Unit 2

Differential Calculus in one variable

2.1 Derivatives

The derivative provides a way to calculate the rate of change of a function

We compute the average velocity as the rate between the distance during a time interval h and the length of the time interval

$$v_{average} = \frac{x(t+h) - x(t)}{h}$$

this is just the slope m of the line passing through the points (t, x(t)) and (t+h, x(t+h)). If we want to compute the velocity at a time t we should take the limit

$$v(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} = \frac{d}{dt}x(t)$$

Definition 2.1.1 A function f is differentiable at $x \iff$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists and is a finite number.

If f is differentiable then $f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ is called the **derivative** of f at x.

Note. The function f' exist for the points on the domain of f such that the limit exists and is finite.

Definition 2.1.2 (Alternative def.)

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Tangent Line

The line passing through $(x_0, f(x_0))$ with slope $m = f'(x_0)$ is the tangent line to f(x) at x_0 : $y = m(x - x_0) + f(x_0)$.

Properties

- 1. $(c_1f + c_2g)' = c_1f' + c_2g', c_1, c_2 \in \mathbb{R}.$
- 2. $(f \cdot g)' = f'g + fg'$
- 3. $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$

Theorem 2.1.3 (The Chain Rule) If g is differentiable at x and f is differentiable at g(x), then the composite function $f \circ g$ is differentiable at x, and verifies

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

Note. With the Chain Rule we can prove that

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

We can use that identity to compute $(\arctan x)'$ and $(\ln x)'$.

Basic derivatives

1. c' = 02. $(x^n)' = nx^{n-1}$ 3. $(e^x)' = e^x$, $(\log x)' = \frac{1}{x}$ 4. $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = \frac{1}{\cos^2 x}$ 5. $(\arctan x)' = \frac{1}{1+x^2}$, $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ 6. $(\sinh x)' = \cosh$, $(\cosh x)' = \sinh x$

Theorem 2.1.4

f differentiable \Rightarrow f continuous

Theorem 2.1.5 (Rolle's Theorem) Let f be differentiable on (a, b) and continuous on [a, b]. If f(a) = f(b), then there is at least a number $c \in (a, b)$ such that

$$f'(c) = 0.$$

Theorem 2.1.6 (Mean Value Theorem) Let f be differentiable on (a, b) and continuous on [a, b], then there is at least a number $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

or, equivalently f(b) - f(a) = f'(c)(b - a).

Theorem 2.1.7 (L'Hôpital's Rule) Let f and g be differentiable functions on (a, b), except possibly at the point $x_0 \in (a, b)$. If $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ is the indeterminate form $\frac{0}{0}$, then

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

whenever $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists or it is infinite.

Extensions

L'Hôpital's Rule can be applied also in the following cases:

- If the indeterminate form is $\frac{\infty}{\infty}$ with all the possible signs.
- If the limit is taken when $x_0 \to \pm \infty$
- To one-sided limits

Implicit differentiation

F(x, y) = 0 differentiate with respect to x and then obtain $\frac{dy}{dx}$.

Higher order derivatives

We can compute the derivative of a derivative:

$$\frac{d^2f}{dx^2} = f''(x), \qquad \frac{d^3f}{dx^3} = f'''(x), \cdots, \frac{d^nf}{dx^n} = f^{(n)}(x)$$

2.2 Extrema

Definition 2.2.1 Let f be a function defined on an interval I:

- $f(x_m)$ is the global (or absolute) minimum of f on I if $f(x_m) \leq f(x), \forall x \in I$
- $f(x_M)$ is the global (or absolute) maximum of f on I if $f(x_M) \ge f(x), \forall x \in I$

Note. Remember that if f is continuous, on a bounded and closed interval [a, b] the function always reaches its global maximum and minimum.

Definition 2.2.2 Let f be a function defined on an interval I, if we have an open interval I_1 containing x_0

- $f(x_0)$ is a local (or relative) minimum of f on I if $f(x_0) \leq f(x), \forall x \in I_1$
- $f(x_0)$ is a local (or relative) maximum f on I if $f(x_0) \ge f(x)$, $\forall x \in I_1$

Definition 2.2.3 Let f be a function defined at x_0 . f has a **critical point** at x_0 if $f'(x_0) = 0$ or $f'(x_0)$ does not exist

Theorem 2.2.4 If f has a local maximum or minimum at x_0 , then x_0 is a critical point of f.

Finding the global extrema of a function f on a closed interval [a, b]

- 1. Compute the critical points of f on (a, b): $f'(x_0) = 0$ or $f'(x_0)$ does not exist
- 2. Evaluate f at each critical point of (a, b)
- 3. Evaluate f at the endpoints of the interval f(a) and f(b)
- 4. The smallest value is the global minimum and the greatest one, the global maximum

Definition 2.2.5

- f is an increasing function on an interval I if $\forall x_1, x_2 \in I$ with $x_1 < x_2$ we have that $f(x_1) < f(x_2)$.
- f is a decreasing function on an interval I if $\forall x_1, x_2 \in I$ with $x_1 < x_2$ we have that $f(x_1) > f(x_2)$.

Theorem 2.2.6 Let f be a continuous function on a closed interval [a, b] and differentiable on (a, b)

- 1. If f'(x) > 0, $\forall x \in (a, b)$ then f is increasing on [a, b].
- 2. If f'(x) < 0, $\forall x \in (a, b)$ then f is decreasing on [a, b].
- 3. If f'(x) = 0, $\forall x \in (a, b)$ then f is constant on [a, b].

Test of the first derivative

	$x < x_0$	$x > x_0$	x_0 (critical point)
	—	+	local minimum
f'(x)	+	_	local maximum
J(x)	—	_	neither
	+	+	neither

Definition 2.2.7 Let f be differentiable on an open interval I. The graph of f is

- **convex** (concave upwards) on I if f' is increasing.
- concave (concave downwards) on I if f' is decreasing.

Theorem 2.2.8 Let f be a function twice differentiable on an open interval I

- If f''(x) > 0, $\forall x \in I$, then the graph of f is convex on I.
- If f''(x) < 0, $\forall x \in I$, then the graph of f is concave on I.

Definition 2.2.9 Let f be a continuous function on an open interval I, and let $x_0 \in I$. f has an inflection point at x_0 if the concavity changes at x_0 (convex \leftrightarrow concave).

Theorem 2.2.10 If x_0 is an inflection point of f, then $f''(x_0) = 0$ or $f''(x_0)$ does not exist.

Theorem 2.2.11 Let f be a function such that $f'(x_0) = 0$ and twice differentiable on an open interval containing x_0

- if $f''(x_0) > 0$, then f has a local minimum at x_0 .
- if $f''(x_0) < 0$, then f has a local maximum at x_0 .

If $f''(x_0) = 0$ the test does not work, it can be anything.

$f'(x_0)$	$f''(x_0)$	graph
+	—	increasing, concave
-	—	decreasing, concave
+	+	increasing, convex
-	+	decreasing, convex
0	+	local minimum
0	—	local maximum
0	0	?

2.3 Graphs

- 1. Domain
- 2. Intersection with x-axis $\rightarrow f(x) = 0$ Intersection with y-axis $\rightarrow f(0) = y$
- 3. Symmetries

$$f(-x) = +f(x) \rightarrow \text{even}$$

 $f(-x) = -f(x) \rightarrow \text{odd}$

Periodicity $\rightarrow f(x+T) = f(x)$

4. Asymptotes:

Vertical
$$\rightarrow \lim_{x \to x_0} f(x) = \pm \infty$$

Horizontal $\rightarrow \lim_{x \to \pm \infty} f(x) = H$
Oblique $\rightarrow \lim_{x \to \pm \infty} f(x) - (mx + b) = 0 \rightarrow m = \lim_{x \to \infty} \frac{f(x)}{x}, \ b = \lim_{x \to \infty} (f(x) - mx)$

- 5. Continuity: $\lim_{x \to x_0} f(x) = f(x_0)$
- 6. Derivative: monotonicity and critical points

f'(x) > 0 increasing f'(x) < 0 decreasing f'(x) = 0 or f'(x) does not exist \rightarrow critical points

7. Local maxima and minima: $x_0 \rightarrow$ critical point

minimum
\max imum
minimum
\max imum

8. Concavity

f''(x) > 0 convex f''(x) < 0 concave

- 9. Inflection points. Concavity changes. $f''(x_0) = 0$ or $\nexists f''(x_0)$
- 10. Global maxima and minima

2.4 Taylor polynomial

The idea is to approximate a function f(x) by a polynomial P(x). The Taylor polynomial is the best polynomial that approximates a function at a point x_0

If we approximate f(x) by $\begin{cases} a \text{ constant} & \to P(x) = f(x_0) \\ a \text{ line} & \to P(x) = f(x_0) + f'(x_0)(x - x_0) \end{cases}$

Definition 2.4.1 If f is differentiable n times at x_0 , then the polynomial

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

is the **Taylor polynomial** of degree n of f at x_0 .

Note. When $x_0 = 0$ the polynomial is called Mac Laurin Polynomial.

ERROR

The polynomial approximates f(x), so we have an **error** $|R_n(x)| = |f(x) - P(x)|$. There are many formulas for the error, but the idea of all of them is that they verify

$$\lim_{x \to x_0} \frac{f(x) - P_n(x)}{(x - x_0)^n} = 0$$

$$\rightarrow R_n(x) = o((x - x_0)^n).$$
 Notation: $f(x) = o(g(x))$ when $x \to x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$
In the following theorem we give a formula for the error $|R_n(x)|$:

Theorem 2.4.2 Let f(x) be a function differentiable n + 1 times on an open interval I, then $\forall x_0, x \in I$ we have that

$$f(x) = P_n(x) + R_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{(n+1)}, \ \xi \text{ is a point in the open interval defined by } x_0 \text{ and } x.$