Unit 4

Integration

4.1 Antiderivatives

THE DEFINITE INTEGRAL

If $f(x)$ is a continuous and nonnegative function on the interval $x \in[a, b]$, then the definite integral

$$
\int_{a}^{b} f(x)
$$

represents the area under the graph of the function $f(x)$, and over the x-axis on the interval $x \in[a, b]$.

For any function $f(x)$, the definite integral represents the sum of the signed areas between the function and the x axis. The idea to compute the definite integral is to divide the interval into n subintervals and approximate the function by a constant (the lowest, the greatest, the midpoint or any value of the function on the interval). Then, we compute the area of n rectangles, that is very easy. If we approximate $f \simeq f\left(x_{i}\right)$ at the i-th interval, with all the intervals with the same length, Δx, then we can approximate the integral as

$$
\int_{a}^{b} f(x) \simeq f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
$$

If we approximate the function on the interval by the following values of the function, we obtain what is called, for that partition of the interval

The lowest value on each subinterval \rightarrow Lower sum of f
The greatest value on each subinterval \rightarrow Upper sum of f
Any value value on each subinterval \rightarrow Riemann sum of f
When we take the limit of $\Delta x \rightarrow 0$ if all the sums coincide, we say that the function is Riemann integrable.
Note. Any piecewise-continuous function is integrable.
We have the following definition of the definite integral:

Definition 4.1.1 Given an integrable function $f(x)$ on the interval $[a, b]$, divide the interval into n subintervals of equal length Δx, choose any point x_{i}^{\star} in each subinterval, then we define the definite integral or Riemann integral of $f(x)$ from a to b as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{\star}\right) \Delta x
$$

Note. The numerical methods are based on this concept of computing the integral by approximating the value of the function on each subinterval by a constant or by a polynomial, that is easy to integrate.
Properties of the integral

1. $\int_{a}^{b} c_{1} f+c_{2} g=c_{1} \int_{a}^{b} f+c_{2} \int_{a}^{b} g$
2. $f \geq g \Rightarrow \int_{a}^{b} f \geq \int_{a}^{b} g$
3. $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$
4. $f \geq 0 \Rightarrow \int_{a}^{b} f \geq 0$
5. $\int_{a}^{b} f=-\int_{b}^{a} f$
if $f \leq 0 \Rightarrow \int_{a}^{b} f \leq 0$
6. $\int_{a}^{a} f=0$
7. $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$
8. $\int_{a}^{b} f g \neq \int_{a}^{b} f \int_{a}^{b} g$
9. $m \leq f(x) \leq M, \forall x \in[a, b] \Rightarrow+1$ $\begin{aligned} & m(b-a) \leq \int_{a}^{b} f(x) \leq M(b-a)\end{aligned}$

THE INDEFINITE INTEGRAL

Geometrically the problem of differentiation arises when we want to find the slope of a curve and the problem of integration when computing the area under a curve but Newton found out that differentiation and integration are inverse processes:

- Differentiation: Given a function $F(x)$, find a function $f(x)$ satisfying

$$
\frac{d F(x)}{d x}=f(x)
$$

- Integration: Given a function $f(x)$, find a function $F(x)$ satisfying

$$
\frac{d F(x)}{d x}=f(x)
$$

A function $F(x)$ solving the second problem is called an antiderivative primitive or an indefinite integral of $f(x)$.
The problem of differentiation has always solution but the problem of integration does not always have a solution and, in general, is more complicated.

INTEGRATION TECHNIQUES

We will see the most usual techniques to compute the integral (definite or indefinite) of a function.

Basic antiderivatives

$$
\begin{array}{ll}
\int x^{n}=\frac{x^{n+1}}{n+1}+c, n \neq-1 & \int \frac{1}{\cos ^{2} x}=\tan x+c \\
\int \frac{d x}{x}=\ln |x|+c & \int \frac{1}{\sin ^{2} x}=-\cot x+c \\
\int e^{a x}=\frac{1}{a} e^{a x}+c & \int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c \\
\int \sin x=-\cos x+c & \int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \left(\frac{x}{a}\right)+c \\
\int \cos x=\sin x+c & \int \sinh =\cosh x+c
\end{array}
$$

Integration by change of variables or by substitution (CV)

- Definite integral

$$
\int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f(g(t)) g^{\prime}(t) d t
$$

- Indefinite integral

$$
\int f(x) d x=\int f(g(t)) g^{\prime}(t) d t
$$

at the end, undo the change

Integration by parts (IBP)

- Definite integral

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

- Indefinite integral

$$
\begin{gathered}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
\int u d v=u v-\int v d u
\end{gathered}
$$

Integration of rational functions: partial fraction decomposition

$$
\int \frac{P(x)}{Q(x)} d x \rightarrow P, Q \text { polynomials. }
$$

- If degree of $P \geq$ degree of $Q \Rightarrow$ we must divide the polynomials:
$P(x)=Q(x) C(x)+R(x) \rightarrow$

$$
\int \frac{P(x)}{Q(x)} d x=\int C(x)+\int \frac{R(x)}{Q(x)} d x
$$

- $\int \frac{R(x)}{Q(x)} d x$ with $\operatorname{deg}(R(x))<\operatorname{deg}(Q(x))$:
i) First, we must check that the integral is not immediate, that is, if is one of the following:
ln type

$$
\rightarrow \int \frac{2 x+3}{x^{2}+3 x+8} d x=\ln \left|x^{2}+3 x+8\right|+c
$$

$$
\arctan \text { type } \rightarrow \int \frac{d x}{x^{2}+8}=\frac{1}{\sqrt{8}} \arctan \frac{x}{\sqrt{8}}+c
$$

ii) if not \rightarrow Do partial fraction decomposition:

Factor in denominator	Term in partial fraction decomposition
$x-b$	$\frac{A}{x-b}$
$(x-b)^{k}$	$\frac{A_{1}}{x-b}+\frac{A_{2}}{(x-b)^{2}}+\cdots \frac{A_{k}}{(x-b)^{k}}, \quad k=1,2,3, \cdots$
$(x-a)^{2}+b^{2}$	$\frac{A x+B}{(x-a)^{2}+b^{2}}$
$\left((x-a)^{2}+b^{2}\right)^{k}$	$\frac{A_{1} x+B_{1}}{(x-a)^{2}+b^{2}}+\frac{A_{2} x+B_{2}}{\left((x-a)^{2}+b^{2}\right)^{2}}+\cdots+\frac{A_{k} x+B_{k}}{\left((x-a)^{2}+b^{2}\right)^{k}}, \quad k=1,2,3, \cdots$

For each factor in the denominator add the corresponding term of the table and compute the unknowns $\left(A, B, A_{1}, B_{1}, A_{2}, B_{2}, \cdots\right)$ by setting equal denominators. After, compute the integrals of each term.

From now on $R=\frac{P}{Q}$ means a rational function of its variables, P, Q are polynomials.

Irrational functions or integrals involving roots

Do a change of variables that eliminates the roots.

$$
\int R\left[\left(\frac{a x+b}{c x+d}\right)^{p_{1} / q_{1}}, \cdots,\left(\frac{a x+b}{c x+d}\right)^{p_{r} / q_{r}}\right] \rightarrow t^{m}=\frac{a x+b}{c x+d}, m=l c m\left(q_{1}, \cdots, q_{r}\right)
$$

$l c m \rightarrow$ least common multiple.

Integrals involving trigonometric functions

$\int \sin ^{2 n} x, \int \cos ^{2 n} x \rightarrow$ double angle formulas: $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\int \sin ^{2 n+1} x=\int \sin ^{2 n} x \sin x=\int\left(1-\cos ^{2} x\right)^{n} \sin x$
$\int \cos ^{2 n+1} x=\int \cos ^{2 n} x \cos x=\int\left(1-\sin ^{2} x\right)^{n} \cos x$
$\int \sin m x \cos n x \rightarrow$ trig formulas

$$
\int R(\sin x, \cos x) \rightarrow \begin{array}{ll}
R \text { odd in } \sin x \rightarrow \\
R \text { odd in } \cos x \rightarrow \\
R \text { even in } \cos x \text { and } \sin x \rightarrow \\
\text { Rest of problems } \rightarrow
\end{array} \quad \begin{array}{ll}
t=\cos x \\
t=\sin x \\
& t=\tan x \\
t=\tan x / 2,
\end{array}
$$

Some change of variables

1. $\int R\left(x, \sqrt{x^{2}+a^{2}}\right) \rightarrow x=a \tan t$
2. $\int R\left(x, \sqrt{x^{2}-a^{2}}\right) \rightarrow x=\frac{a}{\cos t}$
3. $\int R\left(x, \sqrt{a^{2}-x^{2}}\right) \rightarrow x=a \sin t$

4.2 The Fundamental Theorem of Calculus

Let f be integrable on $[\mathrm{a}, \mathrm{b}], F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of $f(x)$ defined on $[a, b]$.

Theorem 4.2.1

$$
f \text { integrable on }[a, b] \Rightarrow F \text { continuous on }[a, b]
$$

Theorem 4.2.2 (The Fundamental Theorem of Calculus, FTC)

Let f be integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) d t$, defined $\forall x \in[a, b]$.
If f is continuous at $c \in[a, b] \Rightarrow F$ is differentiable at c and $F^{\prime}(c)=f(c)$.
If f is continuous $\forall x \in[a, b] \Rightarrow F$ is differentiable $\forall x \in[a, b]$ and $F^{\prime}(x)=f(x)$.
Theorem 4.2.3 (Barrow's Rule) Let f and g be continuous on $[a, b]$ and g differentiable on (a, b), such that $g^{\prime}(x)=f(x), \forall x \in(a, b)$, then

$$
\int_{a}^{b} f=\int_{a}^{b} g^{\prime}=g(b)-g(a)
$$

Theorem 4.2.4 (FTC generalized) Let $F(x)=\int_{a}^{x} f$, with f integrable

- Let $H(x)=F(g(x))=\int_{a}^{g(x)} f$, then if g is differentiable, we have

$$
H^{\prime}(x)=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x)
$$

- Let $H(x)=\int_{l(x)}^{g(x)} f$, then if g and l are differentiable, we have

$$
H^{\prime}(x)=f(g(x)) g^{\prime}(x)-f(l(x)) l^{\prime}(x)
$$

4.3 Applications of the Integral

AREAS

- Area between the graph of a function, the x-axis, between a and b :

$$
A=\int_{a}^{b}|f| d x
$$

- Area between the graphs of two functions f, g, between a and b :

$$
A=\int_{a}^{b}|f-g| d x
$$

- Area using parametric equations: the area between the graph of $x=x(t), y=$ $y(t)$ and the x-axis between $t=t_{0}$ and $t=t_{1}$ is:

$$
A=\left|\int_{t_{0}}^{t_{1}} y(t) x^{\prime}(t) d t\right|
$$

- Area using polar coordinates: the area of the graph of $r=r(\theta)$ between $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2}(\theta) d \theta
$$

VOLUMES

- Volume by parallel cross-sections: if $A(x)$ is the area of parallel cross-sections over the entire length of a solid, the volume between $x=a$ and $x=b$ is

$$
V=\int_{a}^{b} A(x) d x
$$

- The Disk method: the volume of a solid of revolution obtained by rotating $|f(x)|$ about the x-axis between $x=a$ and $x=b$ is

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

- The Shell method: the volume of a solid of revolution obtained by rotating $f(x) \geq 0, x \in[a, b], a \geq 0$, about the y-axis is

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

LENGTHS

- The length of an arc of a curve $f(x)$ between $x=a$ and $x=b$ is

$$
L(f)=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

- If the curve is given in parametric form, the length is

$$
L=\int_{t_{0}}^{t_{1}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

IMPROPER INTEGRAL

Definition 4.3.1 The following integral

$$
\int_{a}^{\infty} f(x)=\lim _{N \rightarrow \infty} \int_{a}^{N} f(x)
$$

is called an improper integral of f. If the limit is finite we say that the integral converges
otherwise we say that the integral diverges.
Theorem 4.3.2 (Integral test for series) Consider $f \geq 0$ a monotone decreasing function defined for $x \geq 1$. Let $a_{n}=f(n)$, then

$$
\sum_{n=1}^{\infty} a_{n} \text { and } \int_{1}^{\infty} f(x) d x
$$

have the same behaviour, or both converge or both diverge.

