

OpenCourseWare

CHAPTER 2: Introduction to security

Coding Techniques

Francisco Valera Pintor

WHAT IS SECURITY

"The only system which is truly secure is one which is switched off and unplugged, locked in a titanium lined safe, buried in a concrete bunker, and is surrounded by nerve gas and very highly paid armed guards. Even then, I wouldn't stake my life on it." Slightly modified version of a quotation from Gene Spafford (Professor of computer science at Purdue University, USA) "The only truly secure system is one that is powered off, cast in a block of concrete and sealed in a lead-lined room with armed guards - and even then I have my doubts." From: "Computer Recreations: Of Worms, Viruses and Core War" by A. K. Dewdney, in Scientific American, March 1989, pp 110.

To physical resources:

- Theft, destruction, accidents, damage, usage errors
- To resource utilization:
 - Reduction of availability, economic loss (disk space, CPU time, data volume transmitted on a leased line etc.)
- To stored information:
 - Loss of integrity, confidentiality, availability
- To transmitted data:
 - Loss of integrity, confidentiality, availability, authenticity, nonrepudiation

To the image and reputation:

 Inability to prevent or detect attacks or identify offenders, impact on third party assets, own responsibility

EXAMPLES OF DISPUTED DOMAINS

The disputed domain names:

UNIVERSIDAD CARLOS III DE MADRID

- <pccillen.com>
 <pccillon.com>
 <pcillian.com>
 <trendmico.com>
 <trendmicroeurope.com>
 <trendmicrosystems.com>
 <trendmicrosystems.com>
- 8. <trenmicro.com>

The disputed domain names:

- 1. <amadon.com>
- 2. <amazaon.com>
- 3. <amoazon.com>
- 4. <amoson.com>
- 5. <amozen.com>
- 6. <amozom.com>
- 7. <amozone.com>
- 8. <azazon.com>
- 9. <wwamazon.com>
- 10. <wwwamozon.com>

http://arbiter.wipo.int/center/index.html

Chapter 2: Introduction to Security 4

COMMON ATACKS

00000

- Tear Drop
- ICMP flooding
- DDoS
- ♦ Spam
- Routing protocols
- ♦ SMTP, FTP, HTTP
- Social engineering
 - Phishing
- Malware

SECURITY COSTS

Investment (equipment, systems)

Expenses (maintenance/staff)

Reputation

Complexity of use

Service restrictions

Performance reduction

RESTRICTION CONE

THE SECURITY CYCLE

Identify the elements to protect

Named "assets"

Determine the possible incidents (threats)

Determine the likelihood of a threat

How critical they can potentially become?

Implement countermeasures

Review the process periodically

THE SECURITY CYCLE

ELEMENTS

- Assets to protect
- Threats to the assets
 - People, things, events...
- Vulnerabilities

000000

- Points where the threats may turn into an incident
 - >Vulnerabilities have a certain probability
- Impact of the incident
- Risks of running in a real environment:
 - Never null, based on a compromise
- Countermeasures (or safeguards):
 - Reduce the vulnerabilities (preventive)
 - Limit the impact of an incident (healing)

INCIDENT PRIORITIZATION

POINT OF FINANCIAL EQUILIBRIUM

GENERAL SOLUTION?

Security audit

Security policies

SECURITY DEFINITIONS

Security: actions that allow one to

- Detect and prevent: reducing the probability of harmful incidents
- Recovery: reducing the negative consequences when a harmful incident occurs
- Reporting: Identifying the causes when a harmful incident occurs
- Attack: any action capable of compromising the security of the information in an organization
- Security mechanism: any mechanism designed to detect, prevent or recover from a harmful incident
- Security service: a service that improves the security of data processing or transfer and that in general makes use of one or more security mechanisms

SECURITY SERVICES

Availability:

 Guarantees the availability of the information for authorized entities whenever required

Threat: Elimination of data or resources

Confidentiality:

Information only accessible to authorized entities

Threat: Non-authorized access to data or traffic analysis

Integrity:

Only authorized entities may modify the information

> Threat: Modification of data or introduction of false data

SECURITY SERVICES

Authentication:

Guarantees the correct identification of origin and destination of the information

> Threat: Third-party masquerading as sender / receiver

Non-repudiation:

 Guarantees that sender and receiver of a message can't deny its transmission

Threat: Deny having transmitted or received certain data

Access Control:

 Guarantees controlled access to information and systems to authorized entities

Threat: Access of confidential data to non authorized entities

SCENARIOS

Integrity of the message

How does B know that the message received from the sender A is the original and not a fake message?

Authenticity of the sender

How does B know that the message received from the sender who says he is A is really that person?

Message Date

How does B know that the message from A is recent and not a replay of a message previously sent from A?

Non-repudiation of the sender

How can B prove that the message sent by A, and who now denies having sent it, really must have come from A?

Non-repudiation of the receiver

How can A prove that the message sent to B, and who now denies having received it, really was sent?

SECURITY MECHANISMS

Data encryption Message Digests Digital Signatures Authentication Key Exchange

UNIVERSIDAD CARLOS III DE MADRID

С R Ρ 0 G R Α Ρ н

LOGICAL ACCESS CONTROL: AUTHENTICATION

Something that only one knows (password)

- Solution Low costs, easy to invalidate / to configure / to register
- Cession, capturing on introduction, guessing, induction

Something that is portable (key, intelligent card,...)

- Similar to passwords, but higher security
- Multiple access, loss, robbery / copies / falsification, costs

Some physical characteristic (biometrics)

- Sery secure
- Bigh costs

AUTHENTICATION: PASSWORDS

- Easy to remember
- Difficult to guess(?)
- Attacks on passwords very common:
 - Use well-known user accounts ("guest")

Use known user accounts

- >Try trivial passwords, very often successfully!
- Theft of data bases with ciphered keys
 - Used for password cracking
 - Example: dictionary attack (25% in less than 2 hours)
- Copy ciphered keys and retransmit them

PASSWORDS POLICIES

Important: Users must choose good passwords

- A single bad key can compromise the whole system
- Recommendation:
 - Mix letters, digits and alphanumeric signs
 - Mix uppercase and lowercase
 - Never: Dictionary word or variations.

Example: UNIX passwords

- 8 characters, 7 bits/character, 56 bits DES
- Problem: Passwords from a dictionary
 - Not equally probable (some are very popular)
 - ✓ Equivalent to a ~19 bit key
- Easier to break using brute-force methods
- Control mechanisms

PASSWORDS POLICIES

Change default passwords! Never store passwords in network files Restrict the access to files (/etc/passwd) Don't give "hints" (finger daemon) Invalidation after "n" failures Password blocking Force periodic password changes Password aging Don't send clear-text passwords POP, telnet!

EXAMPLE: DES IN UNIX

000000

TERMINOLOGY

http://www.britannica.com

Cryptology. (from gr. $\kappa\rho\nu\pi\tau\sigma\zeta$ hidden and *-logos*). *f.* the scientific study of cryptography and cryptanalysis

Cryptography. (from gr. $\kappa\rho\nu\pi\tau\sigma\zeta$ hidden and *-grafía*). *f.* enciphering and deciphering of messages in secret code or cipher

Cryptanalisys. m. the solving of cryptograms or cryptographic systems

Cryptogram. m. a figure or representation having a hidden significance

TERMINOLOGY

http://www.britannica.com

Encrypt. tr. Encipher, encode.

Encode. *tr.* to convert from one system of communication into another; *especially*: to convert (a message) into code.

Code. *tr.* a system of symbols (as letters or numbers) used to represent assigned (and often secret) meanings.

Encipher. tr. to convert (a message) into cipher.

Cipher. *tr.* (a) a method of transforming a text in order to conceal its meaning. (b) a combination of symbolic letters

CRYPTOSYSTEM

Cryptosystems:

- Alphabet: for writing not encrypted text (P, plain text or clear text) and encrypted text (C, cryptograms)
- Key space: all possible keys for encryption (kc) and decryption (kd)
- Encryption (E) and decryption (D) transformations: function from the alphabet to the same alphabet.

$D_{kd}[C=E_{ke}(P)]=P$

Cryptosystem transformation:

- Symmetric (conventional encryption, secret key encryption): the encryption and decryption key are the same (ke=kd=k)
- Asymmetric (public key encryption): the encryption key and decryption key are different (ke≠kd)

CRYPTOSYSTEM MODEL

ASSUMPTIONS

To carry out a "threats analysis" we have to suppose the opponent's resources

Worst case (exaggerated?)

- Real time interception and inspection of every packet
- Message alteration, creation and repetition
- Brute-force attack against obsolete algorithms or when having enough information
- Sources of attacks are known users

 These days, wireless networks proliferation makes perfectly valid some of the above assumptions.

ENCRYPTION EXAMPLE

PLACEMENT OF ENCRYPTION

Hop-by-bop

End-to-end

PLACEMENT OF ENCRYPTION

- The lower you encrypt:
 - More information to encrypt
 - Easier to do it in hardware
 - Fewer keys in the open
 - Fewer keys necessary
 - Authentication at a coarser level

[000000

000000