Unit 2

Differential Calculus in one variable

2.1 Derivatives

The derivative provides a way to calculate the rate of change of a function
We compute the average velocity as the rate between the distance during a time interval h and the length of the time interval

$$
v_{\text {average }}=\frac{x(t+h)-x(t)}{h}
$$

this is just the slope m of the line passing through the points $(t, x(t))$ and $(t+h, x(t+h))$. If we want to compute the velocity at a time t we should take the limit

$$
v(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}=\frac{d}{d t} x(t)
$$

Definition 2.1.1 A function f is differentiable at $x \Longleftrightarrow$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists and is a finite number.
If f is differentiable then $f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is called the derivative of f at x.

Note. The function f^{\prime} exist for the points on the domain of f such that the limit exists and is finite.

Definition 2.1.2 (Alternative def.)

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Tangent Line

The line passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ with slope $m=f^{\prime}\left(x_{0}\right)$ is the tangent line to $f(x)$ at $x_{0}: y=m\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Properties

1. $\left(c_{1} f+c_{2} g\right)^{\prime}=c_{1} f^{\prime}+c_{2} g^{\prime}, \quad c_{1}, c_{2} \in \mathbb{R}$.
2. $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$
3. $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Theorem 2.1.3 (The Chain Rule) If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f \circ g$ is differentiable at x, and verifies

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Note. With the Chain Rule we can prove that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

We can use that identity to compute $(\arctan x)^{\prime}$ and $(\ln x)^{\prime}$.

Basic derivatives

1. $c^{\prime}=0$
2. $\left(x^{n}\right)^{\prime}=n x^{n-1}$
3. $\left(e^{x}\right)^{\prime}=e^{x}, \quad(\log x)^{\prime}=\frac{1}{x}$
4. $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x, \quad(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$
5. $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}, \quad(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
6. $(\sinh x)^{\prime}=\cosh , \quad(\cosh x)^{\prime}=\sinh x$

Theorem 2.1.4

$$
f \text { differentiable } \Rightarrow f \text { continuous }
$$

Theorem 2.1.5 (Rolle's Theorem) Let f be differentiable on (a, b) and continuous on $[a, b]$. If $f(a)=f(b)$, then there is at least a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=0
$$

Theorem 2.1.6 (Mean Value Theorem) Let f be differentiable on (a, b) and continuous on $[a, b]$, then there is at least a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a},
$$

or, equivalently $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Theorem 2.1.7 (L'Hôpital's Rule) Let f and g be differentiable functions on (a, b), except possibly at the point $x_{0} \in(a, b)$. If $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}$ is the indeterminate form $\frac{0}{0}$, then

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

whenever $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or it is infinite.

Extensions

L'Hôpital's Rule can be applied also in the following cases:

- If the indeterminate form is $\frac{\infty}{\infty}$ with all the possible signs.
- If the limit is taken when $x_{0} \rightarrow \pm \infty$
- To one-sided limits

Implicit differentiation

$F(x, y)=0$ differentiate with respect to x and then obtain $\frac{d y}{d x}$.

Higher order derivatives

We can compute the derivative of a derivative:

$$
\frac{d^{2} f}{d x^{2}}=f^{\prime \prime}(x), \quad \frac{d^{3} f}{d x^{3}}=f^{\prime \prime \prime}(x), \cdots, \frac{d^{n} f}{d x^{n}}=f^{(n)}(x)
$$

2.2 Extrema

Definition 2.2.1 Let f be a function defined on an interval I :

- $f\left(x_{m}\right)$ is the global (or absolute) minimum of f on I if $f\left(x_{m}\right) \leq f(x), \forall x \in I$
- $f\left(x_{M}\right)$ is the global (or absolute) maximum of f on I if $f\left(x_{M}\right) \geq f(x), \forall x \in I$

Note. Remember that if f is continuous, on a bounded and closed interval $[a, b]$ the function always reaches its global maximum and minimum.

Definition 2.2.2 Let f be a function defined on an interval I, if we have an open interval I_{1} containing x_{0}

- $f\left(x_{0}\right)$ is a local (or relative) minimum of f on I if $f\left(x_{0}\right) \leq f(x), \forall x \in I_{1}$
- $f\left(x_{0}\right)$ is a local (or relative) maximum f on I if $f\left(x_{0}\right) \geq f(x), \forall x \in I_{1}$

Definition 2.2.3 Let f be a function defined at x_{0}. f has a critical point at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=0 \text { or } f^{\prime}\left(x_{0}\right) \text { does not exist }
$$

Theorem 2.2.4 If f has a local maximum or minimum at x_{0}, then x_{0} is a critical point of f.

Finding the global extrema of a function f on a closed interval $[a, b]$

1. Compute the critical points of f on $(a, b): f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ does not exist
2. Evaluate f at each critical point of (a, b)
3. Evaluate f at the endpoints of the interval $f(a)$ and $f(b)$
4. The smallest value is the global minimum and the greatest one, the global maximum

Definition 2.2.5

- f is an increasing function on an interval I if $\forall x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$ we have that $f\left(x_{1}\right)<f\left(x_{2}\right)$.
- f is a decreasing function on an interval I if $\forall x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$ we have that $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Theorem 2.2.6 Let f be a continuous function on a closed interval $[a, b]$ and differentiable on (a, b)

1. If $f^{\prime}(x)>0, \forall x \in(a, b)$ then f is increasing on $[a, b]$.
2. If $f^{\prime}(x)<0, \forall x \in(a, b)$ then f is decreasing on $[a, b]$.
3. If $f^{\prime}(x)=0, \forall x \in(a, b)$ then f is constant on $[a, b]$.

Test of the first derivative

	$x<x_{0}$	$x>x_{0}$	x_{0} (critical point)
$f^{\prime}(x)$	-	+	local minimum
	+	-	local maximum
	-	-	neither
	+	+	neither

Definition 2.2.7 Let f be differentiable on an open interval I. The graph of f is

- convex (concave upwards) on I if f^{\prime} is increasing.
- concave (concave downwards) on I if f^{\prime} is decreasing.

Theorem 2.2.8 Let f be a function twice differentiable on an open interval I

- If $f^{\prime \prime}(x)>0, \forall x \in I$, then the graph of f is convex on I.
- If $f^{\prime \prime}(x)<0, \forall x \in I$, then the graph of f is concave on I.

Definition 2.2.9 Let f be a continuous function on an open interval I, and let $x_{0} \in I$. f has an inflection point at x_{0} if the concavity changes at x_{0} (convex \leftrightarrow concave).

Theorem 2.2.10 If x_{0} is an inflection point of f, then $f^{\prime \prime}\left(x_{0}\right)=0$ or $f^{\prime \prime}\left(x_{0}\right)$ does not exist.

Theorem 2.2.11 Let f be a function such that $f^{\prime}\left(x_{0}\right)=0$ and twice differentiable on an open interval containing x_{0}

- if $f^{\prime \prime}\left(x_{0}\right)>0$, then f has a local minimum at x_{0}.
- if $f^{\prime \prime}\left(x_{0}\right)<0$, then f has a local maximum at x_{0}.

If $f^{\prime \prime}\left(x_{0}\right)=0$ the test does not work, it can be anything.

$f^{\prime}\left(x_{0}\right)$	$f^{\prime \prime}\left(x_{0}\right)$	graph
+	-	increasing, concave
-	-	decreasing, concave
+	+	increasing, convex
-	+	decreasing, convex
0	+	local minimum
0	-	local maximum
0	0	$?$

2.3 Graphs

1. Domain
2. Intersection with x-axis $\rightarrow f(x)=0$

Intersection with y-axis $\rightarrow f(0)=y$
3. Symmetries

$$
\begin{aligned}
& f(-x)=+f(x) \rightarrow \text { even } \\
& f(-x)=-f(x) \rightarrow \text { odd }
\end{aligned}
$$

Periodicity $\rightarrow f(x+T)=f(x)$
4. Asymptotes:

$$
\begin{aligned}
& \text { Vertical } \rightarrow \lim _{x \rightarrow x_{0}} f(x)= \pm \infty \\
& \text { Horizontal } \rightarrow \lim _{x \rightarrow \pm \infty} f(x)=H \\
& \text { Oblique } \rightarrow \lim _{x \rightarrow \pm \infty} f(x)-(m x+b)=0 \rightarrow m=\lim _{x \rightarrow \infty} \frac{f(x)}{x}, b=\lim _{x \rightarrow \infty}(f(x)-m x)
\end{aligned}
$$

5. Continuity: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$
6. Derivative: monotonicity and critical points

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { increasing } \\
& f^{\prime}(x)<0 \text { decreasing } \\
& f^{\prime}(x)=0 \text { or } f^{\prime}(x) \text { does not exist } \rightarrow \text { critical points }
\end{aligned}
$$

7. Local maxima and minima: $x_{0} \rightarrow$ critical point

$$
\begin{array}{ll}
f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)>0 & \text { local minimum } \\
f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0 & \text { local maximum } \\
f^{\prime}(x):-\mapsto+ & \text { local minimum } \\
f^{\prime}(x):+\mapsto- & \text { local maximum }
\end{array}
$$

8. Concavity

$$
\begin{aligned}
& f^{\prime \prime}(x)>0 \text { convex } \\
& f^{\prime \prime}(x)<0 \text { concave }
\end{aligned}
$$

9. Inflection points. Concavity changes. $f^{\prime \prime}\left(x_{0}\right)=0$ or $\nexists f^{\prime \prime}\left(x_{0}\right)$
10. Global maxima and minima

2.4 Taylor polynomial

The idea is to approximate a function $f(x)$ by a polynomial $P(x)$. The Taylor polynomial is the best polynomial that approximates a function at a point x_{0}

If we approximate $f(x)$ by $\begin{cases}\text { a constant } & \rightarrow P(x)=f\left(x_{0}\right) \\ \text { a line } & \rightarrow P(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\end{cases}$
Definition 2.4.1 If f is differentiable n times at x_{0}, then the polynomial

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is the Taylor polynomial of degree n of f at x_{0}.
Note. When $x_{0}=0$ the polynomial is called Mac Laurin Polynomial.

ERROR

The polynomial approximates $f(x)$, so we have an error $\left|R_{n}(x)\right|=|f(x)-P(x)|$. There are many formulas for the error, but the idea of all of them is that they verify

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-P_{n}(x)}{\left(x-x_{0}\right)^{n}}=0 .
$$

$\rightarrow R_{n}(x)=o\left(\left(x-x_{0}\right)^{n}\right)$. Notation: $f(x)=o(g(x))$ when $x \rightarrow x_{0} \Longleftrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=0$.
In the following theorem we give a formula for the error $\left|R_{n}(x)\right|$:
Theorem 2.4.2 Let $f(x)$ be a function differentiable $n+1$ times on an open interval I, then $\forall x_{0}, x \in I$ we have that

$$
f(x)=P_{n}(x)+R_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}(x),
$$

$R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{(n+1)}, \xi$ is a point in the open interval defined by x_{0} and x.

