

## CHAPTER 3: Symmetric Cryptography

Coding Techniques
Francisco Valera Pintor

## CRYPTOSYSTEM MODEL

## TRUSTED THIRD PARTY

## KERCKHOFF'S LAW

La Cryptographie Militaire (1883 in le Journal des Sciences Militaires )

- Rules a cryptosystem must comply with:

1. The system must be practically, if not mathematically, indecipherable;
2. It must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience;
3. Its key must be communicable and retainable without the help of written notes, and changeable or modifiable at the will of the correspondents;
4. It must be applicable to telegraphic correspondence;
5. It must be portable, and its usage and function must not require the concourse of many people;
6. Finally, it is necessary, seeing the circumstances that the application commands, that the system be easy to use, requiring neither mental strain nor the knowledge of a long series of rules to observe.

## SECURITY TYPES

## - Unconditional (theoretical)

* System is secure against attacks with unlimited resources and time
- Computational (practical)
* System is secure against attacks with limited resources and time
- Probable
* It has not been demonstrated that the system is insecure
-Conditional
* System is secure while there are not enough resources to attack it


## RSA-200 Challenge (May 2005)

The number to factorize was
27.997.833.911.221.327.870.829.467.638.722.601.621.070.446.786.955.428.537.560.009.929. 326.128.400.107.609.345.671.052.955.360.856.061.822.351.910.951.365.788.637.105.954.48 2.006.576.775.098.580.557.613.579.098.734.950.144.178.863.178.946.295.187.237.869.221.8 23.983 (200 dígitos ~ 660 bits)
and its prime factors are
3.532.461.934.402.770.121.272.604.978.198.464.368.671.197.400.197.625.023.649.303.468.7 76.121.253.679.423.200.058.547.956.528.088.349
and
7.925.869.954.478.333.033.347.085.841.480.059.687.737.975.857.364.219.960.734.330.341.4 55.767.872.818.152.135.381.409.304.740.185.467

## SECURITY ATTACKS

## - Only cipher text



- Cipher text and part of plain text
- E.g.: an 8 character ASCII text is encrypted
* If we decrypt with all the possible keys...
$\checkmark$ How many ' $\mathrm{M}_{\mathrm{i}}$ will be valid?
* How many cryptograms are need, to obtain the encryption key


## TRADITIONAL ENCRYPTION

- Steganography
- Substitution techniques
* Monoalphabetic cipher: symbols are replaced one by one
$\checkmark$ Caesar cipher (1st century BC) C=(M+2) mod 26
$\checkmark$ General substitution $\mathrm{C}=(\mathrm{aM}+\mathrm{b}) \bmod \mathrm{n}$
$\checkmark$ Arbitrary substitution (Simple encryption) 26! Key space
* Polyalphabetic cipher: substitution as function of the position
$\checkmark$ Vigenére encryption (1586)
$\checkmark$ Beaufort encryption (1710)
- Transposition techniques
- Evolutionary encryption: Vernam (1918)
- Combined techniques: Rotors (Scherbius 1918, Enigma 1930, etc.)


## CLASSICAL CRYPTOGRAPHY

## - Substitution Techniques:

* Monoalphabetic cipher: symbols are replaced one-by-one
$\checkmark$ Caesar cipher ( $1^{\text {st }}$ century BC) $C=(M+2) \bmod 26$
$\checkmark$ Linear substitution (general) $C=(a M+b) \bmod n$
$\checkmark$ Arbitrary substitution (Simple encryption) 26! Key space

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | $(23$ | 24 | 25 |


| V | I | N | I | V | I | D | I | V | D | A | C | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | C | C | C | C | C | C | C | C | C | C | C | C |
| X | K | P | K | X | K | F | K | X | K | P | E | K |

$$
\begin{aligned}
& X=(V+C) \bmod 26 \\
& 23=(21+2) \bmod 26
\end{aligned}
$$

## CLASSICAL ENCRYPTION

## - Homophonic ciphers:

* Multiple substitutes for a single letter (homophones)
* The more frequent, the more substitutes
* To leverage the letter frequencies in the cryptogram
- Multiple-letter encryption (digraphs and trigraphs)
* Playfair (1854): Encryption two-by-two letters
$\checkmark 5 \times 5$ encryption matrix: write a password without repeating letters and fill the matrix with the remaining letters
$\checkmark$ Write the letters of the plaintext in pairs. Include an ' $X$ ' between

| $M$ | $A$ | $S$ | $T$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| $R$ | $B$ | $C$ | $D$ | $F$ |
| $G$ | $H$ | $I / J$ | $X$ | $L$ |
| $N$ | $O$ | $P$ | $Q$ | $U$ |
| $V$ | $W$ | $X$ | $Y$ | $Z$ | two repeated letters or at the end as padding

$\checkmark$ Plaintext letters in the same row are replaced by the letter to the right of each (circularly if necessary)
$\checkmark$ Plaintext letters in the same column are replaced by the letter beneath each (circularly if necessary)
$\checkmark$ Otherwise replace the letter by the letter in the same row corresponding to the column of the second letter in the pair * Hill (1929)

## PLAYFAIR EXAMPLE

## - Plaintext: ELECTRONIC COMMERCE

| M | A | S | T | E |
| :---: | :---: | :---: | :---: | :---: |
| R | B | C | D | F |
| G | H | $\mathrm{I} / \mathrm{J}$ | K | L |
| N | O | P | $\mathbf{Q}$ | U |
| V | W | X | Y | Z |


| EL | EC | TR | ON | IC | CO | MX | ME | RC | EX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FU | SF | MD | PO | PI | BP | SV | AM | BD | SZ |

- Much better than mono-alphabetic ciphers:
* $26 \times 26=676$ digraphs
- However: with a sufficiently large text, cryptanalysis is still possible
* Still much of the structure of the plaintext preserved


## CLASSICAL CRYPTOGRAPHY

$\therefore$ Polyalphabetic cipher: Substitution as a function of their position
$\checkmark$ Vigenère cipher (1586): $\quad C_{i}=\left(M_{i}+K_{j}\right) \bmod 26$
$\checkmark$ Beaufort cipher (1710):

$$
C_{i}=\left(-M_{i}+K_{i}\right) \bmod 26
$$

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

VIGENĖRE

| P | E | T | E | R | L | E | G | R | A | N | D | I | S | A | G | O | O | D | F | R | I | E | N | D | O | F | N | A | P | O | L | E | O | N | L | E | G | R | A | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E | D | G | A | R | E |
| D | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| T | H | Z | E | I | P | H | M | R | R | R | G | O | S | R | K | R | U | D | W | V | L | K | N | U | S | I | T | A | G | S | O | K | O | E | P | H | M | R | R | R |


| BEAUFORT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | H | 1 | S | 1 | S |  | H | E | S | A | A | M | E | O | - | L | D | S | T |  | F | F |
| W | 1 | N | D | W | I |  | D | W | I | N | N | D | W | I | N | N | D | W | 1 |  |  | W |
| D | B | F | L | 0 | Q |  | W | S | Q | Q | $\mathrm{N} R$ | R | S | U |  | C | A | E | P |  | Y | R |

$$
\begin{aligned}
& \mathrm{T}=19,-\mathrm{T} \bmod 26=7, \mathrm{~W}=22 \\
& (-\mathrm{T}+\mathrm{W}) \bmod 26=29 \bmod 26=3=\mathrm{D} \\
& (-\mathrm{D}+\mathrm{W}) \bmod 26=(23+22) \bmod 26=19=\mathrm{T} \\
& \text { Chapter 3: Symmetric Cryptography }
\end{aligned}
$$

## CLASSICAL CRYPTOGRAPHY

## - Evolutionary encryption:

* Vigenére's Autokey (text addition)
* Vernam (1918): plain text XOR cyclic or pseudorandom key of the same length
* One-time pad: XOR with random key as long as plain text
$\checkmark$ Unconditional security proven: no relationship between M \& C
$\checkmark$ Key to be used only once: key distribution problem
- Transposition techniques: change order of symbols
* Rail fence: rows

* Columns

```
            Key:
Plain text:
```

Cryptogram:

```
    4 3 1 2 5 6 7
                                a t a qu e p
o s t pu e s
t o h a s t a
l a u n a a m
ATHUQPANTSOAAOTLUUSAEETAPSAM
```

* Generic transposition: key is the pattern


## ROTOR MACHINES

- Electromechanic encrypters (1930-1950)

Enigma (Germany), Sigaba (USA), Purple and Red (Japan), Hagelin (Sweden)

- Each cylinder constitutes a substitution cipher
- The output from one cylinder is the input of the following
- After a symbol input, the first cylinder rotates
- After a complete rotation of the first cylinder, the next one rotates one position
* A machine with ' $n$ ' cylinders generates a polyalphabetic cipher of period $26 \cdot n$


## MODERN CRYPTOGRAPHY

## - Secret Key:

* Symmetric encryption
$\checkmark$ Stream ciphers
$\checkmark$ Block ciphers
* Methods of authenticating messages (MACs)
$\%$ Mechanisms of authentication and key exchange
- Public key:
* Asymmetric coding
* Digital signatures
* Mechanisms of authentication and key exchange
- Without key:
* Hash functions


## SYMMETRIC ENCRYPTION

## - Same key to encrypt and decrypt



## TYPES OF CIPHERS

## - Block Ciphers:

* Encoding scheme that divides the plaintext into "chunks" (blocks) of fixed size and encodes them separately



## - Stream Ciphers:

* Encode continuous strings of bits in such a way that each operation also depends on the previous encoding



## CONFUSION AND DIFFUSION

- Confusion: the ciphertext depends (as complex as possible) on the key and the plaintext
> Achieved by substitution
- Diffusion: message characters are mixed and redistributed in the cryptogram
- Achieved by transposition
- Modern cryptosystems apply a series of rounds (iterations) to achieve both effects
* Very complex dependency between ciphertext, key, and plaintext
* The variation of 1 bit in the plaintext or the key results in a variation of $50 \%$ of the ciphertext (avalanche effect)


## RANDOM SUBSTITUTION

- The security provided by random substitution mechanisms should be enough
* For an 's' symbol ordered alphabet, there are s! ways to change their order (possible bijections)
* The key are the ' $s$ ' symbols reordered

* If we have an ' $n$ ' bits block, there would be $2^{n}$ symbols in the alphabet and the key size would be $n \cdot 2^{n}$ bits
* For $\mathrm{n}=64$ bits the key would be around $10^{21}$ bits
- Solution: product ciphers combine simple substitution and transposition


## SYMMETRIC ENCRYPTION: DES

National Bureau of Standards, ahora NIST: National Institute of Standards and Technology

- Origin: US NBS competition (1973)
- Winner: "Lucifer" algorithm of IBM (1975)
- Adopted in 1977 (FIPS46) until 1998 (FIPS46-3)
- Weakness: the length of the key.
* 1977: 20 million \$ to break it in 24 hours
* 1993: 1 million $\$$ to break it in 3 hours
* 1997: 1st RSA challenge (96 days)
* 1998: EFF (210.000 \$), 56 hours
* 1999: DesCrack, 22 hours
* AES1 (1998), AES2 (1999), AES3 (2000)
* 2001: Rijndael (AES-FIPS197) official subtitute for DES
* 2004: the withdrawal of FIPS46-3 is proposed


## DES PROPERTIES

- Block cipher
- Only hardware until 1981
* DEA (Data Encryption Algorithm)
 * ANSI X9.32
- Block size = 64 bits
- Key size = 56 bits
- Avalanche effect 50\%
- Weak keys (4) $\Rightarrow \mathrm{E}_{\mathrm{kd}}\left[\mathrm{E}_{\mathrm{kd}}(\mathrm{M})\right]=\mathrm{M}$
- Semi-weak keys (12) $\Rightarrow \mathrm{E}_{\mathrm{ks} 2}\left[\mathrm{E}_{\mathrm{ks} 1}(\mathrm{M})\right]=\mathrm{M}$


## ENCRYPTION EXAMPLE



## DES ITERATIONS



Plain Text

Iteration 1
Iteration 2
Iteration 3

Iteration 4

Iteration n

900000 (10000
000000 几行

## MODES OF OPERATION

## - Block Ciphers

* Coding scheme that divides the plaintext into 'chunks' (blocks) of fixed size and encodes them independently
* Easier to perform than stream ciphers
* If the size of the data to encode is less than the block size $\Rightarrow$ padding
* If the size of the data to encode is greater than the block size $\Rightarrow$ modes of operation



## PADDING

- The padding mechanism is not exclusive from encryption algorithms
* E.g.: Ethernet has to align the frame, etc.
- Introduces redundancy
*. It must have a known format so that the destination can delete it
- Decreases encryption performance
* Plain text / Cipher text relation
- It is necessary
* If it is not used the destination has to wait in order to receive more bits so as to complete the whole block

UNIVERSIDAD CARLOS III DE MADRID

## PADDING

## - Padding examples:

* Add a known data tail (fill with ' 1 ' or with ' 0 ' or with a sequence of ' 0 ' and ' 1 ', etc.)
* Problem: what happens if the plain text looks like the padding?
- PKCS\#5 (RFC2630, section 6.3)
* The padding is done with the required bytes, and their value is the binary representation of the number of added bytes
* Problem: what happens if the plain text does not need padding and contains a substring that looks like padding?


## MODES OF OPERATION

## 1. Electronic Codebook (ECB)

$\checkmark \quad$ For transmission of small amounts of data without structural regularities
2. Cipher Block Chaining (CBC)
$\checkmark$ For block-oriented transmission of data

## 3. Cipher Feedback (CFB)

$\checkmark$ For transmission of continuous bit streams
$\checkmark$ Propagates bit errors
4. Output Feedback (OFB)
$\checkmark \quad$ For transmission of continuous bit streams
$\checkmark \quad$ Useful in a noisy channel (No propagation of bit errors)
Higher risk for message modification attack

## MODES OF OPERATION



## ECB, CBC

## - ECB

* Direct use of the algorithm as block cipher
* Useful for small messages
* One bit error is propagated to one full block
$-\mathrm{CBC}$
* Requires an initialization vector ( $\mathrm{C}_{0} \circ \mathrm{IV}$ )
* Chains the coding of different blocks
$\checkmark$ Identical blocks result in different ciphered blocks
* Error propagation to one additional block
* Self-synchronization
$\checkmark$ Alteration or loss of blocks


## MODES OF OPERATION



## CFB, OFB

- CFB
* Variable block size (multiple of 8)
$\checkmark$ Most similar to a stream cipher
* Less coding efficiency
$\checkmark$ Eg: $\mathrm{n}=8 \Rightarrow$ each byte requires a cipher operation
* Error propagation to one 64 bit block
* Self-synchronizing:
$\checkmark$ Modification or loss of blocks
- OFB
* The coder and decoder are identical
* The algorithm is used as a pseudo-random sequence generator (can be done offline)
* No error propagation
* No self-synchronization on block losses


## DOUBLE DES



* Increase the effective size of the key by using DES several times in succession.


## DOUBLE DES

## - 'Meet-in-the-middle’ attack

* $\mathrm{X}=\mathrm{E}_{\mathrm{K} 1}[\mathrm{M}]=\mathrm{D}_{\mathrm{K} 2}[\mathrm{C}]$
* Obtain a pair M/C

* Encrypt M with the $2^{56}$ possible $\mathrm{K}_{1}$ and decrypt C with the $2^{56}$ possibles $\mathrm{K}_{2}$
$\checkmark$ Will there be coincidences?
$\checkmark$ There are $2^{112}$ possible keys and only $2^{64}$ outputs
$>$ Given a pair $M / C$, the number of key pairs that verify $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left[\mathrm{E}_{\mathrm{K} 1}[\mathrm{M}]\right]$ may be $2^{112 / 22^{64}}=2^{48}$
* Capture another M'/C' pair. The false alarm ratio is reduced to $2^{48} / 2^{64}=1 / 2^{16}$
* Effective key size: $\mathbf{2 5 7}^{57}$


## TRIPLE DES (TUCHMAN 79)

## -DES compatibility (K=K1=K2)



## THE NEW STANDARD

- DES has not been cryptanalyzed completely
- Weakness: key length (brute-force)
* 1977: 20 \$million for cracking it in 24 hours
* 1993: 1 \$million for cracking it in 3 hours
* 1997: 1st challenge (96 days) DESCHALL
* 1998: 2nd challenge.(56 hours) EFF (\$210.000)
* 1998: AES1 initiated (TDES already recommended)
* 1999: 3rd challenge (22 hours) DesCrack
* AES2 (1999), AES3 (2000)
* 2001: Rijndael (AES-FIPS197) officially replaces DES
* 2004: FIPS46-3 proposed to be withdrawn


## AES: Rijndael

- AES (Advanced Encryption Standard) in 2001
- Creators: Vincent Rijmen \& Joan Daemen
- Design criteria:
$\checkmark$ Simplicity, speed, security
- 128 bit blocks and 128, 192, and 256 bits keys
- Iteration:
* Add Round Key: XOR of the iteration subkey
* Byte Sub: Substitution of each byte of a block
* Shift Row: Displacement of rows
* Mix Column: Reordering of columns
- Number of iterations dependent on key size 10, 12 , or 14 iterations


## KEY DISTRIBUTION

- Physical delivery
* Secure, but of relative usefulness
- Using an old key
*. $\mathrm{E}_{\mathrm{Ks}}\left[\mathrm{K}_{\mathrm{s}+1}\right]$
* Capture one of the keys and the system is broken
- Using a specific key
* An additional protocol must protect the distribution
- Trusted third party
* Complicates the distribution mechanism


## DIRECT EXCHANGE


(1) $E_{K a b}\left[K_{S}\left\|T_{A}\right\| B\right]$ B

## DIRECT EXCHANGE



## KEY DISTRIBUTION



Number of required keys (to exchange and store):

$$
\frac{N \cdot(N-1)}{2}
$$

$N=100$ nodes $\Rightarrow 5000$
$N=1000$ nodes $\Rightarrow 500000$

## NEEDHAM-SCHROEDER



## CONCLUSIONS

- Asymmetric encryption is NOT more secure than symmetric encryption
* To obtain a similar security degree:
$\checkmark$ Symmetric encryption: 128 bits keys
$\checkmark$ Asymmetric encryption: 1024 bits keys
* Asymmetric encryption is significantly slower than symmetric $\checkmark 1000$ times (hardware) and 100 times (software).
- Does not substitute symmetric encryption. Both are applied to different purposes and they are complementary
* Symmetric encryption is used to encrypt with a session key.
* Asymmetric encryption
$\checkmark$ Allows session key exchange
$\checkmark$ Digital signatures
(108ロ00
UNIVERSIDAD CARLOS III DE MADRID


## BIBLIOGRAPHY

- Cryptography and network security. Principles and

Practice. Fouth edition
Williams Stallings. Prentice Hall. 2006
http://williamstallings.com/

- Network security : private communication in a public world
C. Kaufman, R. Perlman, M. Speciner, E. Cliffs.

Prentice Hall, 1995

- Handbook of applied cryptography

Alfred J. Menezes, Paul C. van Oorschot and
Scott A. Vanstone.2001.
http://www.cacr.math.uwaterloo.ca/hac/

- The Codebreakers

David Kahn. Scribner. 1996.
http://david-kahn.com/

