Unit 3

Sequences and Series

3.1 Real Sequences

Definition 3.1.1 A real sequence $\left\{a_{n}\right\}$ is a map that assigns to every $n \in \mathbb{N}$ a real number:

$$
a_{n}: \mathbb{N} \rightarrow \mathbb{R}
$$

$a_{1}, a_{2}, a_{3} \ldots$ are the terms of the sequence.
a_{n} is the general term.
The sequence can also begin with $n=0: a_{0}, a_{1}, a_{2} \ldots$
Definition 3.1.2 A sequence $\left\{a_{n}\right\}$ is convergent if $\lim _{n \rightarrow \infty} a_{n}=L$, for L finite.
The limit of a sequence $\left\{a_{n}\right\}$ is L if for every $\epsilon>0 \exists N \in \mathbb{N}$ such that if $n>N \Rightarrow$ $\left|a_{n}-L\right|<\varepsilon$. (There is an alternative def. for L infinite.)

If the sequence is not convergent, we say that it is divergent.
The properties of limits of sequences are the same as the properties of limits of functions.

To compute the limit of a sequence we can use some techniques:

- Use the concept of the limit of a function:

Let $f(x)$ be a function and $\left\{a_{n}\right\}$ the sequence $f(n)=a_{n}$.

$$
\text { If } \lim _{x \rightarrow \infty} f(x)=L \text { then } \lim _{n \rightarrow \infty} a_{n}=L 1
$$

We have all the tools of computing the limit of a function, such as the L'Hopital Rule.

- The Sandwich lemma of sequences:

If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$ (finite or infinite) and $\left\{c_{n}\right\}$ verifies $a_{n} \leq c_{n} \leq b_{n}, \quad \forall n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Definition 3.1.3 A sequence $\left\{a_{n}\right\}$ is called:

1. bounded from above if $\exists C \in \mathbb{R}$ such that $a_{n} \leq C$.
2. bounded from below if $\exists C \in \mathbb{R}$ such that $a_{n} \geq C$.
3. bounded if it is bounded from above and below

$$
\left(\exists C_{1}, C_{2} \in \mathbb{R} \text {, s. t. } C_{1} \leq a_{n} \leq C_{2}\right) .
$$

Definition 3.1.4 A sequence $\left\{a_{n}\right\}$ is called:

1. monotonically increasing if $a_{n}<a_{n+1}$ (non decreasing if $a_{n} \leq a_{n+1}$).
2. monotonically decreasing if $a_{n}>a_{n+1}$ (non increasing if $a_{n} \geq a_{n+1}$).
3. monotonic if it is one of the previous cases.

Theorem 3.1.5

$$
\left\{a_{n}\right\} \text { monotonic and bounded } \Rightarrow\left\{a_{n}\right\} \text { convergent }
$$

Theorem 3.1.6 (Stolz Test) If the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ verify one of the following:

1. $\left\{b_{n}\right\}$ is monotonically increasing with $\lim _{n \rightarrow \infty} b_{n}=\infty$,
2. $\left\{b_{n}\right\}$ is monotonically decreasing, with $b_{n} \neq 0$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$.

Whenever $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L$, exists for L finite or infinite, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}
$$

Theorem 3.1.7 (Stirling's Formula)

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n} e^{-n} \sqrt{2 \pi n}}=1
$$

3.2 Real Series

> A series is the sum of a sequence of terms

For instance \rightarrow the geometrical sum: $\sum_{n=0}^{N} r^{n}=\frac{r^{N+1}-1}{r-1}$.
Definition 3.2.1 Let $\left\{a_{n}\right\}$ be a sequence, an (infinite) series is the sum of all its terms:

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

The partial sum of n terms is $S_{n}=a_{1}+a_{2}+a_{3}+\cdots a_{n}$.
If the sequence $\left\{S_{n}\right\}$ of partial sum converges to the limit S, then we say that the series $\sum_{n=1}^{\infty} a_{n}$ converges, and S is called the sum of the series:

$$
S=\lim _{n \rightarrow \infty} S_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

Otherwise, we say that the series diverges.

Properties

1. $\sum a_{n}$ and $\sum b_{n}$ conv $\Rightarrow \sum\left(c_{1} a_{n}+c_{2} b_{n}\right)=c_{1} \sum a_{n}+c_{2} \sum b_{n}$ conv.
2. $\lim _{n \rightarrow \infty} a_{n} \neq 0 \Rightarrow \sum a_{n}$ div.
3. $\sum a_{n}$ conv $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=0$. (But $\lim _{n \rightarrow \infty} a_{n}=0 \nRightarrow \sum a_{n}$ conv)

Theorem 3.2.2 The geometrical sum converges if $0<|r|<1$, in this case

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Theorem 3.2.3 The telescoping series $\left(a_{n}=b_{n}-b_{n+1}\right)$

$$
\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)=\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\left(b_{4}-b_{5}\right)+\cdots
$$

verifies $S_{n}=b_{1}-b_{n+1}$.
This series converges $\Longleftrightarrow \lim _{n \rightarrow \infty} b_{n}<\infty$ and

$$
S=b_{1}-\lim _{n \rightarrow \infty} b_{n}
$$

Theorem 3.2.4 The p-series ($p=1$ is the harmonic series)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots
$$

1. converges if $p>1$.
2. diverges if $0<p \leq 1$.

CONVERGENCE TEST FOR SERIES

1. Direct comparison test: $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ two sequences of positive terms

$$
0<a_{n} \leq b_{n}, \forall n \longrightarrow \begin{aligned}
& \sum b_{n} \text { conv } \Rightarrow \sum a_{n} \text { conv } \\
& \sum a_{n} \operatorname{div} \Rightarrow \sum b_{n} \operatorname{div}
\end{aligned}
$$

2. Limit comparison test: $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ two sequences of positive terms

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L, \quad L \text { finite and positive } \\
\Downarrow \\
\sum a_{n} \text { and } \sum b_{n} \text { have the same behaviour } \\
\text { both converge or both diverge }
\end{gathered}
$$

3. Root test: $\left\{a_{n}\right\}$ sequence of positive terms

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1 \Rightarrow \sum a_{n} \text { conv } \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1 \Rightarrow \sum a_{n} \text { div } \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 \text { the test does not conclude }
\end{aligned}
$$

4. Quotient test: $\left\{a_{n}\right\}$ sequence of positive terms

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1 \Rightarrow \sum a_{n} \text { conv } \\
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1 \Rightarrow \sum a_{n} \text { div } \\
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 \text { the test does not conclude }
\end{aligned}
$$

5. Leibniz test for alternating series: $\left\{a_{n}\right\}$ sequence of positive terms

$$
\text { If } a_{n+1} \leq a_{n} \text { and } \lim _{n \rightarrow \infty} a_{n}=0
$$

$$
\Downarrow
$$

The alternating series $\sum(-1)^{n} a_{n}$ converges conditionally

$$
\left(\sum(-1)^{n+1} a_{n}\right)
$$

Definition 3.2.5

AC. $\sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ is convergent.
CC. If $\sum a_{n}$ is convergent but $\sum\left|a_{n}\right|$ is divergent then the series is conditionally convergent.

$$
\begin{array}{ccc}
\text { Absolute convergence } & \Longrightarrow \text { Conditional convergence } \\
\text { No conditional convergence } & \Longrightarrow & \text { No absolute convergence }
\end{array}
$$

ERROR:

when we approximate the sum of an alternating series by its first n-terms, then

$$
S=S_{N}+R_{N}=\sum_{n=1}^{N}\left(-1^{n}\right) a_{n}+R_{N} \quad \Rightarrow\left|R_{N}\right| \leq a_{N+1}
$$

Note. We can differentiate or integrate an infinite series to obtain another series.

3.3 Power Series

Definition 3.3.1 A power series at x_{0} is an infinite series of the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

Theorem 3.3.2 (Convergence of a power series)

A power series at x_{0} verifies only one of the following:

1. The series converges only at x_{0}
2. There is a real number $\rho>0$ such that the series is

- absolutely convergent for $|x-c|<\rho$
- divergent for $|x-c|>\rho$

3. The series is absolutely convergent for every $x \in \mathbb{R}$

Note. ρ is the radius of convergence of the power series. $\rho=0, \rho<\infty$ or $\rho=\infty$. The set of all x for which the series converges is the interval of convergence of the series. The radius can be computed by the following formulas:

- $\frac{1}{\rho}=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$
- $\frac{1}{\rho}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$, if this limit exists

Theorem 3.3.3 If the power series $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has a radius of convergence $\rho>0$, then $f(x)$ is continuous, differentiable and integrable on $\left(x_{0}-\rho, x_{0}+\rho\right)$. The derivative and the integral are computed term by term. Both of them have the same radius of convergence as f does. The interval of convergence may be different, because of the end points $\left(x=x_{0} \pm \rho\right)$.

Properties.

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.

1. $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{N n}$
3. $c_{1} f(x)+c_{2} g(x)=\sum_{n=0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right) x^{n}$

Definition 3.3.4 If f has all the derivatives at x_{0} then the series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is called the Taylor series of f at x_{0} (for $x_{0}=0$ also called the Mac Laurin series of f).

Theorem 3.3.5 If f has all the derivatives on an open interval I containing x_{0} then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

if and only if there exists ξ between x and x_{0} such that

$$
\lim _{n \rightarrow \infty} R_{n}(x)=\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0, \quad \forall x \in I
$$

TAYLOR SERIES

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \cdots, \quad-\infty<x<\infty \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \cdots, \quad-\infty<x<\infty \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} \cdots, \quad-\infty<x<\infty \\
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)} \cdots, \quad-1 \leq x \leq 1 \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n} \cdots, \quad-1<x<1 \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n+1} \frac{x^{n}}{n} \cdots, \quad-1<x \leq 1
\end{gathered}
$$

