
Components Based Design and Development

Computer Engineering Studies

Universidad Carlos III de Madrid

1Juan Llorens – Components Models

Juan Llorens

Högskolan på Åland – Finland / Universidad Carlos III de Madrid - Spain

Juan.llorens@uc3m.es

Unit 6: Components Models

Components Models

• SW Models to define components
– Structured models

• Modules

• Functions

– Object models

• Objects

• Interactions between objects

2Juan Llorens – Components Models

• Interactions between objects

– Distributed Models

• SW Models to interact with components
– Structured Models

– Object Models

– Interface Models - Interfacing and Typing

– Distributed Models

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Components Based Design and Development

Computer Engineering Studies

Universidad Carlos III de Madrid

3Juan Llorens – Components Models

Unit 5.1: Objects Models

Object models

Real World – Down definition

System - Up Definition

• Natural ways of representing a System, Subsystem, Component,
Functionality,.. Using just objects and their relationships
E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

4Juan Llorens – Components Models

• Natural ways of reflecting the real-world entities manipulated by the system

• More abstract entities are more difficult to model using this approach

• Object class identification is recognised as a difficult process requiring a deep
understanding of the application domain

• Object classes reflecting domain entities are reusable across systems
Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Object models: Creation

• The hard part about object-oriented design is decomposing a system into
objects.

• The task is difficult because many factors come into play:
– Encapsulation

– Granularity

– Dependency

5Juan Llorens – Components Models

– Dependency

– Flexibility

– Performance

– Evolution

– Reusability

– And on and on.

• They all influence the decomposition, often in conflicting ways.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Object models: Creation

Different approaches within Object-oriented design methodologies

• You can write a problem statement, single out the nouns and verbs, and
create corresponding classes and operations.

• Or you can focus on the collaborations and responsibilities in your system.

6Juan Llorens – Components Models

• Or you can focus on the collaborations and responsibilities in your system.

• Or you can model the real world and translate the objects found during
analysis into design.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Object models and the UML

• The UML is a standard representation devised by the developers of widely
used object-oriented analysis and design methods.

• It has become an effective standard for object-oriented modelling.

• Notation
– Object classes are rectangles with the name at the top, attributes in the middle

7Juan Llorens – Components Models

– Object classes are rectangles with the name at the top, attributes in the middle
section and operations in the bottom section;

– Relationships between object classes (known as associations) are shown as lines
linking objects;

– Inheritance is referred to as generalisation and is shown ‘upwards’ rather than
‘downwards’ in a hierarchy.

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Objects and classes

• Two levels of abstraction:
– object: representation of a concrete entity with identity, state and behaviour

– class: specification of a set of entities with structure and common behaviour

• Types of classes:
– physical objects: airplane, person, book exemplar...

– logical objects : bank account, subject, complex number, book (type)

– historical objects: account operation, booking of a room

8Juan Llorens – Components Models

– historical objects: account operation, booking of a room

– abstract objects : product for sale, ingredients of a recipe

• Optional suppression of compartments

p1 : Point
p1 : Point

positionX = 3
positionY = -5

p1

: Point

Point

positionX
positionY

Point

positionX
positionY
locate()
move()

Point

locate()
move()

Point

Attributes and operations

• Attribute: a property “shared” by the objects of a class
– each attribute has a value (probably different) for each object
– redundant properties that can be calculated on the basis of other properties

• /area (= base * height)
• can be implemented as operations

• Operation: a function or transformation that can be applied to an object
(the objects of a class have all the same operations)
– can be invoked by other objects, or by the same object

9Juan Llorens – Components Models

– can be invoked by other objects, or by the same object
– method: procedural specification (implementation) of an operation

• Notation (can suppress all the elements except the name):
– visibility attributeName multiplicity : Type = initialValue

• balance : Money = 0
• officePhone [0..2]

– visibility operationName (argument : Type = defaultValue,Q) : ReturnedType
• getBalance () : Money
• call (number : Phone; attemptsNb : Integer)

Visibility

• Levels of visibility (different in each programming language):
+ public: visible to all the classes (option by default for operations)

~ package: visible to all the classes that are in the same package

protected: visible to the subclasses

– private: visible only to the class (option by default for attributes)

10Juan Llorens – Components Models

UML Java .NET

Public Public Public

Package Protected
Protected Protected-Internal

friendly Internal Protected

Private Private Private

Connections and associations

ArticleSeller

Association:
specification of a set of
connections

represents the structure and the
behaviour of the system

11Juan Llorens – Components Models

Juan : Seller

Ana : Seller

statuette : Article

painting: Article

mirror : Article

Connection:
A connection between objects
determines a tuple of objects,
instance of an association

state of the connected objects
state of the system

Fact + possibility of communication

Association names and role names

ArticleSeller
auctions

Association name Reading direction

Association names can be repeated in a model,
except for associations between the same classes

12Juan Llorens – Components Models

ArticlePerson
seller article

Role names

except for associations between the same classes

Role names can be repeated in different associations, and can be equal
to the names of the associated classes

Multiplicity of an association

• In a binary association, the multiplicity of an extremity of the association

specifies the number of destination instances that can be connected with a
unique origin through the association

ArticlePerson
seller article

1..1 0..*
Article mandatorily
participates

Person optionally
participates

13Juan Llorens – Components Models

• Typical values:
– 0..1 zero or one
– 1..1 one and only one (abbreviated as “1”)
– 0..* from zero to “many” (abbreviated as “*”)
– 1..* from one to “many”

• Other multiplicity values:
– ranges between: (2..*), (0..3), etc.
– list of ranges separated by comas: (1, 3, 5..10, 20..*), (0, 2, 4, 8), etc.

Navigability of an association

• The navigability of a binary association specifies the capacity of an instance
of the origin class to access instances of the destination class through the
instances of the association that connects those classes.

• To access = to name, designate or reference the object to...
– read or modify the value of an attribute of the object (not advised)
� invoke an operation of the object (to send it a message)

– use the object as argument or return value in a message
– modify (to assign or to delete) the connection with the object

14Juan Llorens – Components Models

– modify (to assign or to delete) the connection with the object

• Do not confuse:
– reading direction of the name of the association: linguistic asymmetry
– navigability or directionality of the association: asymmetry of communication

ArticleSeller
auctions

ArticleSeller
auctions

ArticleSeller
auctions

Navigability not specified

Unidirectional association

Bidirectional association

• An attribute is equivalent to a unidirectional association

Point

positionX: Coordinate
positionY: Coordinate

Association vs. Attribute

Point

Coordinate

positionY

positionX

15Juan Llorens – Components Models

• It is incorrect to duplicate the representation

Point

positionX: Coordinate
positionY: Coordinate

Coordinate

positionY

positionX

Association vs. Operation

• Every association has a double meaning:
– aspect : structure of the system (possible states)

– aspect : behaviour of the system (possible interactions)

• The name of an association may reflect one aspect more than the other:
– static names: contains, located-in, works-for, married, etc.

– dynamic names (of action): sells, publishes, consults, etc.

• Static names are preferable, leaving dynamic names to be used as names of

16Juan Llorens – Components Models

Person

Vehicle

start()
drive()
stop()

owns
Person Vehicle

starts

drives

stops

• Static names are preferable, leaving dynamic names to be used as names of

operations, invoked through the association by sending messages

• A same association enables the invocation of many operations

Generalisation and classification

• Principle of substitution:
– extention: all the objects of the subclass also are of the superclass
– intention: the definition of the superclass is applicable to the subclass

• Generalisation: class-class
– Cat is a (sub-)class of Mammal, Mammal is a (sub-)class of Animal

• Classification: object-class

17Juan Llorens – Components Models

• Classification: object-class
– Fluti is a Cat, Fluti is a Mammal, Fluti is an Animal

Cat Mammal Animal

Fluti

«instance of»

Direct and indirect instances

Generalisation and specialisation

• Two complementary points of view :
– to generalise is to identify the common properties (attributes,

associations, operations) of several classes and to represent them by
a more general class, known as their superclass

• augment the level of abstraction, reduce complexity, organize
– to specialise is to capture new specific properties of a set of objects of

a given class, which have not been identified in that class, and to
represent them by a new class, know as its subclass

18Juan Llorens – Components Models

represent them by a new class, know as its subclass

• reuse of a concept while adding new properties (or variations) to it

• This relation is purely between classes:
– it does not have instances, nor multiplicity
– the subclass inherits all the properties of the superclass
– the inherited properties of the superclass are not represented in the

subclass (unless they are redefined operations)
– every generalisation induces a dependency subclass � superclass

Transport

Class hierarchies

Transport

Aerial

Terrestrial

Bicycle

Car

Train

Alternative representations :
- binary relations
- tree structure

19Juan Llorens – Components Models

Aerial Terrestrial

Aeroplane HelicopterBicycle Car Train

Generalisation:
- not reflexive
- transitive
- asymmetric

Aeroplane Helicopter

CurrentAccount

titular {disjoint, complete} currency {disjoint, incomplete}

Dimensions of specialisation

• A superclass can be specialised in different groups of subclasses according
to independent criteria : discriminators

20Juan Llorens – Components Models

PersonalAccount SocialAccount EuroAccount DollarAccount

• Restrictions:
– overlapping/disjoint: the subclasses can / cannot have instances in common
– incomplete/complete: there are / are no other subclasses

• Values by default: disjoint, incomplete

• Partition (strictly speaking): disjoint, complete

Multiple Generalisation vs. Multiple Classification

CurrentAccount

PersonalAccount EuroAccount

CurrentAccount

PersonalAccount EuroAccount

21Juan Llorens – Components Models

PersonalEuroAccount

myAccount

«instance of»

myAccount

«instance of» «instance of»

Polymorphism of operations

• Capacity of executing different methods in response to a same message
• A polymorphic operation is one that has multiple implementations/methods

• Do not confuse overwriting a method with operation overloading

– to overwrite: to redefine in another class the method of a same operation
• the method is selected at execution time

– to overload: to reuse the name of an operation, but with different parameters
• the operation is selected at compilation time; it is not polymorphic

22Juan Llorens – Components Models

DebitAccount

withdraw(amount)

CurrentAccount

balance
withdraw(amount)
withdraw()

CreditAccount

credit
withdraw(amount)

overloadingoverwriting
(polymorphism)

Signature of operations

• A class cannot have two operations with the same signature,
which consists of:
– name of operation, number (order) and type of the parameters

• The names of the parameters are not part of the signature
• The type of the return value is not part of the signature, because it is not

used to distinguish which operation shall be executed
� It cannot be used for overloading operations (and neither for overwriting)

23Juan Llorens – Components Models

p1 : Point

positionX = 3
positionY = -5

Point

positionX: Coordinate
positionY: Coordinate
getPosition(): PolarCoordinates
getPosition(): CartesianCoordinates

c := getPosition ()

Which operation will be invoked?

to overload

Figure

position
draw()

RectangleCircle

Abstract classes and operations

• Abstract operation : the signature is specified,
but not the implementation
– a class with one or several abstract operations is

incomplete: it cannot have direct instances
– abstract operations, just like the concrete ones, can

be overwritten (polymorphic)
– it is safer to overwrite an abstract operation than to

overwrite a concrete operation (less risk of changing

24Juan Llorens – Components Models

Rectangle

base
height
draw()

Square

{base=height}

draw()

Circle

radius
draw()

overwrite a concrete operation (less risk of changing
its meaning)

• Abstract class: is incomplete, cannot have direct
instances
– can have indirect instances through its concrete

subclasses
– a concrete class...

• cannot have abstract operations
• must provide implementations for all the abstract

operations inherited

Subclass vs. Association (Attribute)

• How to model the properties of objects?
General rule:
– changeable property or large range of values: attribute

– fixed property with enumerated values: specialisation (each property translates
into a criteria of specialisation, each value in a subclass)

• can also be modelled as an attribute with a fixed value

25Juan Llorens – Components Models

CurrentAccount

titular
currency

Alternative to the

double specialisation
RedCarGreenCarBlueCar

colour

Excessive

specialisation?

Car

Class Inheritance versus object composition

• The two most common techniques for reusing functionality in object-oriented

• Class inheritance lets you define the implementation of one class in terms of
another's.
– Reuse by subclassing is often referred to as white-box reuse. The term "whitebox“

refers to visibility: With inheritance, the internals of parent classes are often visible
to subclasses.

26Juan Llorens – Components Models

• Object composition is an alternative to class inheritance.
– New functionality is obtained by assembling or composing objects to get more

complex functionality. This style of reuse is called black-box reuse, because no
internal details of objects are visible. Objects appear only as "black boxes.“

• Class Inheritance is defined at compile time while Object composition at run-
time

Favor object composition over class inheritance.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Class Inheritance : advantages and disadvantages

• Class inheritance is defined statically at compile-time and is straightforward to use,
since it's supported directly by the programming language.

• Class inheritance also makes it easier to modify the implementation being reused.

• When a subclass overrides some but not all operations, it can affect the operations it
inherits as well, assuming they call the overridden operations.

Disadvantages

27Juan Llorens – Components Models

• You can't change the implementations inherited from parent classes at run-time,
because inheritance is defined at compile-time.

• Parent classes often define at least part of their subclasses' physical representation.
– The implementation of a subclass becomes so bound up with the implementation of its

parent class that any change in the parent's implementation will force the subclass to
change.

• Should any aspect of the inherited implementation not be appropriate for new problem
domains, the parent class must be rewritten or replaced by something more
appropriate

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Object Composition : advantages and disadvantages

• Composition requires objects to respect each others' interfaces, which in turn requires
carefully designed interfaces that don't stop you from using one object with many
others.

Advantages

• Because objects are accessed solely through their interfaces, we don't break
encapsulation. Any object can be replaced at runtime by another as long as it has the

28Juan Llorens – Components Models

encapsulation. Any object can be replaced at runtime by another as long as it has the
same type. Moreover, because an object's implementation will be written in terms of
object interfaces, there are substantially fewer implementation dependencies.

• Favoring object composition over class inheritance helps you keep each class
encapsulated and focused on one task. Your classes and class hierarchies will remain
small and will be less likely to grow into unmanageable monsters. On the other hand, a
design based on object composition will have more objects (if fewer classes), and the
system's behavior will depend on their interrelationships instead of being defined in
one class.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Delegation

• Delegation is a way of making composition as powerful for reuse as
inheritance. In delegation, two objects are involved in handling a request: a
receiving object delegates operations to its delegate.

• This is analogous to subclasses deferring requests to parent classes. But with
inheritance, an inherited operation can always refer to the receiving object
through the this member variable in C++ and self in Smalltalk. To achieve the
same effect with delegation, the receiver passes itself to the delegate to let

29Juan Llorens – Components Models

same effect with delegation, the receiver passes itself to the delegate to let
the delegated operation refer to the receiver.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Delegation : advantages and disadvantages

• The main advantage of delegation is that it makes it easy to compose
behaviors at run-time and to change the way they're composed.

• Delegation has a disadvantage it shares with other techniques that make
software more flexible through object composition: Dynamic, highly
parameterized software is harder to understand than more static software.

• There are also run-time inefficiencies.

30Juan Llorens – Components Models

• Delegation is a good design choice only when it simplifies more than it
complicates.

• It isn't easy to give rules that tell you exactly when to use delegation, because
how effective it will be depends on the context and on how much experience
you have with it.

• Delegation works best when it's used in highly stylized ways—that is, in
standard patterns.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Components Based Design and Development

Computer Engineering Studies

Universidad Carlos III de Madrid

31Juan Llorens – Components Models

Unit 5.2: Interface Models

• Encapsulation: separation of interface and implementation in a class
– a class can realize one or more interfaces

– an interface can be realized by one or more classes

• Interface: set of operations that offer a coherent service
– does not contain the implementation of the operations (no methods)

– an interface cannot have attributes nor navigable associations

(this restriction has been suppressed in UML 2.0)

Interfaces

32Juan Llorens – Components Models

(this restriction has been suppressed in UML 2.0)

– analogue to an abstract class with only abstract operations, and without attributes
nor associations

Notations for the use and realisation of interfaces

Document

PrintablePrinter

Document

«interface»
Printable

print()

Printer

Class Versus Type

• A Type is a name used to denote a particular interface
– We speak of an object as having the type "Window" if it accepts all requests for the

operations defined in the interface named "Window."

• An object may have many types, and widely different objects can share a
type.

• Part of an object's native interface may be characterized by one type, and

33Juan Llorens – Components Models

• Part of an object's native interface may be characterized by one type, and
other parts by other types.

• Two objects of the same type need only share parts of their native interfaces.

• Interfaces can contain other interfaces as subsets. We say that a type is a
subtype of another if its interface contains the interface of its supertype.

• Often we speak of a subtype inheriting the interface of its supertype.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Interface vs Implementation

• Interfaces are fundamental in object-oriented systems. Objects are known
only through their interfaces.

• There is no way to know anything about an object or to ask it to do anything
without going through its interface.

• An object's interface says nothing about its implementation—different objects

34Juan Llorens – Components Models

• An object's interface says nothing about its implementation—different objects
are free to implement requests differently.

• Two objects having completely different implementations can have identical
interfaces.

• Dynamic binding means that issuing a request doesn't commit you to a
particular implementation until runtime.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Interface vs Implementation II

• Consequently, you can write programs that expect an object with a particular
interface, knowing that any object that has the correct interface will accept the
request.

• Dynamic binding lets you substitute objects that have identical interfaces for
each other at run-time. This substitutability is known as polymorphism [..].

• It lets a client object make few assumptions about other objects beyond
supporting a particular interface.

35Juan Llorens – Components Models

• It lets a client object make few assumptions about other objects beyond
supporting a particular interface.

• Polymorphism simplifies the definitions of clients, decouples objects from
each other, and lets them vary their relationships to each other at run-time.

• An object's implementation is defined by its class.
– The class specifies the object's internal data and representation and defines the

operations the object can perform.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Interface vs Implementation III

• Consequently, you can write programs that expect an object with a particular
interface, knowing that any object that has the correct interface will accept the
request.

• Subclasses can refine and redefine behaviors of their parent classes. More
specifically, a class may override an operation defined by its parent class.

• Overriding gives subclasses a chance to handle requests instead of their

36Juan Llorens – Components Models

• Overriding gives subclasses a chance to handle requests instead of their
parent classes.
– Class inheritance lets you define classes simply by extending other classes,

making it easy to define families of objects having related functionality.

“Design patterns help you define interfaces by identifying their key elements and the kinds
of data that get sent across an interface. A design pattern might also tell you what not

to put in the interface.”

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Interface vs Implementation IV

“Design patterns help you define interfaces by identifying their key elements and the kinds
of data that get sent across an interface. A design pattern might also tell you what not

to put in the interface.”

37Juan Llorens – Components Models

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Differences between Class and its Type

• An object's class defines how the object is implemented. The class defines
the object's internal state and the implementation of its operations.

• An object's type only refers to its interface—the set of requests to which it can
respond. An object can have many types, and objects of different classes can
have the same type.

38Juan Llorens – Components Models

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Class inheritance / Interface Inheritance (subtyping)

• Class inheritance defines an object's implementation in terms of another
object's implementation.
– In short, it's a mechanism for code and representation sharing.

• Interface inheritance (or subtyping) describes when an object can be used in
place of another.

• The standard way to inherit an interface in C++ is to inherit publicly from a

39Juan Llorens – Components Models

• The standard way to inherit an interface in C++ is to inherit publicly from a
class that has (pure) virtual member functions.
– Pure interface inheritance can be approximated in C++ by inheriting publicly from

pure abstract classes. Pure implementation or class inheritance can be
approximated with private inheritance.

• In Smalltalk, inheritance means just implementation inheritance.
– You can assign instances of any class to a variable as long as those instances

support the operation performed on the value of the variable.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Class inheritance versus Interface Inheritance

• Interface inheritance
(i.e., subtyping):
– describes when different types of

objects can be used in place of
each other

PutAt()
RemoveAt()

HashTable

PutAt()
RemoveAt()

Table

PutAt()

BTree

40Juan Llorens – Components Models

• Implementation inheritance:
– an object’s implementation is

defined in terms of the
implementation of another. PutAt()

RemoveAt()

HashTable

Add()
Remove()

Set

PutAt()
RemoveAt()

Bernd Bruegge & Allen Dutoit - Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Program to an Interface, not an Implementation

• Class inheritance is basically just a mechanism for extending an application's
functionality by reusing functionality in parent classes.

• But inheritance's ability to define families of objects with identical interfaces
(usually by inheriting from an abstract class) is also important.
– Why? Because polymorphism depends on it.

• When inheritance is used carefully (some will say properly), all classes

41Juan Llorens – Components Models

• When inheritance is used carefully (some will say properly), all classes
derived from an abstract class will share its interface.
– This implies that a subclass merely adds or overrides operations and does not

hide operations of the parent class. All subclasses can then respond to the
requests in the interface of this abstract class, making them all subtypes of the
abstract class.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Program to an Interface, not an Implementation: Benefits

1. Clients remain unaware of the specific types of objects they
use, as long as the objects adhere to the interface that clients
expect.

2. Clients remain unaware of the classes that implement these
objects. Clients only know about the abstract class(es) defining

42Juan Llorens – Components Models

objects. Clients only know about the abstract class(es) defining
the interface.

These are the fundamentals of the creational patterns

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

«interface»
Figure

«interface»
Printable

Generalisation vs. Realisation

• Realisation can be understood as a “weak
generalisation”: it inherits the interface, but not the
implementation:
– reduces dependency
– lowers reutilisation
– alternative to multiple generalisation, but not supported

by many programming languages

• Interfaces are generalisable elements

43Juan Llorens – Components Models

Circle Rectangle

Square

– mixed hierarchies of interfaces and classes

• Design criterion: to commit only to the interface
– declare the types of variables, or of parameters of

operations, as interfaces, rather than as classes
– any instance compatible with the interface can be used

• Example:
Figure f = new Square ();

f.print

Interfaces

• An interface defines a contract
– An interface is a type
– Includes methods, properties, indexers, events
– Any class or struct implementing an interface must support all parts of the

contract

• Interfaces provide no implementation
– When a class or struct implements an interface it must provide the

44Juan Llorens – Components Models

– When a class or struct implements an interface it must provide the
implementation

• Interfaces provide polymorphism
– Many classes and structs may implement

a particular interface

Otro

public interface IDelete {

void Delete();

}

public class TextBox : IDelete {

public void Delete() { ... }

Interfaces

Example

45Juan Llorens – Components Models

}

public class Car : IDelete {

public void Delete() { ... }

}

TextBox tb = new TextBox();

IDelete iDel = tb;

iDel.Delete();

Car c = new Car();

iDel = c;

iDel.Delete();

Interfaces

Multiple Inheritance
• Classes and structs can inherit from

multiple interfaces

• Interfaces can inherit from multiple interfaces

46Juan Llorens – Components Models

interface IControl {
void Paint();

}

interface IListBox: IControl {
void SetItems(string[] items);

}

interface IComboBox: ITextBox, IListBox {

}

Otro

interface IControl {

Interfaces

Explicit Interface Members
• If two interfaces have the same method name, you can explicitly

specify interface + method name to disambiguate their
implementations

47Juan Llorens – Components Models

interface IControl {
void Delete();

}

interface IListBox: IControl {
void Delete();

}

interface IComboBox: ITextBox, IListBox {

void IControl.Delete();

void IListBox.Delete();

}
Otro

• UML 1.x supports interfaces, but only in one direction:

Interfaces UML 1.x

WheelEngine

48Juan Llorens – Components Models

PowerIn

PowerIn

Propeller

• Interface usage buried in client methods.

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Interfaces UML 2.0

• Bidirectional interfaces:

PowerOut

Engine

PowerIn

Whatever

49Juan Llorens – Components Models

Boat

PowerOut

: Engine

PowerIn

: Propeller

Car

PowerOut

: Engine

PowerIn

: Wheel

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

• Ports = public parts.

Composition 2.0 (Ports)

Car

PowerOut

: Engine

PowerIn

: Wheel

50Juan Llorens – Components Models

Boat

PowerOut

: Engine

PowerIn

: Propeller

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Composition 2.0 (Ports)

• Multiple ports of the same type.

Home Office

: Computer

51Juan Llorens – Components Models

: PowerStrip

: Printer

: Lamp

PowerOut PowerIn

PowerOut PowerIn

PowerOut PowerIn

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Semantic data models are NOT Object Models

DATA MODELS

• Used to describe the logical structure of data processed by the system.

• An entity-relation-attribute model sets out the entities in the system, the
relationships between these entities and the entity attributes

52Juan Llorens – Components Models

• Widely used in database design. Can readily be implemented using relational
databases.

• No specific notation provided in the UML but objects and associations can be
used.

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

Library semantic model

53Juan Llorens – Components Models

Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 8

