor series** of f at x_0 (for $x_0 = 0$ also called the Mac Laurin series of f)

Theorem

If f has all the derivatives on an open interval I containing x_0 then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$

 $\iff \exists \xi \text{ between } x \text{ and } x_0 \text{ such that}$

$$\lim_{n\to\infty}R_n(x)=\lim_{n\to\infty}\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}=0,\quad\forall\,x\in I.$$

TAYLOR SERIES

$$\begin{split} e^{x} &= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} \dots, \quad -\infty < x < \infty \\ \sin x &= x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \dots, \quad -\infty < x < \infty \\ \cos x &= 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} \dots, \quad -\infty < x < \infty \\ \arctan x &= x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \dots, \quad -1 \le x \le 1 \\ \frac{1}{1-x} &= 1 + x + x^{2} + x^{3} + \dots + x^{n} \dots, \quad -1 < x < 1 \\ \ln(1+x) &= x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} \dots, \quad -1 < x \le 1 \end{split}$$