Unit 2

Differential Calculus in one
variable

2.1 Derivatives
The derivative provides a way to calculate the rate of change of a function

We compute the average velocity as the rate between the distance during a time interval
h and the length of the time interval

z(t+ h) — x(t)

Vaverage = h

this is just the slope m of the line passing through the points (¢, z(t)) and (t+h, z(t+h)).
If we want to compute the velocity at a time ¢ we should take the limit

x(t+h)—xz(t) d

v(t) = lim = gx(t)

h—0 h

Definition 2.1.1 A function f is differentiable at r <~

i £ 1)~ £(@)
h—0 h

exists and is a finite number.

1s called the deriva-

If f is differentiable then f'(z) = dif(x) = lim
i
tive of f at x.

Note. The function f’ exist for the points on the domain of f such that the limit exists
and is finite.

Definition 2.1.2 (Alternative def.)

fan) — tim T@) = F0)
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Tangent Line

The line passing through (zg, f(zo)) with slope m = f’(x¢) is the tangent line to f(x)
at xo: y = m(x — xo) + f(zo).

Properties
1. (cif +c29) =c1f' +cog’, c1,c0 €R.
2. (f-9)=fg+fd
3 (i)’ _fl9—1d
g g?

Theorem 2.1.3 (The Chain Rule) If g is differentiable at = and f is differentiable
at g(x), then the composite function f o g is differentiable at x, and verifies

(fo9)'(z) = f'(9(x))d (x)
Note. With the Chain Rule we can prove that

1

—1y\/ ) = ——
U= 7wy

We can use that identity to compute (arctanz)’ and (Inz)’.
Basic derivatives

1. /=0

2. (z") = na"!

1
3. (%) =€*, (logz) = ~
x

1
4. . r_ I t r_
(sin )" = cosx, (cos x) sin z, (tanx) g
5. (arctanz) = ! (arcsinz) = !
' C 1422 V122
6. (sinhz)’ = cosh, (coshz)’ = sinh z

Theorem 2.1.4
f differentiable = f continuous

Theorem 2.1.5 (Rolle’s Theorem) Let f be differentiable on (a,b) and continuous
on [a,b]. If f(a) = f(b), then there is at least a number ¢ € (a,b) such that

f'(e)=0.
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Theorem 2.1.6 (Mean Value Theorem) Let f be differentiable on (a,b) and con-
tinuous on [a,b], then there is at least a number ¢ € (a,b) such that

or, equivalently f(b) — f(a) = f'(¢)(b— a).

Theorem 2.1.7 (L’Hopital’s Rule) Let f and g be differentiable functions on (a,b),

except possibly at the point x¢ € (a,b). If wlggo ;ég

0
is the indeterminate form 0’ then

tim L&) _ iy £

rog(z)  worog (@)’

!
whenever lim f, (2)
g ()

exists or it is infinite.

Extensions

L’Hopital’s Rule can be applied also in the following cases:
e If the indeterminate form is S with all the possible signs.
e If the limit is taken when z¢g — *o0

e To one-sided limits

Implicit differentiation

d
F(z,y) = 0 differentiate with respect to x and then obtain d—y
x

Higher order derivatives

We can compute the derivative of a derivative:

“f
dx?

“f
da3

arf

" dxn

:f”(.CC), :fm(a:)f" :f(n)(x)
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2.2 Extrema

Definition 2.2.1 Let f be a function defined on an interval I:

e f(xy,) is the global (or absolute) minimum of f on I if f(xy,) < f(z), Ve € T

o f(xpr) is the global (or absolute) maximum of f on I if f(xp) > f(x), Ve € T

Note. Remember that if f is continuous, on a bounded and closed interval [a,b] the
function always reaches its global maximum and minimum.

Definition 2.2.2 Let f be a function defined on an interval I, if we have an open
interval Iy containing xg

o f(zg) is alocal (or relative) minimum of f on I if f(xo) < f(x), Yo € I
e f(xg) is a local (or relative) maximum f on I if f(xg) > f(z), Ve € I1
Definition 2.2.3 Let f be a function defined at xg. f has a critical point at xq if
f'(xo) =0 or f'(xg) does not exist

Theorem 2.2.4 If f has a local maximum or minimum at xq, then xg is a critical
point of f.

Finding the global extrema of a function f on a closed interval [a, ]

1. Compute the critical points of f on (a,b): f'(x9) =0 or f/'(xp) does not exist
2. Evaluate f at each critical point of (a,b)
3. Evaluate f at the endpoints of the interval f(a) and f(b)

4. The smallest value is the global minimum and the greatest one, the global maxi-
mum

Definition 2.2.5

e f is an increasing function on an interval I if Vx1,x0 € I with ©1 < x5 we
have that f(z1) < f(x2).

e f is a decreasing function on an interval I if Va1, 20 € I with x1 < x2 we have
that f(z1) > f(x2).

Theorem 2.2.6 Let f be a continuous function on a closed interval [a,b] and differ-
entiable on (a,b)

1. If f'(x) > 0, Vz € (a,b) then f is increasing on [a,b].
2. If f'(x) <0, Vx € (a,b) then f is decreasing on [a,b].
3. If f'(x) =0, Vz € (a,b) then f is constant on |a,b).
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Test of the first derivative

x <my | x> x0 | T (critical point)
— 4 local minimum
+ — local maximum
!
f'(z) — — neither
4= 4= neither

Definition 2.2.7 Let f be differentiable on an open interval I. The graph of f is
e convex (concave upwards) on I if [’ is increasing.

e concave (concave downwards) on I if ' is decreasing.

Theorem 2.2.8 Let f be a function twice differentiable on an open interval 1
o If f"(x) >0, Va € I, then the graph of f is convex on I.

o If f""(x) <0, VY € I, then the graph of f is concave on I.

Definition 2.2.9 Let f be a continuous function on an open interval I, and let xg € I.
f has an inflection point at zq if the concavity changes at xy (convex < concave).

Theorem 2.2.10 If zg is an inflection point of f, then f"(xo) =0 or f"(xq) does not
exist.

Theorem 2.2.11 Let f be a function such that f'(x¢) =0 and twice differentiable on
an open interval containing xg

o if f"(xo) >0, then f has a local minimum at xg.

o if f"(x9) <0, then f has a local mazimum at xg.

If f"(x¢) = 0 the test does not work, it can be anything.

f'(@o) | f"(z0) graph
+ — increasing, concave
— — decreasing, concave

4 < increasing, convex
— 4F decreasing, convex
0 4= local minimum
0 — local maximum
0 0 ?
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2.3 Graphs
1. Domain
2. Intersection with z-axis — f(z) =0
Intersection with y-axis — f(0) =y
3. Symmetries
f(=x) = +f(x) — even
f(=z) = —f(z) — odd
Periodicity — f(z +T) = f(x)
4. Asymptotes:
Vertical — lim f(z) = o0
T—x0
Horizontal — lim f(x) = H
r—=+00
Oblique — lim f(z) — (mz+b) =0 —m = lim M, b= lim (f(z) — mx)
r—+o00 r—00 I T—00
5. Continuity: lim f(z) = f(z0)
T—T0
6. Derivative: monotonicity and critical points
f'(z) > 0 increasing
f'(x) < 0 decreasing
f'(x) =0 or f'(x) does not exist — critical points
7. Local maxima and minima: xg — critical point
' (x0) =0, f"(x9) >0 local minimum
f(xo) =0, f"(x0) <0 local maximum
fx): ——+ local minimum
flx):++— — local maximum
8. Concavity
1" (x) > 0 convex
1" (x) < 0 concave
9. Inflection points. Concavity changes. f”(xq) = 0 or Af” ()

Global maxima and minima
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2.4 Taylor polynomial

The idea is to approximate a function f(x) by a polynomial P(z). The Taylor
polynomial is the best polynomial that approximates a function at a point xg

. a constant — P(x) = f(x0)
If we approximate f(x) by { o line . Pla) = f(:ng) b a0 (@ — o)

Definition 2.4.1 If f is differentiable n times at xo, then the polynomial

f//(:l:o)

S (@ — w0)P

Pr(z) = f(z0) + f'(z0)(x — z0) +

is the Taylor polynomial of degree n of f at xg.

Note. When zg = 0 the polynomial is called Mac Laurin Polynomial.

ERROR

The polynomial approximates f(x), so we have an error
|R,(z)| = |f(z) — P(x)|. There are many formulas for the error, but the idea of all of
them is that they verify

_ f(@) = Pa(z) _
xILH;O (m — ;UO)” =0
— Rp(z) = o(z — o)"). Notation: f(z) = o(g(x)) whenz — z¢ <= xlg;log((z; =0.

In the following theorem we give a formula for the error |R,(x)|:

Theorem 2.4.2 Let f(z) be a function differentiable n + 1 times on an open interval
1, then Vxo,x € I we have that

f(n) (z0)

n!

f(x) = Pu(x) + Rn(z) = f(20) + f'(20) (2 — 20) + - --

FI(e)
(n+1)!

(x —20)" + Ry (x),

)("H), ¢ is a point in the open interval defined by zy and z.

R, (z) = (x — xp
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