
Components Based Design and Development

Computer Engineering Studies

Universidad Carlos III de Madrid

1Juan Llorens - Software Design Overview

Juan Llorens

Högskolan på Åland – Finland / Universidad Carlos III de Madrid - Spain

Juan.llorens@uc3m.es

Unit 3: Software Design Quick Overview

Where is the Software Design activity located

System

Sub-system

development

System

design

Requirements

definition

System

installation

System

evolution

System

decommissioning
System Development Process

For Software subsystems

2Juan Llorens - Software Design Overview

System

integration

Software Design: Architectural and Detailed Design

Requirements
Capture

Design

Implementation

Testing

Analysis

Phases of the life cycleWorkflows
Phase 1 Phase 2 Phase 3 Phase n

Preliminary

iteration(s)

Iter.

#1
Iter.

#2

Iter.

#n

Iter.

#n+1

Iter.

#n+2

Iter.

#m

Iter.

#m+1

Transition from Analysis to Design

requirements

analysis

Phases of the life cycleWorkflows

specification

WHAT : PROBLEM

Analysis

Phase 1 Phase 2 Phase 3 Phase n

3Juan Llorens - Software Design Overview

design

implementation

tests

iterations

Analysis

HOW : SOLUTION

Preliminary

iteration(s)

Iter.

#1
Iter.

#2

Iter.

#n

Iter.

#n+1

Iter.

#n+2

Iter.

#m

Iter.

#m+1

Transition from Analysis to Design (II)

• The Analysis activity pretends to model an understanding of the system to be
developed => [Application] Problem Domain

• The Design activity pretends to model a possible solution to a particular
[Application] problem => [Application] Solution Domain

4Juan Llorens - Software Design Overview

• Grey Zone : Where is the border between both activities?

3. Grey Zone

Could be a problem understanding
or a solution decision

1. Requirements
Capture

“Cars should be able to
travel from the top of Smith
Hill at 65 mph, travel in a
straight line, and arrive at
Jones Hollow within 3
minutes.”

2. Requirements Analysis

Statics Dynamics

Transition from analysis to Design : Example

Auto

Road

Distance =

Speed*Time

Bridge

5Juan Llorens - Software Design Overview

4. Architecture

Cable

Pylon

Based on E. Braude, Software Engineering: An Object-Oriented Perspective

Support use case

Auto

Road5. Detailed
Design

Smith

Hill

Cable

Pylon

(added for

detailed

design) Guardrail

Software design

• The process of converting the system specification into computational model
ready to be coded.

• Software design
– Design a software structure that realises the specification;

6Juan Llorens - Software Design Overview

• And.. Implementation
– Translate this structure into an executable program;

• The activities of design and implementation are closely related and may be
inter-leaved.

Based on Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 4

So0 What is Software Design

• To develop Computational Models representing a complete Solution to a
proposed software need (Problem).

– Design implies to find computational solutions to problems representing functional
and not functional needs

7Juan Llorens - Software Design Overview

– Design implies to perform Modeling

Design => Solve problems using models

What are the design instruments?

• 1- A Process guidance
– A Design process defining what activities to follow

• 2- Techniques
– 2.1 High Level: Problem solving techniques
– 2.2 Low Level: Modeling techniques

• 3- Rules

8Juan Llorens - Software Design Overview

• 3- Rules
– Constraints applied to system models;

• 4- Tools
– Whatever conceptual device that can be applied to solve a particular problem

• 5- Recommendations
– Advice on good design practice;

• 6- Documentation guidelines
– Based on document templates

Based on Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 1

1- Design process model: process activities

• A general process model for Components Based Development (CBD):

– Architectural design : The overall organization of the system

– Abstract specification : The problem formal specification

– Interface design : The definition of communications

9Juan Llorens - Software Design Overview

– Interface design : The definition of communications

– [Detailed] Components design : The definition of components

– Data structure design : The definition of information

– Algorithm design : The definition of behaviour

Based on Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 4

Sommerville’s software design process

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

Requirements
specification

Design activities

10Juan Llorens - Software Design Overview

• Architectural design: Identify sub-systems.

• Abstract specification: Specify sub-systems.

• Interface design: Describe sub-system interfaces.

• Component design: Decompose sub-systems
into components.

• Data structure design: Design data structures to hold problem data.

• Algorithm design: Design algorithms for problem functions.

©Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 4

2.1- Problem Solving techniques for Software Design

• Apply existing design solutions to already solved design problems that occur
in my project

• Be able to find and Reuse previous designs (solutions) for the problems of
my project

• Build in advance general solutions to be applied to my present and future

11Juan Llorens - Software Design Overview

• Build in advance general solutions to be applied to my present and future
problems

• If nothing from the previous help => model a solution form scratch

Based on Ian Sommerville 2004 - Software Engineering, 7th edition. Chapter 1

2.2 - Modeling: Analogy with architecture (for buildings)

• Does it make sense to lay the bricks before making the plans?

• the model - the plans help to master the complexity of the project

• What is the language adequate for representing the plans?

• Direct engineering and reverse engineering: a house, a car, a virus...

12Juan Llorens - Software Design Overview

Direct
engineering

reverse
engineering

What is a model?

• Abstraction or simplification of the reality: divide and conquer

• Various types of models:
– structure, electricity, sanitation, Q

– static, dynamic...

�how are they related between themselves?

• Formal models and informal models
– Informal models: ad hoc, without a common language

13Juan Llorens - Software Design Overview

– Informal models: ad hoc, without a common language

– Formal models: universal language, precision, rigor, coherence

• Modelling and language
– language is a vehicle for your thoughts: helps to think clearly

– modelling is an essential element of the process of software development

– modelling requires an adequate language

• To model is not (just) to make diagrams but to think with diagrams

System, model, diagram

• a system is a collection of elements organized to fulfil a concrete finality

– a system can be divided into subsystems

• a model is an abstraction of a system, a simplification (complete and
consistent) of the real system, which is used to better understand it
– Temporarily, a model may be incomplete (missing elements) or inconsistent

(containing contradictions)

14Juan Llorens - Software Design Overview

– a system can be modelled from different complementary viewpoints, according to
what is considered relevant in each case

• a diagram is the graphical representation of a set of interconnected elements,
a partial view of a model
– a model is not just a collection of diagrams
– a model may contain elements not represented in a diagram
– a model may contain textual specifications which are essential

Analysis models and design models

• Essential parts of the documentation of any project
• Despite the use of a similar notation, the models of analysis and design are

abstractions (models) of different things

– analysis (conceptual model): abstraction of the problem, the real world as it is,
or will be, in which the proposed system will be built

– design (model of the software): abstraction of the internal construction of the
proposed system, rather than the solution to the problem posed in the real world

• Therefore, they have a different purpose

15Juan Llorens - Software Design Overview

• Therefore, they have a different purpose

– problem: to study the requirements without making decisions of implementation
– solution: to establish how to build the system before actually building it

• There is no strict temporal ordering between analysis and design
– Analysis precedes design but only within an iteration
– They are interdependent models; they can evolve in parallel

• Transition is neither simple, immediate nor automatic (problem � solution)
– A good design is not attained simply by “adding details” to the analysis
– the analysis model cannot be transformed simply in a part of the design model:

they represent different realities

Analysis and design represent different realities

Domain of the
problem

Domain of the
solution

Abstraction
Analysis model

(conceptual model)

Design model
(model of the

16Juan Llorens - Software Design Overview

(conceptual model)
software)

Reality

Problem in the real
world

(reality external to the
system)

Implementation of
the (SW) solution
(software internal to

the system)

H. Kaindl. “Difficulties in the Transition from OO Analysis to Design”. IEEE Software, 16(5), 1999.

Differences between the models of analysis and design

• analysis: creation of a specification of the problem and of the requirements
– Exploration and clarification of the requirements on the system
– construction of a model of the real world based on the concepts of the domain

(conceptual model)
– What must (or does: reverse engineering) the system do, but not how

– Do not introduce design or implementation artefacts

• design: definition of a software solution that satisfies the requirements
– Technological solutions for implementing the requirements on the system

17Juan Llorens - Software Design Overview

– Technological solutions for implementing the requirements on the system
– construction of a model of the system before effectively building it

(model of the software)
– Includes aspects of implementation: design patterns, class libraries,

components, persistence mechanisms, etc.
– Introduces new artefacts: an object of analysis may be implemented by a group of

design objects
– Takes into account the implementation platform (machines, operating systems,

languages, etc.), as well as considerations of efficiency, throughput, optimization
of resources, fault-tolerance, etc.

• Difficult to determine where the analysis ends and where the design begins

4 – Tools (Not only SW tools)

• The importance for a SW Engineer to understand their existence

• To be a professional Software engineer you must be skilled, trained and
experienced in the way the existing tools can be applied within a Software
Design.

18Juan Llorens - Software Design Overview

• Tools must be organized. The Tool-Set Bag.
– Build a tool-set bag during our course.

Lets build a personal Tool-Set Bag

Type Tool Type Tool Type Tool

General Conceptual Abstraction Computational Object Orientation Engineering Modeling

General Conceptual Encapsulation Engineering Diagramming

Organizational Record
Specifications in

video

19Juan Llorens - Software Design Overview

SW CASE

SW Lower CASE

SW Higher CASE

Modelling tools

• What can offer a CASE tool for UML?
– Drawing

– Syntactical verification

– Consistency between diagrams

– Integration with other
applications

– Group work

20Juan Llorens - Software Design Overview

– Group work

– Reutilization

– Code generation...

• Examples
– Rational Rose

– Visual UML

– SWReuser

6 - Documentation Guidelines

ESA PSS-05-04 Issue 1 Revision 1 (March 1995) -THE ARCHITECTURAL DESIGN DOCUMENT

Service Information:
a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change Records made
since last issue

1 Introduction
1.1 Purpose

4 System Design

4.1 Design method

4.2 Decomposition description

5 Component Description
5.n [Component identifier]
5.n.1 Type
5.n.2 Purpose

21Juan Llorens - Software Design Overview

1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms and
abbreviations
1.4 References
1.5 Overview

2 System Overview

3 System Context
3.n External interface definition

5.n.2 Purpose
5.n.3 Function
5.n.4 Subordinates
5.n.5 Dependencies
5.n.6 Interfaces
5.n.7 Resources
5.n.8 References
5.n.9 Processing
5.n.10 Data

6 Feasibility and Resource Estimates

7 Software Requirements vs Components
Traceability matrix

Documentation Guidelines

ESA PSS-05-05 Issue 1 Revision 1 (March 1995) 75 THE SOFTWARE USER MANUAL

Service Information:
a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change Records made since last
issue.

1 INTRODUCTION
1.1 Intended readership
1.2 Applicability statement
1.3 Purpose

(c) Procedures, including,
- Set-up and initialisation
- Input operations
- What results to expect

(d) Probable errors and possible causes)

4 [REFERENCE SECTION]
(Describe each operation, including:
(a) Functional description
(b) Cautions and warnings

22Juan Llorens - Software Design Overview

1.3 Purpose
1.4 How to use this document
1.5 Related documents (including applicable
documents)
1.6 Conventions
1.7 Problem reporting instructions

2 [OVERVIEW SECTION]
(The section ought to give the user a general
understanding of what parts of software provide
the capabilities needed)

3 [INSTRUCTION SECTION]
(For each operation, provide...
(a) Functional description
(b) Cautions and warnings

(b) Cautions and warnings
(c) Formal description, including as appropriate:

- required parameters
- optional parameters
- default options
- order and syntax

(d) Examples
(e) Possible error messages and causes
(f) Cross references to other operations)

Appendix A Error messages and recovery procedures
Appendix B Glossary
Appendix C Index (for manuals of 40 pages or more)

How to perform CB software design

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

Design activities

23Juan Llorens - Software Design Overview

S1 S3

S2

Repository

S2

Layer1

LayerN

Layer2

Layered Architecture

S1 S3
Repositor

ySS1 SS3

SS2

Repository

Repository Architecture

Execution

Engine

Inference

Engine

DataBas

e

Knowledge

Base

Rule Based Architecture

How to perform CB software design

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

Design activities

24Juan Llorens - Software Design Overview

a b c d e

s

p

q

t
r

How to perform Architectural Design

• Software Architectural Design is
concerned with decomposing a
software sub-system into further
interacting sub-systems.

25Juan Llorens - Software Design Overview

• Sw Architectural Design =
sub-systems engineering

A D E

How to perform Architectural Design:

Sub-system / module Decomposition

26Juan Llorens - Software Design Overview

D1 D2 D3 E1 E2 E3
A1 A2 A3

A11 A12 A13

A13 A13

Available Tools:
• Decomposition

• Abstraction

System Decomposition Layers for OO methods

Level 1

Sub-system

Level m

Module
(...)

Level n-1

Component

Level n

Class / Object

27Juan Llorens - Software Design Overview

System Decomposition Layers for OO methods

Level n

Class / Object

Level n-1

Component
(...)

Level m

Module

Level 1

Sub-system

28Juan Llorens - Software Design Overview

Ways to represent them

Boxes Boxes Boxes | -

Box and Lines Diagrams Box and Lines Diagrams | UML Classes

UML Packages | UML Components UML Components | UML Objects

Diagrams with Packages | UMLComponents Diagrams | UML Class Diagrams

Detailed Design

How to perform Object Oriented Detailed Design

• Detailed Design is the process of decomposing a module/system
into objects.

• This decomposition can be affected by:
– Encapsulation, granularity, dependency, flexibility, performance, evolution,

reusability, etc.
E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

29Juan Llorens - Software Design Overview

• The Inputs to OO Detailed Design must be:
– The Requirements affecting design
– The Domain Objects and Classes found in Requirements Analysis (RA)
– The Domain Objects and Classes collaborations defined in RA
– The SW Architecture (including Architectural Objects and classes when

they exist)
– The Modules/sub-systems solution principles if they were defined in the

Architectural Design

How to perform Object Oriented Detailed Design

• The Outputs to be produced in an OO Detailed Design must be
– The objects structure

– Their corresponding classes structure (interfaces, Attributes, Operations)

– The collaborations between the objects (messages, signals,..)

– The definition of the possible states of the objects

– The organization of the objects in components and nodes

30Juan Llorens - Software Design Overview

– The organization of the objects in components and nodes

– The way the structures, states and collaborations can be tested

How to perform Object Oriented Detailed Design

• Therefore, the problem in detailed design can be located in
“how to organize, integrate and adapt the domain and architectural objects, as

well as their structure, interfaces, operative, collaborations and states”.

• Many problems, specific to Object Orientation, may oblige to
include new specific objects (Detailed Design Objects) to solve

31Juan Llorens - Software Design Overview

include new specific objects (Detailed Design Objects) to solve
them.

• Many of these problems have already been solved and the
objects/classes structures are available for us designers..

They are forming the Design Patterns

Identified problems in Object Oriented Detailed Design

• Not setting the focus on the collaboration
• Finding Appropriate Objects
• Determining Object Granularity
• Specifying Object Implementations

– Class versus type: Specifying object interfaces
– Programming to an Interface / Programming to an Implementation
– The creation of objects

32Juan Llorens - Software Design Overview

– The creation of objects
– Inheritance versus Composition
– Delegation
– Inheritances versus Parameterized Types
– The structures of Objects
– The behavior of Objects
– Coupling

• Relating Run-Time and Compile-Time structures
• Designing for Change

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Find Appropriate Objects

• Many objects in a design come from the analysis model. But
object-oriented designs often end up with classes that have no
counterparts in the real world. Some of these are low-level
classes like arrays. Others are much higher-level.

– By using Design Patterns, for example, the Composite pattern introduces

33Juan Llorens - Software Design Overview

– By using Design Patterns, for example, the Composite pattern introduces
an abstraction for treating objects uniformly that doesn't have a physical
counterpart. Strict modeling of the real world leads to a system that
reflects today's realities but not necessarily tomorrow's. The abstractions
that emerge during design are key to making a design flexible.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

Determining Object Granularity

• Objects can vary tremendously in size and number. They can
represent everythink down to the hardware or all the way up to
entire applications

– Design patterns help you identify less-obvious abstractions and the
objects that can capture them. For example, objects that represent a

34Juan Llorens - Software Design Overview

objects that can capture them. For example, objects that represent a
process or algorithm don't occur in nature, yet they are a crucial part of
flexible designs. The Strategy (315) pattern describes how to implement
interchangeable families of algorithms. The State (305) pattern represents
each state of an entity as an object. These objects are seldom found
during analysis or even the early stages of design; they're discovered later
in the course of making a design more flexible and reusable.

E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object Oriented Software

