
XML: eXtensible Markup
Language

Anabel Fraga

Table of Contents

� Historic Introduction

� XML vs. HTML

� XML Characteristics

� HTML Document

� XML Document

� XML General Rules� XML General Rules

� Well Formed and Valid Documents

� Elements

� DTDs

� Entities

� Character References

� Namespaces

� XML Schemas

� The XML Family

� Presentation in XML

� The Triumph of XML

� XML Utilization Domains

� XML according to W3C

� References

Historic Introduction (I)

� XML was defined as an W3C standard in 1998. In

2000 version 1.0 was approved.

� It is a tagged language, such as HTML or its � It is a tagged language, such as HTML or its

precursor SGML is.

� It differentiates to SGML for its simplicity

� It differentiates to HTML for its flexibility: the

number of tags that can be included in a XML

document is unlimited.

� Equally to HTML, it is portable to any platform.

Historic Introduction (II)

Historic Introduction (III)

� Main objectives:
– Directly utilizable in Internet

– Support for a wide variety of application for data
transfertransfer

– Compatible with SGML

– Possible to create simple XML processors

– Readable XML Documents and relatively easy to understand
(depending on the definition)

– Rapid language design

– Simple, but perfectly formal

– Easy to create XML Documents

XML vs. HTML

� HTML lacks a syntactic checker. Pages with errors
are displayed in the browsers

� HTML lacks a structure

HTML is not object oriented� HTML is not object oriented

� HTML mixes content and representation

� For all this:
– HTML can not be easily read by a machine

– HTML will never be a standard for data interchange

� XML covers all these with a language of extreme
simplicity

XML Characteristics (I)

� It is a subset of the SGML language

� Similarly to SGML, it is used for representing data in a
structured form (Hierarchical)

� It is based on an obligatory and well defined grammar. This � It is based on an obligatory and well defined grammar. This
facilitates the development of parsers and thus, its massive
utilization

� The internal structure of an XML document is reflected in
another document called DTD (Document Type Definition)

� In contrast to HTML, it drastically separates the semantic of
the document, from its graphical representation

XML Characteristics (II)

� XML has been converted to a standard for data

interchange not only for the Web

� It is easy to use, for both humans and machines, � It is easy to use, for both humans and machines,

because it is based on a set of extensible semantic

tags.

� It is now in a state of maturity and absolute

expansion

� Thanks to its support of Unicode, all alphabets of the

world are supported

HTML Document (I)

HTML Document (II)

� As it appears, the previous HTML document

is correct, but:

– There are tags that never close: <P>– There are tags that never close: <P>

– Some tags are not well nested: the first <I> never

closes

– For a non human reader, it is not clear which is

the book and who is the author

� XML eradicates all those problems!!

XML Document

General Rules for XML

� One unique root element

� All elements need to have opening and closing
tagstags

� Distinction between upper/lower case letters (Case
Sensitive)

� Perfect nesting amongst elements

� The values of attributes are always placed between
double quotes (“example”)

� White spaces are preserved

� CR/LF characters are transformed to LF

Well Formed and Valid Documents

� A documents is thought to be well formed when:
– It complies with all the rules previously defined

– Contains one or more elements

– It has only one root element (document element)

– If the document constitutes of more than one parts, all must
be well formed

– There are no prohibited characters in the text

� A document is valid when, except being ‘well
formed’, it complies with the semantic specification
defined in its definition (DTD o XML Schema)

Elements (I)

� Comments:

– <!– This is a comment, and we can not include a double dash -->

� Processing instructions:

– <? Instruction ?>– <? Instruction ?>

– The instruction can not include characters ?>

� CDATA Sections (Character Data):

– <![CDATA[This text will not be treated and can include

“any” &character < >]]>

– Are not treated by the parser

– They can include any prohibited character (“, ‘, &, >, <).

– They can NOT include the character sequence]]>

Elements (II)

� Prologue:

<?xml version="1.0" encoding="utf-8"
standalone="yes" ?>standalone="yes" ?>

– It is an compulsory processing instruction

– Version: indicates the XML version used (1.0 in this case).
Its compulsory

– Encoding: indicated the document encoding, and is NOT
compulsory (default UTF-8). Valid for other character sets

– Standalone: “yes” indicates that the document is not
accompanied with external DTDs; “no” indicates that it has
a DTD. Not a compulsory attribute

Elements (III)

� DOCTYPE: <!DOCTYPE MyDTD SYSTEM

“C:\MyDTD.dtd”>

– Indicates a reference (URI) to a DTD, in this case – Indicates a reference (URI) to a DTD, in this case

same to the name (MyDTD) of its root element

– The DTD could be incorporated in the same XML

document, without the need of a separate file

– The XML document has to comply with the DTD

content

Elements (IV)

� Tags:

– Must be correctly nested: opening and closing

– Opening tag: starts with <, the name of the tag and finishes – Opening tag: starts with <, the name of the tag and finishes

with >. Example <Book>

– Closing tag: </Book>

– Empty tag: <Book />

– You can not start a tag name with “.”, “:”, “-”, numbers

– After the 1st character we can put “.”, numbers, “-”

– Tag names must start with a letter or with an underscore “_”

– Tag names can not start with “xml”

Elements (V)

� Element:
– Is the set of an opening tag, its content, and its closing tag

– For example: <Book>Don Quijote de la Mancha</Book>

– There are some reserved characters (prohibited):

KK Greater sign: >

KK Smaller sign: <

KK Ampersand: &

KK Single quote: ‘

KK Double quotes: “

– These prohibited characters are replaced with entities or are
included in CDATA sessions

Elements (VI)

� Attributes:

– Every element can contain 0 or more attributes

– Its value has to be always between double quotes. (“value”)– Its value has to be always between double quotes. (“value”)

– They can only be placed into opening or empty tags

– The same attribute can not be repeated in the same tag

– If the document has a DTD, every attribute must be defined

as an attribute for that element

– Can not contain any reference to an external reference

– Are always treated as sequences of text

Elements (VII)

<Book>

<Title>Don Quijote de la Mancha</Title>

<Author>Miguel de Cervantes</Author> (Without attributes)

<Price> 21,95 euros </Price>

<Publisher> Santillana </ Publisher ><Publisher> Santillana </ Publisher >

</Book>

<Book Price = “21,95 euros" Publisher = "Santillana">

<Title>Don Quijote de la Mancha</Title>

<Author>Miguel de Cervantes</Author>

</Book> (One element has two attributes)

Elements vs Attributes
http://www.w3schools.com/dtd/dtd_el_vs_attr.asp

http://www.ibm.com/developerworks/xml/library/x-eleatt.html

http://w3future.com/html/stories/elemvsattrs.xml

Exercise

� Make an XML document based on the text

given in the class

DTDs (I)

� Document Type Definition

� Defines the grammar to be followed in the
XML document in order to be considered as XML document in order to be considered as
valid.

� It can be included in an external file:
<!DOCTYPE root-element SYSTEM “DTD_File.dtd">

and/or in the same XML file:

<!DOCTYPE root-element [element-declarations]>

DTDs (II) (Types Declaration)

<!DOCTYPE Books SYSTEM
"Books1.dtd">

<Books>

<Book>

<Title>Don Quijote de

<!DOCTYPE Books [

<!ELEMENT Books (Book)+>

<!ELEMENT Book (Title, Author)>

<!ELEMENT Title (#PCDATA)>
<Title>Don Quijote de

la Mancha</Title>

<Author>Miguel de
Cervantes</Author>

</Book>

<Book>

<Title>La vida es
sueno</Title>

<Author>Calderon de
la Barca</Author>

</Book>

</Books>

<!ELEMENT Author (#PCDATA)>

]>

<Books>

<Book>

<Title>Don Quijote de la Mancha</Title>

<Author>Miguel de Cervantes</Author>

</Book>

<Book>

<Title>La vida es suenno</Title>

<Author>Calderon de la Barca</Author>

</Book>

</Books>

DTDs (III)

� All the DTD must have one and only one root element (also
known as document element)

� This root document must coincide with the name that
appears after the DOCTYPEappears after the DOCTYPE

� A DTD document can contain:

– Element declarations

– Attribute declarations for an element

– Entities declarations (or <)

– Notations declarations

– Processing instructions

– Comments

– References to parameter entities

DTDs (IV) (Root Element)

� After the root element, we can optionally list

(in hierarchical form) other elements

<!ELEMENT Books (Book)+><!ELEMENT Books (Book)+>

<!ELEMENT Book (Title, Author)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

DTDs (V) (Element Contents)

� Contents of an element:
– EMPTY: the element is empty (it can contain attributes).

<!ELEMENT IMAGEN EMPTY>

– ANY: an element can contain any other element including textual – ANY: an element can contain any other element including textual
content.

<!ELEMENT IMAGE ANY>

– Other elements: an element can contain one or more child
elements in a certain sequence (E.g. Book)

– #PCDATA: parsed character data.

<!ELEMENT BOOK (#PCDATA)>

– #CDATA: character data. (Not parsed by parser)

<!ELEMENT BOOK (#CDATA)>

– Mixed: the element can include character sequences optionally
mixed with child elements.

<!ELEMENT BOOK (#PCDATA | AUTOR)*>

DTDs (VI)

� Sequences of child elements:
– Sequence:

� Ordered sequence: comma separated children

Options: Pipe (|) separated children functioning as OR� Options: Pipe (|) separated children functioning as OR

� Groups of elements can be grouped inside parenthesis

– Cardinality: one element, or a group of elements may be
repeated 0, 1 or more times:

� element Element repeated 1 single time

� ? Element repeated 0 or 1 times

� * Element repeated 0 or more times

� + Element repeated 1 or more times

DTDs (VII)

DTDs (VIII) (Example)

<!ELEMENT BOOK (Author, Publisher)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT FILM (Actor|Actress|Director)+><!ELEMENT FILM (Actor|Actress|Director)+>

<!ELEMENT FILM ((Actor | Actress)*, Director,
Makeup?)>

<!ELEMENT FILM (#PCDATA | Actor)*>

<!ELEMENT FILM (Title, Category, (Actor |
Actress | Narrator)*)>

DTDs (IX)

Exercise: Make a DTD.
<?xml version="1.0" encoding="utf-8" ?>

<Agenda>

<Person><Person>

<Name> Anabel </Name>

<Surname> FRaga </Surname>

<Email> afraga@inf.uc3m.es </Email>

<Office> 2.1 B18 </Office>

<Telephone> 5555555 </Telephone >

<Mobile> 5557777 </Mobile>

</Person>

</Agenda>

DTDs (X) (Attributes)

� An element can optionally declare one or more

attributes

<!ATTLIST element-name attribute-name attribute-type Modifier>

� The attribute of an element can be included in one or

more declarations <!ATTLIST ...>. If it is done in the

same declaration, it can be separated with a space

(space, tab, carriage return)

DTDs (XI) (Attribute Types)

� Type of an attribute:
– Sequence type: CDATA (Character Data)

<!ATTLIST Author Nationality CDATA>

– Enumerated type:– Enumerated type:

<!ATTLIST Film Category (Fiction | Terror | Humor)>

– Symbolic type:
� ID: will be a unique identifier for the rest of the document, only one ID
attribute for each element

� IDREF, IDREFS: its value has to coincide with another value of type
ID in the rest of the XML document. IDREFS separates the references
with space “ID1 ID2 ID3”

� ENTITY, ENTITIES: its value has to coincide with one or more entities
(alias to large bit of text)

� NMTOKEN, NMTOKENS: its value has to be a sequence of type
token

DTDs (XII) (Attribute Types)

Type Description

CDATA The value is character data

(en1|en2|..) The value must be one from an enumerated list

ID The value is a unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names

ENTITY The value is an entity

ENTITIES The value is a list of entities

NOTATION The value is a name of a notation

xml: The value is a predefined xml value

DTDs (XIII) (Attribute Modifiers)

� Modifiers:
– #REQUIRED: this attribute has to be introduced
compulsorily.
<!ATTLIST Film Title CDATA #REQUIRED><!ATTLIST Film Title CDATA #REQUIRED>

– #IMPLIED: indicates that this attribute is optional

– PredefinedValue: if the attribute is omitted, the processors
use this value as default
<!ATTLIST Film Category (Fiction | Terror | Humor)
“Humor”>

<!ATTLIST Author Nationality CDATA “Spaniard”>

– #FIXED: if the attribute is included, the processors will
always use this value
<!ATTLIST Author Nationality CDATA #FIXED “Spaniard”>

DTDs (XIV) (Attribute Modifiers)

Value Explanation

value The default value of the attribute

#REQUIRED The attribute is required

#IMPLIED The attribute is not required

#FIXED value The attribute value is fixed

DTDs (XV) (Entities)

Entities are variables used to define shortcuts to standard text or special

characters.

– Entity references are references to entities

– Entities can be declared internal or external

Syntax

<!ENTITY entity-name "entity-value"> Internal Entity Declaration

<!ENTITY entity-name SYSTEM "URI/URL"> External Entity Declaration

DTD Example:

<!ENTITY writer "Donald Duck.">

<!ENTITY copyright "Copyright W3Schools.">

<!ENTITY writer SYSTEM "http://www.w3schools.com/entities.dtd">

<!ENTITY copyright SYSTEM "http://www.w3schools.com/entities.dtd">

XML example:

<author>&writer;©right;</author>

<author>&writer;©right;</author>

DTDs (XVI) (Attributes Exercise)

� Make a DTD using attributes: (INCLUDE THIS IN YOUR ASSIGNMENTS
REPORT)

<?xml version="1.0" encoding="utf-8" ?>

<Agenda>

<Person><Person>

<Name> Anabel </Name>

<Surname> Fraga </Surname>

<DNI> 44444444-O </DNI>

<Nationality> Spanish </Nationality>

<Email> afraga@inf.uc3m.es </Email>

<Office> 2.1.B18 </Office>

<Telephone> 5555555 </Telephone >

<Mobile> 5557777 </Mobile>

</Person>

</Agenda>

DTDs (XVII) (Problems)

� DTD does not follow the format of a standard XML
document. This represents a problem for the
parsers

� Distinct types of data is not supported in the style � Distinct types of data is not supported in the style
of programming languages (CDATA, #PCDATA)

� You can not create personalized data types

� Namespaces are not supported

� The number of elements occurrences can not be
100% controlled (E.g. min 2 occurrences)

� For these and other reasons, XML Schemas
have emerged

Namespaces (I)

� XML permits the creation of tags with ‘almost’ no

limitation in their names

� This implicates that, mixing two documents, with � This implicates that, mixing two documents, with

different tags, could result to a duplicity of tags

� Through namespace definition, these collisions can

be avoided

� Technologies like XSL and many others make use of

Namespaces

Namespaces (II) (Definition)

� A namespace is identified by its prefix.

For example:

<pref:elementName
xmlns:pref=“http://www.w3.org/XSL/Transform/1.0”>xmlns:pref=“http://www.w3.org/XSL/Transform/1.0”>

where:

– pref is the namespace prefix

– elemenName is the complete name of the element

– http://www... the address used to identify the namespace is not
used by the parser to look up information. The only purpose is
to give the namespace a unique name.

– Other attributes like version may be included...

Namespaces (III)

This XML document carries information in a table:

<table>

<tr>

<td>Apples</td><td>Bananas</td>

</tr></tr>

</table>

This XML document carries information about a table (a piece of furniture):

<table>

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

If these two XML documents were added together, there would be an
element name conflict because both documents contain a <table>
element with different content and definition.

Namespaces (IV)

This XML document carries information in a table:

<h:table xmlns:h="http://www.w3.org/TR/html4/" >

<h:tr>

<h:td>Apples</h:td><td>Bananas</h:td>

</h:tr></h:tr>

</h:table>

This XML document carries information about a table (a piece of furniture):

<f:table xmlns:f="http://www.w3schools.com/furniture" >

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

By using a prefix, we have created two different types of <table> elements.
We have added an xmlns attribute to the <table> tag to give the prefix a
qualified name associated with a namespace.

Namespaces

One more illustrative example at :

http://www.xml.com/pub/a/1999/01/namespaces.html

XML Schemas (I)

� Currently exists a new W3C recommendation of May
2001 for XML definitions:

XML Schemas

� XML Schema is an XML-based alternative to DTDs.

� An XML Schema describes the structure of an XML
document.

� The XML Schema language is also referred to as
XML Schema Definition (XSD).

� Limited usage: Currently there is a great quantity of
documents defined with DTDs.

XML Schemas (II) (Example)

XML Schemas vs. DTDs (III)

DTDs Disadvantages

– You don’t write in XML syntax

– Small usage of namespaces

– Few data types (and what’s worst, can not define new – Few data types (and what’s worst, can not define new
types)

– Even though you can group elements between entities (%;)
they are a little developed

DTDs Advantages

– Supported by many tools

– Many documents already exist: DTDs y XMLs based on
those

– Easy to learn

XML Schemas vs. DTDs (IV)

� Advantages:

– They permit multiple data types (e.g. xs:date, xs:int,

xs:language, ...)xs:language, ...)

– Ample use of namespaces

– Permits the grouping of elements for its reutilization, permits

inheritance (e.g.: Personal Data in distinct Domains)

� READ this on XML Schemas:

http://www.w3schools.com/schema/schema_intro.asp

The XML Family (I)

� XPointer/XLink: permit referencing to other

resources, within or outside the XML document

� XPath: Query language for parsing and searching � XPath: Query language for parsing and searching

XML files

� XQL (XML Query Language): useful for locating and

extracting elements from an XML document

� XIRQL: An XQL extension for Information Retrieval

� XSLT: Language for transforming XML documents

The XML Triumph

� Structure and content separated

� Data has to be interchanged through the net:

– Tree structured documents are in a portable

format useful for everything

– XML is used as a data interchange mechanism

XML Utilization Domains

� Data interchange for medicines

� Handling of mathematical information (XMath)

� Interchange of information between executable programs
(SOAP)(SOAP)

� Interchange of information between tools CASE (XMI)

� Interchange of information over Human Resources (XML-HR)

� Interchange of information over the stock exchange and finance
(IFX)

� Ample utilization in the EDI sector (Electronic Data Exchange)

� Electronic Commerce (ECML, eCo, ebXML, xml-edifact)

� ‘Web’ Standards like WML y XHTML

XML according to W3C

XML is a method for putting structured data

in a text file

XML looks a bit like HTML but isn't HTML

XML is text, but isn't meant to be read

XML is a family of technologies

XML is verbose, but that is not a problem

XML is new, but not that new

XML is license-free, platform-independent

and well-supported

-- Bert Bos, W3C

References

TUTORIALS

� http://www.xml.org

� http://www.florida-uni.es/~fesabid98/Comunicaciones/f_santamaria/f_santamaria.htm

� http://www.stud.ifi.uio.no/~lmariusg/download/xml/xml_eng.html

� http://www.it.uc3m.es/entry/index.html

� http://www.xml.com/pub/a/98/08/xmlqna0.html

� http://www.dat.etsit.upm.es/~abarbero/curso/xml/xmltutorial.html

� http://www.hypermedic.com/style/xml/xmltut.txt

� http://aries17.uwaterloo.ca/tutorial/xml/� http://aries17.uwaterloo.ca/tutorial/xml/

RESOURCES

� http://www.programacion.net/xml.htm

� http://www.hypermedic.com/style/xml/xmlindex.htm

� http://slug.ctv.es/~olea/sgml-esp/recursos.html

� http://www.xmlspy.com

VARIOUS

� http://slug.ctv.es/~olea/sgml-esp/

� http://aries17.uwaterloo.ca/tutorial/xml/

� http://www.epsilon-eridani.com/PHPdoc/EEdoc.php3

� http://slug.ctv.es/~olea/

� http://www.centurycomputing.com/ng-html/xml/xml-syntax.html

� http://www.hypermedic.com/style/xml/xmlindex.htm

� http://www.ramon.org/index2.htm

� http://www.haifa.il.ibm.com/sigir00-xml/final-papers/KaiGross/sigir00.html

� www.w3schools.com/xpath/

� www.w3schools.com/xpath/tryit.asp?filename=try_xpath_select_cdnodes

� www.zvon.org/xxl/XPathTutorial/General/examples.html

� ftp://www6.software.ibm.com/software/developer/library/mcolan/

� ibm.com/developerworks/speakers/colan

