APPLICATIONS OF THE INTEGRAL

- Area between the graph of a function, the x-axis, between a and b :

$$
A=\int_{a}^{b}|f| d x
$$

- Area between the graphs of two functions f, g, between a and b :

$$
A=\int_{a}^{b}|f-g| d x
$$

- Area using parametric equations: the area between the graph of $x=x(t), y=y(t)$ and the x-axis between $t=t_{0}$ and $t=t_{1}$ is:

$$
A=\left|\int_{t_{0}}^{t_{1}} y(t) x^{\prime}(t) d t\right|
$$

- Area using polar coordinates: the area of the graph of $r=r(\theta)$ between $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2}(\theta) d \theta
$$

- Volume by parallel cross-sections: if $A(x)$ is the area of parallel cross-sections over the entire length of a solid, the volume between $x=a$ and $x=b$ is

$$
V=\int_{a}^{b} A(x) d x
$$

- The Disk method: the volume of a solid of revolution obtained by rotating $|f(x)|$ about the x-axis between $x=a$ and $x=b$ is

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

- The Shell method: the volume of a solid of revolution obtained by rotating $f(x) \geq 0, x \in[a, b], a \geq 0$, about the y-axis is

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

LENGTHS

- The length of an arc of a curve $f(x)$ between $x=a$ and $x=b$ is

$$
L(f)=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

- If the curve is given in parametric form, the length is

$$
L=\int_{t_{0}}^{t_{1}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Def.

$$
\int_{a}^{\infty} f(x)=\lim _{N \rightarrow \infty} \int_{a}^{N} f(x)
$$

If the limit is finite we say that the integral converges otherwise we say that the integral diverges.

Theorem (Integral test for series)

Consider $f \geq 0$ a monotone decreasing function defined for $x \geq 1$. Let $a_{n}=f(n)$, then

$$
\sum_{n=1}^{\infty} a_{n} \text { and } \int_{1}^{\infty} f(x) d x
$$

have the same behaviour, or both converge or both diverge.

