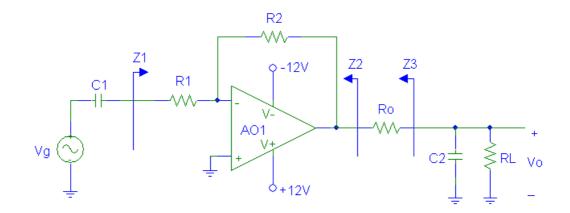

EJERCICIOS TEMA IV COMPONENTES Y CIRCUITOS ELECTRÓNICOS

EJERCICIO 1

DATOS: $R1 = R = 10K\Omega$

 $C1 = 1.59 \mu F, C2 = 1.59 nF$

V+ = 12 V, V- = -12 V


En la figura se representa el esquema de un amplificador multietapa acoplado en alterna. Está formado por redes RC y amplificadores operacionales ideales. Se pide:

- a) Calcule el valor de R₂ que introduce una ganancia V₂/V₁=2.
 ¿Qué impedancias de entrada y salida (Z₁ y Z₂) tiene esta configuración?
 ¿Qué configuración tiene AO2 y cuál es su ganancia?
 ¿qué impedancias de entrada y salida (Z₃ y Z₄) tiene esta configuración?
- b) Indique la ganancia del conjunto amplificador (Vo/Vi) a frecuencias medias y calcule las frecuencias f_H y f_L , de corte superior y de corte inferior respectivamente.
- c) Si se tiene una entrada senoidal (Vi) de amplitud 1 Voltio de pico y frecuencia 10 kHz, represéntela junto a la señal de salida Vo, señalando las cotas más significativas de amplitud y tiempo o desfase.

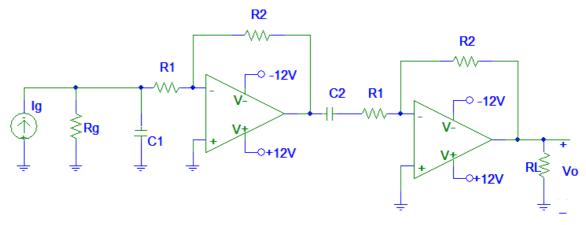
Circuitos con AO Respuesta en frecuencia José A. García Souto

EJERCICIOS TEMA IV COMPONENTES Y CIRCUITOS ELECTRÓNICOS

EJERCICIO 2

DATOS: R1 = $10K\Omega$, R2 = Ro = RL = $20K\Omega$ C1 = 1.59μ F, C2 = 1.59nF

En la figura se representa el esquema de un amplificador de alterna realizado con un amplificador operacional ideal y acoplado a una carga. Se pide:


- a) Indicar cuál es la configuración del amplificador operacional realimentado. Calcular las impedancias de entrada y de salida $(Z_1 \ y \ Z_2)$ y la impedancia Z_3 .
- b) Represente el equivalente de C1 y de C2 a frecuencias medias y calcule la ganancia en estas condiciones (Vo/Vg).
- c) Obtenga las frecuencias f_H y f_L , de corte superior y de corte inferior respectivamente.
- d) Represente la señal Vo si se aplica una entrada senoidal (Vg) de amplitud 1 Voltio de pico y frecuencia igual a la frecuencia de corte superior f_H calculada anteriormente. Señale las cotas más significativas de amplitud y tiempo, y el desfase entre Vo y Vg.

Circuitos con AO Respuesta en frecuencia José A. García Souto

EJERCICIOS TEMA IV COMPONENTES Y CIRCUITOS ELECTRÓNICOS

EJERCICIO 3

En la figura se representa el esquema de un amplificador de dos etapas acopladas en alterna. Los amplificadores operacionales son ideales. Ig es una fuente de señal de corriente.

DATOS: Rg = $99K\Omega$ R1 = $1K\Omega$ R2 = $100K\Omega$ RL = 100Ω C1 = 100pF

- a) Calcule la frecuencia de corte superior.
- b) Obtenga el valor de C2 necesario para fijar una frecuencia de corte inferior de 1 kHz.
- c) Calcule la ganancia del amplificador de transimpedancia Vo/lg para frecuencia de 100 kHz.
- d) Represente la tensión Vo para una corriente de entrada Ig compuesta por una componente continua de 100μA y una componente de señal de 10nA eficaz (senoidal, 1kHz).
- e) Represente el Diagrama asintótico de Bode.