XML: eXtensible Markup
Language

Anabel Fraga

Table of Contents
«{a 0]

Historic Introduction
XML vs. HTML

XML Characteristics
HTML Document

XML Document

XML General Rules

Well Formed and Valid Documents
Elements

DTDs

Entities

Character References
Namespaces

XML Schemas

The XML Family
Presentation in XML
The Triumph of XML
XML Utilization Domains
XML according to W3C
References

Historic Introduction ()

e XML was defined as an W3C standard in 1998. In
2000 version 1.0 was approved.

e |tis a tagged language, such as HTML or its
precursor SGML is.

e |t differentiates to SGML for its simplicity

e It differentiates to HTML for its flexibility: the
number of tags that can be included in a XML
document is unlimited.

e Equally to HTML, it is portable to any platform.

Historic Introduction (ll)
S

1983 1992 1996 1997 1998 1999 2000

SGML HTML HTML2 XML XHTML
CSS HTML3 HTML4

Historic Introduction (lll)
S

e Main objectives:
— Directly utilizable in Internet

— Support for a wide variety of application for data
transfer

— Compatible with SGML
— Possible to create simple XML processors

— Readable XML Documents and relatively easy to understand
(depending on the definition)

— Rapid language design
— Simple, but perfectly formal
— Easy to create XML Documents

XML vs. HTML
.

HTML lacks a syntactic checker. Pages with errors
are displayed in the browsers

HTML lacks a structure
HTML is not object oriented
HTML mixes content and representation

For all this:

— HTML can not be easily read by a machine
— HTML will never be a standard for data interchange

XML covers all these with a language of extreme
simplicity

XML Characteristics ()
-

It is a subset of the SGML language

Similarly to SGML, it is used for representing data in a
structured form (Hierarchical)

It is based on an obligatory and well defined grammar. This
facilitates the development of parsers and thus, its massive
utilization

The internal structure of an XML document is reflected in
another document called DTD (Document Type Definition)

In contrast to HTML, it drastically separates the semantic of
the document, from its graphical representation

XML Characteristics (ll)
-

e XML has been converted to a standard for data
interchange not only for the Web

e It is easy to use, for both humans and machines,
because it is based on a set of extensible semantic
tags.

e Itis now in a state of maturity and absolute
expansion

e Thanks to its support of Unicode, all alphabets of the
world are supported

HTML Document (l)

<HTML>

<HEAD=<TITLE=Libros de mi
infancia</TITLE></HEAD=

<BODY=

<P><|>Don Quijote de la
Mancha

<P><|>Miguel de Cervantes</I>
<HR=

<P>|a vida es suefio
<P>=<|>=Calderon de la Barca</l>
<HR=

</BODY>=

</HTML>

"R Libros de mi infancia - Mic._.

gechiwa Edicion Mer Eowonbos

0 1= 2 &

freccian (68] 2B Doce | E I

Dew Quifote de la Manchia

Miguel dz Cervantes

Lo vida as sueeko

Coafdferdn de f Barca

%l rrtranat bical

HTML Document (ll)
-

e As it appears, the previous HTML document
IS correct, but:
— There are tags that never close: <P>

— Some tags are not well nested: the first <I> never
closes

— For a non human reader, it is not clear which is
the book and who is the author

e XML eradicates all those problems!!

XML Document
«aa 000

<?7xml version="1.0" encoding="utf-8"
standalone="yes" 7>

<Libros=> B SMEWpcenclalis RepladatFSE de HTML, Febrero-2,.. o |0
i Aochiwo Ediddn Wer Feworibos Heramisntes Seds ;II"
<Libro= al (B | Debneda SRt
<Titulo=Don Quijote de la T oo T e ————re———rvl], [
Mancha</Titulo>

=vrml warsian="1.0" enccding="utf-&"

standzlone="yez" 7=

<Autor=Miguel de {3 <Libros=
C ervan tEE{fﬁ Utﬂ r=) {I:;_:ii:i-:-:nun guijote de la Mancha-=/Titulaz:
ZALUTOEMIQUEl O8 LEFAFAMTBS </ 8 0T0M
*‘-Ij'L[brﬂ} z/ibras
<libroz
I sTitulese e wid & g Tirdns
{Lkbrﬂ:} q-lut-:ir:-ell:'.‘.uldﬂrr:r: de I: Barca= ko

< Libros

<Titulo=La vida es suenno</Titulo> <1 Bpess

<Autor=Calderon de la
Barca</Autor=

</Libro=>
</Libros=>

Y| %4 Intianst local

General Rules for XML
«{a 0]

e One unique root element

e All elements need to have opening and closing
tags

e Distinction between upper/lower case letters (Case
Sensitive)

e Perfect nesting amongst elements

e The values of attributes are always placed between
double quotes (“example”)

e \White spaces are preserved
e CR/LF characters are transformed to LF

Well Formed and Valid Documents
« /—//// /7

e A documents is thought to be well formed when:
— It complies with all the rules previously defined
— Contains one or more elements
— It has only one root element (document element)

— If the document constitutes of more than one parts, all must
be well formed

— There are no prohibited characters in the text

e A document is valid when, except being ‘well
formed’, it complies with the semantic specification
defined in its definition (DTD o XML Schema)

Elements (I)
-

e Comments:
— <I- This is a comment, and we can not include a double dash -->

e Processing instructions:
— <? Instruction ?>
— The instruction can not include characters ?>

e CDATA Sections (Character Data):
— <I[[CDATA[This text will not be treated and can include
“any” &character < >]]>
— Are not treated by the parser
— They can include any prohibited character (, /, &, >, <).
— They can NOT include the character sequence]]>

Elements (ll)
-

e Prologue:

<?xml version="1.0" encoding="utf-8"
standalone="yes" ?>
— It is an compulsory processing instruction

— Version: indicates the XML version used (1.0 in this case).
Its compulsory

— Encoding: indicated the document encoding, and is NOT
compulsory (default UTF-8). Valid for other character sets

— Standalone: “yes” indicates that the document is not
accompanied with external DTDs; “no” indicates that it has
a DTD. Not a compulsory attribute

Elements (lll)

e DOCTYPE: <IDOCTYPE MyDTD SYSTEM
“C:\MyDTD.dtd”>

— Indicates a reference (URI) to a DTD, in this case
same to the name (MyDTD) of its root element

— The DTD could be incorporated in the same XML
document, without the need of a separate file

— The XML document has to comply with the DTD
content

Elements (IV)

S
e Tags:

— Must be correctly nested: opening and closing

— Opening tag: starts with <, the name of the tag and finishes
with >. Example <Book>

— Closing tag: </Book>

— Empty tag: <Book />

— You can not start a tag name with , numbers

— After the 1st character we can put “. numbers 7

— Tag names must start with a letter or with an underscore *
— Tag names can not start with “xml”

G M w.” “ 7

kN

1 7

Elements (V)
-

e Element:
— |Is the set of an opening taq, its content, and its closing tag
— For example: <Book>Don Quijote de la Mancha</Book>
— There are some reserved characters (prohibited):
101 Greater sign: >
(1] Smaller sign: <
10 Ampersand: &
1] Single quote: °
111 Double quotes: “

— These prohibited characters are replaced with entities or are
included in CDATA sessions

Elements (V)
-

e Attributes:

— Every element can contain 0 or more attributes

— Its value has to be always between double quotes. (“value™)
— They can only be placed into opening or empty tags

— The same attribute can not be repeated in the same tag

— If the document has a DTD, every attribute must be defined
as an attribute for that element

— Can not contain any reference to an external reference
— Are always treated as sequences of text

Elements (VII)
-

<Book>

<Title>Don Quijote de la Mancha</Title>

<Author>Miguel de Cervantes</Author> (Without attributes)
<Price> 21,95 euros </Price>

<Publisher> Santillana </ Publisher >

</Book>

<Book Price = “21,95 euros" Publisher = "Santillana">
<Title>Don Quijote de la Mancha</Title>

<Author>Miguel de Cervantes</Author>

</Book> (One element has two attributes)

Elements vs Attributes
http://www.w3schools.com/dtd/dtd_el vs attr.asp
http://www.ibm.com/developerworks/xml/library/x-eleatt.html
http://w3future.com/html/stories/elemvsattrs.xml

Exercise
«

e Make an XML document based on the text
given in the class

DTDs (1)
.

e Document Type Definition

e Defines the grammar to be followed in the
XML document in order to be considered as
valid.

e |t can be included in an external file:
<IDOCTYPE root-element SYSTEM “DTD_File.dtd">
and/or in the same XML file:

<IDOCTYPE root-element [element-declarations]>

DTDs (ll) (Types Declaration)
S

<IDOCTYPE Books SYSTEM
"Books1.dtd">

<Books>
<Book>

<Title>Don Quijote de
la Mancha</Title>

<Author>Miguel de
Cervantes</Author>

</Book>
<Book>

<Title>La vida es
sueno</Title>

<Author>Calderon de
la Barca</Author>

</Book>
</Books>

<IDOCTYPE Books [
<I[ELEMENT Books (Book)+>
<I[ELEMENT Book (Title, Author)>
<I[ELEMENT Title (#PCDATA)>
<I[ELEMENT Author (#PCDATA)>
>
<Books>
<Book>
<Title>Don Quijote de la Mancha</Title>
<Author>Miguel de Cervantes</Author>
</Book>
<Book>
<Title>La vida es suenno</Title>
<Author>Calderon de la Barca</Author>
</Book>
</Books>

DTDs (lll)
.

e All the DTD must have one and only one root element (also
known as document element)

e This root document must coincide with the name that
appears after the DOCTYPE
e A DTD document can contain:
— Element declarations
— Attribute declarations for an element
— Entities declarations (or <)
— Notations declarations
— Processing instructions
— Comments
— References to parameter entities

DTDs (IV) (Root Element)
S

e After the root element, we can optionally list
(in hierarchical form) other elements
<IELEMENT Books (Book)+>
<I[ELEMENT Book (Title, Author)>
<I[ELEMENT Title (#PCDATA)>
<I[ELEMENT Author (#PCDATA)>

DTDs (V) (Element Contents)
S

e Contents of an element:
— EMPTY: the element is empty (it can contain attributes).
<IELEMENT IMAGEN EMPTY>

— ANY: an element can contain any other element including textual
content.

</I[ELEMENT IMAGE ANY>

— Other elements: an element can contain one or more child
elements in a certain sequence (E.g. Book)

— #PCDATA: parsed character data.
<IELEMENT BOOK (#PCDATA)>
— #CDATA: character data. (Not parsed by parser)
<IELEMENT BOOK (#CDATA)>

— Mixed: the element can include character sequences optionally
mixed with child elements.

</ELEMENT BOOK (#PCDATA | AUTOR)*>

DTDs (VI)
.

e Sequences of child elements:

- Sequence:
e Ordered sequence: comma separated children
e Options: Pipe (|) separated children functioning as OR
e Groups of elements can be grouped inside parenthesis

- Cardinality: one element, or a group of elements may be
repeated 0, 1 or more times:

e element Element repeated 1 single time
°o ? Element repeated 0 or 1 times
o * Element repeated 0 or more times

o + Element repeated 1 or more times

DTDs (VII)

1 o mas veces

- 0o 1 veces
< !ELEMENT chiste CSEC“FQEH“ :
(basilio+, antonio aplauso?}iés:?ﬁjﬁgé]
<!ELEMENT basilio (#PCDATA | quote) *>
<! ELEMENT antonio (#PCDATA quote) *>
<ELEMENT quote (#PCDATA) *[{W]
<! ELEMENT aplauso EMPTY>

<!ATTLIST chiste

name ID #REQUIRED
label CDATA #IMPLIED
status (funny|notfunny) 'funny'>

Valor por defecto

DTDs (VIII) (Example)
.

<IE
<IE
<IE
<IE

_LEMEN’
_LEMEN’
_LEMEN’

- BOOK (Author, Publisher)>
" Author (#PCDATA)>
" FILM (Actor|Actress|Director)+>

_LEMEN’

" FILM ((Actor | Actress)*, Director,

Makeup?)>
<IELEMENT FILM (#PCDATA | Actor)*>

<IELEMENT FILM (Title, Category, (Actor |
Actress | Narrator)*)>

DTDs (IX)
.

Exercise: Make a DTD.

<?xml version="1.0" encoding="utf-8" ?>

<Agenda>

<Person>
<Name> Anabel </Name>
<Surname> FRaga </Surname>
<Email> afraga@inf.uc3m.es </Email>
<Office> 2.1 B18 </Office>
<Telephone> 5555555 </Telephone >
<Mobile> 5557777 </Mobile>

</Person>

</Agenda>

DTDs (X) (Attributes)
-

e An element can optionally declare one or more
attributes

<IATTLIST element-name attribute-name attribute-type Modifier>

e The attribute of an element can be included in one or
more declarations <!ATTLIST ...>. If it is done in the
same declaration, it can be separated with a space
(space, tab, carriage return)

DTDs (XI) (Attribute Types)
S

e Type of an attribute:
— Sequence type: CDATA (Character Data)
<IATTLIST Author Nationality CDATA>
— Enumerated type:
<IATTLIST Film Category (Fiction | Terror | Humor)>
— Symbolic type:
e ID: will be a unique identifier for the rest of the document, only one ID
attribute for each element

e IDREF, IDREFS: its value has to coincide with another value of type
ID in the rest of the XML document. IDREFS separates the references
with space “ID1 ID2 ID3”

e ENTITY, ENTITIES: its value has to coincide with one or more entities
(alias to large bit of text)

e NMTOKEN, NMTOKENS: its value has to be a sequence of type
token

DTDs (XII) (Attribute Types)

Type Description

CDATA The value is character data
(en1]en2]|..) The value must be one from an enumerated list
ID The value is a unique id

IDREF The value is the id of another element
IDREFS The value is a list of other ids
NMTOKEN The value is a valid XML name
NMTOKENS The value is a list of valid XML names
ENTITY The value is an entity

ENTITIES The value is a list of entities
NOTATION The value is a name of a notation
xml: The value is a predefined xml value

DTDs (XIII) (Attribute Modifiers)
-

e Modifiers:
— #REQUIRED: this attribute has to be introduced
compulsorily.
<IATTLIST Film Title CDATA #REQUIRED>
— #IMPLIED: indicates that this attribute is optional
— PredefinedValue: if the attribute is omitted, the processors
use this value as default

<IATTLIST Film Category (Fiction | Terror | Humor)
“Humor”>

<IATTLIST Author Nationality CDATA “Spaniard”>
— #FIXED: if the attribute is included, the processors will
always use this value
<IATTLIST Author Nationality CDATA #FIXED “Spaniard”>

DTDs (XIV) (Attribute Modifiers)
-

Value Explanation

value The default value of the attribute

#REQUIRED The attribute is required

#MPLIED The attribute is not required

#FIXED value The attribute value is fixed

DTDs (XV) (Entities)
.

Entities are variables used to define shortcuts to standard text or special
characters.

- Entity references are references to entities
- Entities can be declared internal or external

Syntax

<IENTITY entity-name "entity-value"> Internal Entity Declaration
<IENTITY entity-name SYSTEM "URI/URL"> External Entity Declaration
DTD Example:

<IENTITY writer "Donald Duck.">

<IENTITY copyright "Copyright W3Schools.">

<IENTITY writer SYSTEM "http://www.w3schools.com/entities.dtd">

<IENTITY copyright SYSTEM "http://www.w3schools.com/entities.dtd">
XML example:

<author>&writer;©right;</author>

<author>&writer;©right;</author>

DTDs (XVI) (Attributes Exercise)
S

e Make a DTD using attributes: (INCLUDE THIS IN YOUR ASSIGNMENTS
REPORT)

<?xml version="1.0" encoding="utf-8" ?>

<Agenda>

<Person>
<Name> Anabel </Name>
<Surname> Fraga </Surname>
<DNI> 44444444-0O </DNI>
<Nationality> Spanish </Nationality>
<Email> afraga@inf.uc3m.es </Email>
<Office> 2.1.B18 </Office>
<Telephone> 5555555 </Telephone >
<Mobile> 5557777 </Mobile>

</Person>

</Agenda>

DTDs (XVII) (Problems)
-

DTD does not follow the format of a standard XML
document. This represents a problem for the
parsers

Distinct types of data is not supported in the style
of programming languages (CDATA, #PCDATA)

You can not create personalized data types
Namespaces are not supported

The number of elements occurrences can not be
100% controlled (E.g. min 2 occurrences)

For these and other reasons, XML Schemas
have emerged

Namespaces (l)
-

e XML permits the creation of tags with ‘almost’ no
limitation in their names

e This implicates that, mixing two documents, with
different tags, could result to a duplicity of tags

e Through namespace definition, these collisions can
be avoided

e Technologies like XSL and many others make use of
Namespaces

Namespaces (ll) (Definition)

e A namespace is identified by its prefix.
For example:

<pref:elementName
xmins:pref=“http://www.w3.org/XSL/Transform/1.0”>

where:
— pref is the namespace prefix
— elemenName is the complete name of the element

— http:/lIwww... the address used to identify the namespace is not
used by the parser to look up information. The only purpose is
to give the namespace a unique name.

— Other attributes like version may be included...

Namespaces (lll)
-

This XML document carries information in a table:
<table>
<tr>
<td>Apples</td><td>Bananas</td>
</tr>
</table>

This XML document carries information about a table (a piece of furniture):
<table>

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>
</table>

If these two XML documents were added together, there would be an
element name conflict because both documents contain a <table>
element with different content and definition.

Namespaces (IV)
-

This XML document carries information in a table:

<h:table xmIns:h="http://www.w3.org/TR/htmi4/" >
<h:tr>
<h:td>Apples</h:td><td>Bananas</h:td>
</h:tr>
</h:table>

This XML document carries information about a table (a piece of furniture):
<f:table xmlIns:f="http://www.w3schools.com/furniture" >

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>
</f:table>

By using a prefix, we have created two different types of <table> elements.
We have added an xmins attribute to the <table> tag to give the prefix a
qualified name associated with a namespace.

Namespaces
S

One more illustrative example at :

http://www.xml.com/pub/a/1999/01/namespaces.html

XML Schemas (l)
-

e Currently exists a new W3C recommendation of May
2001 for XML definitions:
XML Schemas

e XML Schema is an XML-based alternative to DTDs.

e An XML Schema describes the structure of an XML
document.

e The XML Schema language is also referred to as
XML Schema Definition (XSD).

e Limited usage: Currently there is a great quantity of
documents defined with DTDs.

XML Schemas (ll) (Example)

point.xsd

<Point>
<xX>3</x>
cy>d</y>

</Point>

4

point.xml

XML Schemas vs. DTDs (lll)
-

DTDs Disadvantages
— You don’t write in XML syntax
- Small usage of namespaces

- Few data types (and what's worst, can not define new
types)

- Even though you can group elements between entities (%;)
they are a little developed

DTDs Advantages
- Supported by many tools

- Many documents already exist: DTDs y XMLs based on
those

- Easytolearn

XML Schemas vs. DTDs (IV)

e Advantages:

- They permit multiple data types (e.g. xs:date, xs:int,
xs:language, ...)

- Ample use of namespaces

- Permits the grouping of elements for its reutilization, permits
inheritance (e.g.: Personal Data in distinct Domains)

e READ this on XML Schemas:

http://www.w3schools.com/schema/schema_intro.asp

The XML Family ()
.

XPointer/XLink: permit referencing to other
resources, within or outside the XML document

XPath: Query language for parsing and searching
XML files

XQL (XML Query Language): useful for locating and
extracting elements from an XML document

XIRQL: An XQL extension for Information Retrieval
XSLT: Language for transforming XML documents

The XML Triumph
S

e Structure and content separated

e Data has to be interchanged through the net:

- Tree structured documents are in a portable
format useful for everything

- XML is used as a data interchange mechanism

XML Utilization Domains
o]
e Data interchange for medicines

Handling of mathematical information (XMath)

Interchange of information between executable programs
(SOAP)

Interchange of information between tools CASE (XMI)
Interchange of information over Human Resources (XML-HR)

Interchange of information over the stock exchange and finance
(IFX)

e Ample utilization in the EDI sector (Electronic Data Exchange)
Electronic Commerce (ECML, eCo, ebXML, xml-edifact)
‘Web’ Standards like WML y XHTML

XML according to W3C
S

XML is a method for putting structured data
in a text file
XML looks a bit like HTML but isn't HTML
XML is text, but isn't meant to be read
XML is a family of technologies
XML is verbose, but that is not a problem
XML is new, but not that new
XML is license-free, platform-independent
and well-supported

-- Bert Bos, W3C

References
€« 07

TUTORIALS

http://www.xml.org

http://www.florida-uni.es/~fesabid98/Comunicaciones/f _santamaria/f _santamaria.htm
http://www.stud.ifi.uio.no/~Imariusg/download/xml/xml|_eng.html
http://www.it.uc3m.es/entry/index.html
http://www.xml.com/pub/a/98/08/xmlgna0.html
http://www.dat.etsit.upm.es/~abarbero/curso/xml/xmlitutorial.html
http://www.hypermedic.com/style/xml/xmltut.txt
http://aries17.uwaterloo.ca/tutorial/xml/

RESOURCES

° http://www.programacion.net/xml.htm
http://www.hypermedic.com/style/xml/xmlindex.htm
http://slug.ctv.es/~olea/sgml-esp/recursos.html
http://www.xmlspy.com

VARIOUS

http://slug.ctv.es/~olea/sgml-esp/
http://aries17.uwaterloo.ca/tutorial/xml/
http://www.epsilon-eridani.com/PHPdoc/EEdoc.php3
http://slug.ctv.es/~olea/
http://www.centurycomputing.com/ng-htmi/xml/xml-syntax.html
http://www.hypermedic.com/style/xml/xmlindex.htm
http://www.ramon.org/index2.htm
http://www.haifa.il.ibm.com/sigir00-xml/final-papers/KaiGross/sigir00.html
www.w3schools.com/xpath/
www.w3schools.com/xpath/tryit.asp?filename=try xpath_select cdnodes
www.zvon.org/xxl/XPathTutorial/General/examples.html
ftp://www6.software.ibm.com/software/developer/library/mcolan/
ibm.com/developerworks/speakers/colan

