
Unit 3

Sequences and Series

3.1 Real Sequences

Definition 3.1.1 A real sequence {an} is a map that assigns to every n ∈ N a real
number:

an : N→ R

a1, a2, a3 . . . are the terms of the sequence.
an is the general term.
The sequence can also begin with n = 0: a0, a1, a2 . . ..

Definition 3.1.2 A sequence {an} is convergent if lim
n→∞an = L, for L finite.

The limit of a sequence {an} is L if for every ε > 0 ∃N ∈ N such that if n > N ⇒
|an − L| < ε. (There is an alternative def. for L infinite.)

If the sequence is not convergent, we say that it is divergent.
The properties of limits of sequences are the same as the properties of limits of functions.

To compute the limit of a sequence we can use some techniques:

• Use the concept of the limit of a function:

Let f(x) be a function and {an} the sequence f(n) = an.

If lim
x→∞f(x) = L then lim

n→∞an = L1

We have all the tools of computing the limit of a function, such as the L’Hopital
Rule.

• The Sandwich lemma of sequences:

If lim
n→∞an = lim

n→∞bn (finite or infinite) and {cn} verifies an ≤ cn ≤ bn, ∀n ∈ N,

then lim
n→∞cn = lim

n→∞an = lim
n→∞bn.



2 Sequences and Series

Definition 3.1.3 A sequence {an} is called:

1. bounded from above if ∃C ∈ R such that an ≤ C.

2. bounded from below if ∃C ∈ R such that an ≥ C.

3. bounded if it is bounded from above and below
(∃C1, C2 ∈ R, s. t. C1 ≤ an ≤ C2).

Definition 3.1.4 A sequence {an} is called:

1. monotonically increasing if an < an+1 (non decreasing if an ≤ an+1).

2. monotonically decreasing if an > an+1 (non increasing if an ≥ an+1).

3. monotonic if it is one of the previous cases.

Theorem 3.1.5

{an} monotonic and bounded ⇒ {an} convergent

Theorem 3.1.6 (Stolz Test) If the sequences {an} and {bn} verify one of the
following:

1. {bn} is monotonically increasing with lim
n→∞bn = ∞,

2. {bn} is monotonically decreasing, with bn 6= 0 for every n ∈ N and
lim

n→∞an = lim
n→∞bn = 0.

Whenever lim
n→∞

an+1 − an

bn+1 − bn
= L, exists for L finite or infinite, then

lim
n→∞

an

bn
= lim

n→∞
an+1 − an

bn+1 − bn

Theorem 3.1.7 (Stirling’s Formula)

lim
n→∞

n!
nne−n

√
2πn

= 1
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3.2 Real Series

A series is the sum of a sequence of terms

For instance → the geometrical sum:
N∑

n=0

rn =
rN+1 − 1

r − 1
.

Definition 3.2.1 Let {an} be a sequence, an (infinite) series is the sum of all its
terms: ∞∑

n=1

an = a1 + a2 + a3 + a4 + · · · .

The partial sum of n terms is Sn = a1 + a2 + a3 + · · · an.
If the sequence {Sn} of partial sum converges to the limit S, then we say that the series∑∞

n=1 an converges, and S is called the sum of the series:

S = lim
n→∞Sn = a1 + a2 + a3 + a4 + · · · .

Otherwise, we say that the series diverges.

Properties

1.
∑

an and
∑

bn conv ⇒
∑

(c1an + c2bn) = c1

∑
an + c2

∑
bn conv.

2. lim
n→∞an 6= 0 ⇒

∑
an div.

3.
∑

an conv ⇒ lim
n→∞an = 0. (But lim

n→∞an = 0 ;
∑

an conv)

Theorem 3.2.2 The geometrical sum converges if 0 < |r| < 1, in this case
∞∑

n=0

rn =
1

1− r
.

Theorem 3.2.3 The telescoping series (an = bn − bn+1)
∞∑

n=1

(bn − bn+1) = (b1 − b2) + (b2 − b3) + (b3 − b4) + (b4 − b5) + · · ·

verifies Sn = b1 − bn+1.
This series converges ⇐⇒ lim

n→∞bn < ∞ and

S = b1 − lim
n→∞bn.

Theorem 3.2.4 The p-series (p = 1 is the harmonic series)
∞∑

n=1

1
np

=
1
1p

+
1
2p

+
1
3p

+
1
4p

+ · · · .

1. converges if p > 1.

2. diverges if 0 < p ≤ 1.
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CONVERGENCE TEST FOR SERIES

1. Direct comparison test: {an} and {bn} two sequences of positive terms

0 < an ≤ bn, ∀n −→
∑

bn conv ⇒
∑

an conv
∑

an div⇒
∑

bn div

2. Limit comparison test: {an} and {bn} two sequences of positive terms

lim
n→∞

an

bn
= L, L finite and positive

⇓∑
an and

∑
bn have the same behaviour

both converge or both diverge

3. Root test: {an} sequence of positive terms

lim
n→∞

n
√

an < 1 ⇒
∑

an conv

lim
n→∞

n
√

an > 1 ⇒
∑

an div

lim
n→∞

n
√

an = 1 the test does not conclude

4. Quotient test: {an} sequence of positive terms

lim
n→∞

an+1

an
< 1 ⇒

∑
an conv

lim
n→∞

an+1

an
> 1 ⇒

∑
an div

lim
n→∞

an+1

an
= 1 the test does not conclude

5. Leibniz test for alternating series: {an} sequence of positive terms

If an+1 ≤ an and lim
n→∞ an = 0

⇓
The alternating series

∑
(−1)nan converges conditionally

(∑
(−1)n+1an

)
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Definition 3.2.5

AC.
∑

an is absolutely convergent if
∑ |an| is convergent.

CC. If
∑

an is convergent but
∑ |an| is divergent then the series is conditionally

convergent.

Absolute convergence =⇒ Conditional convergence

No conditional convergence =⇒ No absolute convergence

ERROR:

when we approximate the sum of an alternating series by its first n-terms, then

S = SN + RN =
N∑

n=1

(−1n)an + RN ⇒ |RN | ≤ aN+1

Note. We can differentiate or integrate an infinite series to obtain another series.

3.3 Power Series

Definition 3.3.1 A power series at x0 is an infinite series of the form

f(x) =
∞∑

n=0

an (x− x0)
n = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · ·

Theorem 3.3.2 (Convergence of a power series)
A power series at x0 verifies only one of the following:

1. The series converges only at x0

2. There is a real number ρ > 0 such that the series is

• absolutely convergent for |x− c| < ρ

• divergent for |x− c| > ρ

3. The series is absolutely convergent for every x ∈ R

Note. ρ is the radius of convergence of the power series. ρ = 0, ρ < ∞ or ρ = ∞.
The set of all x for which the series converges is the interval of convergence of the
series. The radius can be computed by the following formulas:

• 1
ρ

= lim sup
n→∞

n
√
|an|

• 1
ρ

= lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣, if this limit exists
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Theorem 3.3.3 If the power series f(x) =
∑∞

n=0 an (x− x0)
n has a radius of conver-

gence ρ > 0, then f(x) is continuous, differentiable and integrable on (x0 − ρ, x0 + ρ).
The derivative and the integral are computed term by term. Both of them have the same
radius of convergence as f does. The interval of convergence may be different, because
of the end points (x = x0 ± ρ).

Properties.
Let f(x) =

∑∞
n=0 anxn and g(x) =

∑∞
n=0 bnxn.

1. f(kx) =
∑∞

n=0 anknxn

2. f(xN ) =
∑∞

n=0 anxNn

3. c1f(x) + c2g(x) =
∑∞

n=0(c1an + c2bn)xn

Definition 3.3.4 If f has all the derivatives at x0 then the series

∞∑

n=0

f (n)(x0)
n!

(x− x0)n

is called the Taylor series of f at x0 (for x0 = 0 also called the Mac Laurin series of
f).

Theorem 3.3.5 If f has all the derivatives on an open interval I containing x0 then

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n

if and only if there exists ξ between x and x0 such that

lim
n→∞Rn(x) = lim

n→∞
f (n+1)(ξ)
(n + 1)!

(x− x0)n+1 = 0, ∀x ∈ I.

TAYLOR SERIES

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
· · · , −∞ < x < ∞

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n + 1)!
· · · , −∞ < x < ∞

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
· · · , −∞ < x < ∞

arctanx = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n x2n+1

(2n + 1)
· · · , −1 ≤ x ≤ 1

1
1− x

= 1 + x + x2 + x3 + · · ·+ xn · · · , −1 < x < 1

ln (1 + x) = x− x2

2
+

x3

3
− · · ·+ (−1)n+1 xn

n
· · · , −1 < x ≤ 1


	3.1 Real Sequences
	3.2 Real Series
	3.3 Power Series



