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Introduction: Public-Key Encryption

 Introduced by Whitfield Diffie and Martin Hellman 
in the 70’s

 Fundamental novelty:
 No symmetric keys, but asymmetric key pairs

 Larger key length than in symmetric encryption
 E.g., 1024 bits

 Two different keys instead of a single one: 
 Kpr: private key

 KPU: public key

 One for decryption and one for encryption
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Public-Key Encryption: Security

 In order to be secure it must be 
(computationally) extremely difficult to 
calculate one key of the key pair if the 
second key is known

 The calculation of the private key must be 
computationally infeasible based on the public 
key

 The two main applications of such 
algorithms are:

 Encryption (confidentiality).

 Authentication (digital signatures).
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Classification of Asymmetric 
Algorithms

 Two main families of asymmetric 
algorithms applied to cryptography 
depending on the mathematical functions 
used

 Exponentiation algorithms

 Elliptic curve algorithms



Mathematical Basics
(exponentiation algorithms)

Some Number Theory
for Modular Arithmetic
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Keep Focus

 Target: What do we want to do?
 A Cryptographic operation like coding or 

decoding

 What do we want to cipher? A message or 
document

 In asymmetric cryptography based on 
exponentiation :
 A message is a concatenation of numbers 

(truncated to a block size)

 Cryptography consists of performing 
exponentiation operations on each of this 
numbers
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Finite set of cryptograms needed 
Congruence concept

 Modular arithmetic (discrete 
mathematics):
 Mathematical basis for the operations of public-

key encryption

 Concept of congruence (“”) :
 Consider two integers a and b

 a is congruent to b in the modulo or body n in Zn if and only 
if:
 An integer k exists that divides (a-b) without remainder

 n: "modulus of the congruence"

a - b = k  n
a  n b

a  b mod n
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Complete Set of Residues (CSR)

 For any positive integer number n, the 
CSR is {0, 1, 2, ..., n-1}. That means:

  aZ  ! ri CSR / a  ri mod n

 Only one representation per residue

 Examples:

 CSR (11) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

 CSR (6) = {0, 1, 2, 3, 4, 5} = {12, 7, 20, 9, 16, 35}

 The second set is equivalent:

 12  0, 7  1...

 Only different “representation” of the same number
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Divisibility of Numbers

 Important in cryptography: 

 Find gcd(a,b)

 Greatest common divisor for two integers a and b

 Example in cryptography:

 Used to ensure the existence of the inverse in Zn

 Condition: base a and modulus n are coprime:

 I.e.: gcd(a,n) = 1 

 Coprime = relatively prime
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Euclid’s Algorithm

Used to calculate the gcd of a and b

If x divides both a and b, x also divides:

 a mod b and b mod a

 Because of commutativity property

Partial proof:

x,a,b,a’,b’,k: integer numbers

a) If x divides both a and b  a = xa’ and b = xb’

b) Therefore: a-kb = xa’-kxb’

 a-kb = x(a’-kb’)

c) Conclusion: x also divides (a-kb)
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Euclid’s Algorithm

 If x divides a and b 

 x divides “a mod b” (a-kb)

 x divides “b mod a” (b-ka)

 Algorithm:

 If a > b r0 = a and r1 = b

 Calculate r2 = r0 mod r1

 Iterate rn = rn-2 mod rn-1

 The last remainder before reaching 0 is the 
gcd(a, b)
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gcd (148, 40)

148 = 3  40 + 28

40 = 1  28 + 12

28 = 2  12 + 4

12 = 3  4 + 0

gcd (148, 40) = 4

gcd (385, 78)

385 = 4  78 + 73

78 = 1  73 + 5

73 = 14  5 + 3

5 = 1 3 + 2

3 = 1 2 + 1

2 = 2  1 + 0

gcd (385, 78) = 1

148 = 22  37

40 = 23  5

385 = 5  7  11

78 = 2  3  13

Common 

factor: 22 = 4

No common 

factor

Divisibility with Euclid’s 
Algorithm: Example 

This is important 
for cryptography 
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Inverses in Zn (I)

 For cryptography, inverting an operation must be 
possible in order to recover the plaintext from 
the ciphertext (decryption)

 Terminology problem:
 In mathematical terms encryption is a function, 

 In colloquial speech, we use the following “analogies”

 The encryption operation is “multiplication”

 The decryption operation is “division”

 This analogy is true also for the inverses in Zn

 Thus, if in an encryption operation the function 
returns a value a in Zn, we have to find an inverse 
a-1 mod n for the decryption operation.

 In other words:
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Inverses in Zn (II)

 If ax mod n = 1 then x is the 
multiplicative inverse (a-1) of a in the 
modulo n

 Problem: 

 Inverses do not always exist (rarely in reality)

 Next slides show when the inverse exists
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Existence of the Inverse for 
Coprime Numbers

 There is an inverse a-1 in mod n iff gcd(a,n)= 1
 (iff means “if and only if”)

 Only when distinct numbers result from
a*i mod n (for all iZn)

 Example (Brute-force test):
 Reminder: gcd (a, n) = 1    x ! 0<x<n  / a  x mod n = 1

 a = 4 and n = 9.        Values for i = {1, 2, 3, 4, 5, 6, 7, 8}

 41 mod 9 = 4       42 mod 9 = 8       43 mod 9 = 3

 44 mod 9 = 7       45 mod 9 = 2       46 mod 9 = 6

 47 mod 9 = 1 48 mod 9 = 5

 Inverse for 4 is 7

 Multiplication can be seen as ‘encryption’ here
 Simple substitution scheme

 Can be reversed for ‘decryption’
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Non-Existence of an Inverse 
(for Non-Coprime Numbers)

 What if a and n are not coprime?

 I.e.: gcd(a,n)  1

 No x exists such that ax mod n = 1 for 0<x<n

 Example (Brute-force test):

 a = 3; n = 6, values for i = {1, 2, 3, 4, 5}

31 mod 6 = 3    32 mod 6 = 0    33 mod 6 = 3

34 mod 6 = 0    35 mod 6 = 3

 There is no inverse for a=3 in the set! 
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If n=10

 How many numbers will have inverse?

(AB) mod 10

1    2    3    4    5    6    7    8    9

1     1    2    3    4    5    6    7    8    9

2     2    4    6    8    0    2    4    6    8

3     3    6    9    2    5    8    1    4    7

4     4    8    2    6    0    4    8    2    6

5     5    0    5    0    5    0    5    0    5

6     6    2    8    4    0    6    2    8    4

7     7    4    1    8    5    2    9    6    3

8     8    6    4    2    0    8    6    4    2

9     9    8    7    6    5    4    3    2    1

10=2*5

# =(2-1)*(5-1)
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Reduced Set of Residues RSR (1)

 Reduced Set of Residues (RSR):

 Subset {0, 1, ... ni, ... n-1} of numbers in Zn

 Being coprime to n

 If n prime: All elements in RSR coprime to n

 “zero” is no solution, thus:

 RSR = {1, ..., ni, ... n-1}  /  gcd (ni, n) = 1

 Examples: 

 RSR mod 8 = {1, 3, 5, 7}

 RSR mod 5 = {1, 2, 3, 4}
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Reduced Set of Residues RSR (2)

 Why is the RSR useful in cryptography?

 The knowledge of the RSR allows 
application of an algorithm to find out the 
multiplicative inverse of x in Zn

 The Euler phi function (n)helps in this 

task
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Euler Phi Function (n)

 Returns the number of elements in a RSR

 Different cases for n (four forms):

 a) n is a prime number

 b) n can be represented as n = pk

 p: prime, k: integer

 c) n is a product n = pq , p and q prime

 d) n is any number (generic case). 

 Let us explain the four cases

t

n = p1
e1  p2

e2  ...  pt
et =  pi

ei

i=1
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Euler Phi Function (n) (n prime)

 Case 1: n is a prime number

 The RSR is the CSR without the number 0

 So (n)is the number of elements in CSR - 1
 (n) = n–1 (Used in ElGamal and DSS)

 Explanation:
 n is prime  all elements in CSR are coprime

 Except for the zero 

 Examples: 
 RSR(7) = {1,2,3,4,5,6} (six elements)

 (7) = n-1 = 7-1 = 6

 Similar: (11) = 11-1 = 10; 

(23) = 23-1 = 22
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Euler Phi Function (n) (n=pk)

 Case 2: n = pk , p: prime, k: integer

 (n) = (pk) = pk-pk-1 = pk-1(p-1)

 From the pk elements in CSR:

 Remove the multiples of p

1p, 2p, 3p, ...,(pk-1-1)p

 And the zero

 (pk) = n–1–(pk-1–1) = pk–pk-1 = pk-1 (p–1)

 Examples:

 RSR(16) = {1,3,5,7,9,11,13,15}  (eight elements)

 (16) = (24) = 24-1 (2-1) = 231 = 8

 Similar: n = 125

 (125) = (53) = 53-1(5-1) = 524 = 254 =100
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Euler Phi Function (n) (n=pq)

 Case 3: n = pq, p and q prime numbers
 (n) = (pq) = (p)(q) = (p-1)(q-1)

 From the pq elements in CSR:

 Remove all multiples of p: 1p, 2p, ... (q - 1)p, 

 Remove all multiples of q: 1q, 2q, ... (p - 1)q

 And the zero.

 (pq) = pq - (q-1)+(p-1)+1

= pq - q - p + 1

= (p–1)(q–1)

 Examples:
 RSR(15) = {1,2,4,7,8,11,13,14}  (eight elements)

 (15) = (35) = (3-1)(5-1) = 24 = 8

 (143) = (1113) = (11-1)(13-1) = 1012=120

 Case 3 is used a lot:
 Basis for RSA encryption (de-facto standard)
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Euler Phi Function (n) (n=generic)

 Case 4: n = p1
e1p2

e2 ... pt
et

 pi prime

 Not demonstrated easily...

 Examples:

 RSR(20) = {1, 3, 7, 9, 11, 13, 17, 19}  (8 elem.)

 (20) = (225) = 22-1(2-1)51-1(5-1) 

= 21114 = 8

 (360)= (23325) 

= 23-1(2-1)32-1(3-1)51-1(5-1) = 96




 
n

i
i

e ppn i

i

1

1 )1()(
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Euler’s Theorem

 If gcd(a,n) = 1  a(n) mod n = 1

 Now we combine the following into one equation:
 a(n) mod n = 1

 ax mod n = 1

 Multiplying by a-1

 The operation is possible since gcd(a,n) = 1

 A unique value for an inverse exists in Zn

 a(n)  a-1 mod n = x mod n

 x = a(n)-1 mod n

 The value x is the inverse of a in Zn

 a-1 = a(n)-1 mod n
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Calculation of the Inverse using 
Euler’s Theorem

 Example: 
 Get the inverse x to 4 in modulo 9  x = inv(4,9)

 First problem: Existence of the inverse:
 Does an x exist such that 

 ax mod n = 4x mod 9 = 1?

 Check: gcd(4,9) = 1

 Yes, although 4 and 9 are not prime.

 Calculate the inverse using Euler’s Theorem:
 (9) = 6  x = 46-1 mod 9 = 7

 74 = 28 mod 9 = 1

 Therefore: inv(4,9) = 7 and  inv(7,9) = 4
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Euler’s Theorem for n = pq

 If a is coprime with respect to n and 
n=p*q (p and q primes), Euler's Theorem 
verifies also with respect p and q.

 For example   

 n = pq   (n) = (p-1)(q-1)

  a / gcd(a,{p,q}) = 1

 Then:
 a(n) mod p = 1

 a(n) mod q = 1
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Example: Euler’s Theorem for n = pq 

 Assume: n = pq = 711 = 77

 (n) = (p-1)(q-1) = (7-1)(11-1) = 6*10 = 60

 If k = 1,2,3,...

 a = k*7: a(n) mod n = k*760 mod 77 = 56

 a = k*11: a(n) mod n = k*1160 mod 77 = 22

 a  k*7,11: a(n) mod n = a60 mod 77 = 1

 Therefore:
 a  k*7,11: a(n) mod p = a60 mod 7 = 1

a(n) mod q = a60 mod 11 = 1

 Else:
 a(n) mod p = 0

 a(n) mod q = 0
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Reducibility

 If we want to compute 8130 mod 91

 How to do that?

 Ordinary calculator:

 1,7970102999144312104131798295096e+57 
mod 91  [losing accuracy]

 Applying reducibility:

 8130 mod 91 = (815 mod 91)6 mod 91 = 96 mod 91 
= 1

 Result:

 816 mod 91 = 1
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What to do if (n) is not known?

 When the values of ‘(n)’ and / or ‘a’ are 
large computing “a(n)-1 mod n” to obtain 

the inverse requires a lot of effort 

 Using the reducibility property repeatedly is not 
the best way.

 If (n) is not known or Euler’s Theorem is 

not convenient:

 Use the Extended Euclid’s Algorithm to find the 
inverse of a in Zn

 Very fast and feasible method
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Extended Euclid’s Algorithm

Based on Euclid's algorithm but besides 
the remainders it also takes into account 
the quotients in each iteration:

Both a mod n and n div a

The algorithm performs a series of 
iterations in the form:

gi=nui+avi

The last gi is the gcd(a,n). If a and n are 

coprimes this equals to:

1=nui+avi
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2        1         3        2

25 9 7         2         1        0

Find inv(9,25) by Euclid's algorithm.

a) 25 = 2*9 + 7

b) 9 = 1*7 + 2

c) 7 = 3*2 + 1

d) 2 = 2*1 + 0

7 = 25 - 29

2 = 9 - 17

1 = 7 - 32

7 = 25 - 29

2 = 9 - 1(25 - 29) = 39 -125

1 = (25 - 29) - 3(39 -125)

1 = 425 - 119  mod 25

Inv (9,25) = -11

-11 + 25 = 14

inv (9, 25) = 14

remainders

Remainders Table

Computing inverses with the EEA
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To find x = inv (A,B)

Do (g0, g1, u0, u1, v0, v1, i) = (B, A, 1, 0, 0, 1, 1)

While gi  0 do

yi+1 = integer part of (gi-1/gi)

gi+1 = gi-1 - yi+1* gi

ui+1 = ui-1 - yi+1* ui

vi+1 = vi-1 - yi+1* vi

i = i+1

If (vi-1 < 0) do

vi-1 = vi-1 + B

x = vi-1

i        yi gi ui vi

0        - 25        1         0

1        - 9        0         1

2        2         7         1       -2 

3        1         2        -1        3

4        3         1         4       -11

5        2         0        -9        25

x = inv (A, B)

x = inv (9, 25)

x = inv (9, 25) = -11+25 = 14

Algorithm for inverse calculation

Example



Algorithms based on
Exponentiation
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Algorithms based on Exponentiation

 Basic assumption of all these algorithms:
 Calculation of exponents is sufficiently fast 

 Solving a discrete logarithm or factorizing large 
numbers is slow

 Some well-known algorithms:
 RSA

 ElGamal (and its generalized version)

 Rabin

 McEliece

 Merkle-Hellman

 Chor-Rivest

 Goldwasser-Micali

 Blum-Goldwasser
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RSA

 Invented in 1978 by:

 Ron Rivest, Adi Shamir, and Leonard Adleman

 Very easy to understand

 Believed one of the most secure asymmetric encryption 
schemes

 No one has proven there is no mechanism to break it…

 Security based on the difficulty to factorize large numbers

 Pair of keys can be used for encryption and authentication

 Public-key and private-key

 Obtained from a number n which is the product of two large prime 
numbers p and q

 The key length is variable (e.g., 512 / 1024 bits)

 The plaintext must be smaller than the key length

 RSA mainly intended for encryption of symmetric keys
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RSA: The Basic Mathematics I

 The mathematics of RSA can be expressed as:
1. Find two large prime numbers p and q, keep them secret 

 Example: Two 1024-bit numbers

2. Calculate the product n = pq

3. Choose e such that:

1. 1 < e < (n)

2. e and (n)=(p-1)(q-1) are coprime (case 3 of Euler phi)

That is: they have no common divisor other than 1

3. e is not needed to be prime, but must be odd

4. (p-1)(q-1)cannot be prime:

Its two factors (p-1) and (q-1)are even numbers

 Then: e will have an inverse modulo (n)=(p-1)(q-1)

4. The public key is (e,n)
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RSA: The Basic Mathematics II

5. Calculate d as the multiplicative inverse to e 
modulo (n) = (p-1)(q-1)

 That is: d*e = 1 (mod (n))

6. The private key is (d,n)

7. Encryption is performed according to:

 c = me (mod n)

8. Decryption is performed according to:

 m = cd (mod n)
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RSA

Decryption obtains the following 
message:

cd=(me)d=med=mk(p-1)(q-1)+1=(mk)(p-1)(q-1)m

Considerations:

p and q must have a large number of bits

 If an attacker wants to recover the private key 
from the public key he/she must know p and q
factors of n (computationally expensive).
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n = 91 = 713;  (n) = (713) = (7-1)(13-1) = 72     M = 48

Choose: e = 5 , gcd (5,72) = 1   and   d = inv(5,72) = 29

Encryption:

C = Me mod n = 485 mod 91 = 5245803968 mod 91 = 55

Decryption:

M = Cd mod n = 5529 mod 91 = 48 ... but 5529 is a large number!

5529 is a number with 51 digits...
5529 = 295473131755644748809642476009391248226165771484375
How to accelerate this operation of decryption?

More optimization?
Fast exponentiation1st option: use reducibility bad ok

Example: RSA



Chapter 4: Public Key Encryption         44

One Method of Fast Exponentiation

 Consider xy mod n

 The y exponent represented in binary

 Compute xy = x2
j
, j = 0…n-1

 n being the number of bits of y

 Consider only the products where the bit at 
position j is 1

 Example:

 Calculate 1237 mod 221 = 207

 1237 is a number with 40 digits!



Chapter 4: Public Key Encryption         45

Calculate  1237 mod 221 = 207

3710 = 1001012

mod 221

j        0       1       2       3       4      5x = 12

12 144 183 118 1 1
Bits    5 4 3 2 1 0

z = 121831 mod 221 = 207

122 mod 221

1442 mod 221

x2
j

One Method of Fast Exponentiation: 
Example

1832 mod 221

 Original version: 36 multiplications and reductions modulo 211

 72 operations

 Fast version: 5 multiplications (for j=0 the value is x) plus 5 
reductions modulo 221 plus two final multiplications

 10 operations

 Saves more than 80% 

etc
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The other history of RSA

 Rivest, Shamir & Adleman are the authors of RSA but an 

asymmetric encryption algorithm based on the complexity 

of factoring big numbers as the unidirectional function was 

discovered previously...

 In 1969 the Government Communications Headquarters 

(GCHQ) in Great Britain begins to work in the idea of 

distributing keys by means of asymmetric encryption. In 

1973, the mathematic Clifford Cocks reachs the same 

conclusion than the creators of RSA.

 Unfortunately, this work was considered top secret and its 

content is not publicized nor patented, something that 

Diffie and Hellman made in 1976 with their key exchange 

algorithms and in 1978 the creators of RSA algorithm.
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Choosing the prime numbers

 Prime numbers p and q must be chosen 

appropriately. Follow these guidelines:

 p and q size must difer in a few digits.

 p and q must not be close primes.

 Minimum length of p and q : 250 bits.

 Values of p-1 and q-1 of the Euler function 

must have large prime factors.

 The gcd between p-1 and q-1 must be small.



Chapter 4: Public Key Encryption         48

Secure primes: r large prime is chosen so that:

p = 2r+1 and  q = 2p+1 are also primes

EXAMPLE: If r is the 4 digits prime 1019:

p = 21019 + 1 = 2039 Prime  ok
q = 22039 + 1 = 4079 Prime  ok
p-1 = 2038; q-1 = 4078

p-1 = 21019;    q-1 = 22.039 gcd (p, q) = 2

The modulo would be n = pq = 8.317.081

Secure prime numbers
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Attack to the key: Factoring n

 What is the algorithm strength?

 An intruder who wants to know the secret key 
from the values of n and e must solve the 

problem of factoring large numbers, given that to 
know the private key the value of the Euler phi 
function must be known previously

(n)=(p-1)(q-1)

…in order to find…

d = inv [e,(n)]

…but first the value of the primes p and q is 

needed.
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No bits (n) No digits Days Years

60 18 1,7 x 10-8 -

120 36 1,5 x 10-5 -

256 77 1,0 -

363 109 9,0 x 102 2,5

442 133 9,4 x 104 2,5 x 102

665 200 3,8 x 108 1,0 x 106

Processor: 2x108 instructions per second (90s). 
Source: Criptografía Digital, José Pastor. Prensas Univ. de Zaragoza, 1998.

• RSA640 Challenge (193 digits) broken in november 2005 Bonn University. 

• What in 1998 was estimated about a million years, today can be broken in 30 
years with a 2,2 GHz PC.

• Challenges for larger numbers will be solved… so we must be careful.

Factorization time needed
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Equivalent Private Key in RSA
 An equivalent private key dP, allows decryption of a 

cryptogram C (previously encrypted with a public key e) 

without dP needing to be the inverse of e. Any RSA system 

has at least one equivalent key of private key d.

 Reason: e and d are inverse in (n), but encryption is 

carried out in n.

 If p=13; q=19; n=247, (n)=216 and e=41 is chosen, then 

d=inv(41,216)=137, which is unique.

 Encrypting N=87 with the public key produces C=8741 mod 

247= 159.

 Therefore we know that N=Cd mod n=159137 mod 247=87

 But also decrypt it with dP=29,65,101,173,209 and 245.
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Number of equivalent Private Keys

 If   = lcm [(p-1),(q-1)]

and d = e-1 mod =inv (e,)

 Public key e will have  equivalent keys di of the form:

di = d + i  1 < di < n

i = 0, 1, ...   = (n - d)/

 In the previous example:

  = lcm [(p-1),(q-1)] = lcm (12,18) = 36

 Then: d = inv(41, 36) = 29,

so di = d + i = 29+i36

 That is di = 29,65,101,137,173,209,245. Note that 

(137) is the private key d and we verify that:

  = (n - d)/ = (247 – 29)/36)  = 6,05 = 6
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Numbers that cannot be encrypted in RSA

 If Ne mod n = N then N is a number that cannot 
be encrypted. Although key e is valid, N will be 
sent as plaintext .

 In RSA there will be at least 9 of such numbers.
 In a critical case, all numbers of n could not be 

encrypted.

 To know such values, a brute force attack is 
needed in p and q, that is we need to check that 
Xe mod p = X and Xe mod q = X with 1 < X < 
n-1 .

 Example:
 n = 35 (p = 5, q = 7), with (n) = 24 and e = 11.
 Among the possible numbers {0, 34}, the following {6, 14, 

15, 20, 21, 29, 34} cannot be encrypted. Additionally, {0, 1} 
and n-1 (in this case 34) are always non-encryptable.
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Birthday problem

 We can design an attack to the private key 
based on this problem.

 Question: the probability of at least two 
people sharing a birthday amongst a 
certain group of k people.

 Solution: In a group of 23 (or more) 
randomly chosen people, there is more 
than 50% probability (0,507) that some 
pair of them will have the same birthday.

pNB = n!/(n-k)!nk

n = number days of the year
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Birthday problem (attack on the key)

 Algorithm proposed by Merkle and Hellman 
in 1981:
 The attacker chooses two different random numbers 
i, j within n. Additionally, chooses any message or 
number N.

 For i=i+1 and j=j+1 calculates Ni mod n and Nj

mod n.

 When a ciphertext match for a give pair (i,j) is 
found, the attacker is able to find d.

 An example in the following slides:
 Let p = 7; q = 13, n = 91, e = 11, d = 59. The attacker only 

knows n and e. Start with N = 20 and choose i = 10 and j = 
50. 
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i Ci j Ci

i = 10 C10 = 2010 mod 91 = 43 j = 50 C50 = 2050 mod 91 = 36
i = 11 C11 = 2011 mod 91 = 41 j = 51 C51 = 2051 mod 91 = 83
i = 12 C12 = 2012 mod 91 = 1 j = 52 C52 = 2052 mod 91 = 22
i = 13 C13 = 2013 mod 91 = 20 j = 53 C53 = 2053 mod 91 = 76
i = 14 C14 = 2014 mod 91 = 36 j = 54 C54 = 2054 mod 91 = 64
i = 15 C15 = 2015 mod 91 = 83 j = 55 C55 = 2055 mod 91 = 6
i = 16 C16 = 2016 mod 91 = 22 j = 56 C56 = 2056 mod 91 = 29
i = 17 C17 = 2017 mod 91 = 76 j = 57 C57 = 2057 mod 91 = 34

There is a coincidence/collision with C = 36 for i and j. Note the 
repetition.

Using i, j and the difference between them when the coincidence is 
noticed (i = 14), a equation system can be established and if the attack is 
successful we get either the private key, an equivalent private key, or a 
specific private key value which only works with a given number (in this 
case 20). In the last case, we have a false positive.

Birthday paradox attack
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Results of a birthday paradox attack

 First match for i = 14; j = 50. Attacker uses the public key e = 11, 
and calculates :

w = (14-50) / gcd  (11, |14-50|) = -36 / gcd (11, 36) = - 36

 Then there will exist values of s and t so that verify the 
following: 

ws + et =  1  -36s + 11t = 1

 Possible solutions to the equation are:

ws mod e = 1; et mod w = 1

-36s  = 1 mod 11     s = inv (-36, 11) = inv (8, 11) = 7

11t = 1 mod 36        t = inv (11, 36) = 23

 Value t = 23 will be an equivalent private key of d = 59. Check 
that ws + et = 1 is verified and that the equivalent private keys 
are 11, 23, 35, 47, 71 y 83.
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ElGamal

 Designed to produce digital signatures

 Extended for encryption

 Security based on the problem of solving 
discrete logarithms

 Choose a prime number p and two 
random numbers g and x smaller than p

 Calculate:
 y = gx (mod p)

 The public key is (g,y,p)

 The private key is x
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ElGamal

Encryption of message m:
a = gk (mod p), k: random integer

b = M·yk (mod p)

The ciphertext is (a,b)

Twice the length of the plaintext!

Decryption (x: private key):

M = b * inv(ax,p) (mod p)

M = M·(gx)k / (gk)x (mod p)
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Example: Encryption with ElGamal

 Alice wants to send a message to Bob
 M = 10

 Encrypted using the modulus p = 13

 Encryption:
 Public key of Bob:

 p = 13, g = 6, y = (gx) mod p = 2

 Alice chooses, e.g., k = 4 and calculates:
 a = (gk) mod p = 64 mod 13 = 9

 yk mod p = 16 mod 13 = 3

 b = M*yk mod p = 10*3 mod 13 = 4

 Alice sends to Bob: 
 (gk) mod p, Myk mod p => [9,4]
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Example: Decryption with ElGamal

 Private key of Bob: x = 5
 So: y = (gx) mod p = (65) mod 13 = 2

 Bob receives: [a,b] 
 [(gk) mod p, Myk mod p ] = [9,4]

 Bob computes:
 ax =(gk)x mod p = 95 mod 13 = 3
 b * inv(ax,p) = [M(gx)k]  inv[(gk)x, p] = 

= 4  inv (3, 13) = 4  9

 Finally, to recover the plaintext message:
 M = 4  9 mod 13 = 10
 Note that Bob recovers the message without knowing

Alice’s random number
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Summary of public key systems 
based on exponentiation

 Sender and receiver generate a pair of keys, public and 

private, both related by a one-way trap function. 

 Sender and receiver use different keys for encryption and 

decryption operations.

 The system security is associated with the solution of a 

difficult and time-consuming mathematical problem. 

 Allow digital signature.

 They are very slow.

 They are useful for encryption of short messages (like 

session keys) or to sign hashes (message digests).



Algorithms based on 
Elliptic Curves

63
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ECC

 Elliptic curve-based cryptography (ECC) was 
introduced by Victor Miller and Neal Koblitz in 
1985. 

 Its first advantage over exponentiation-based is 
that it requires shorter keys in order to achive 
similar security (computational cost to break the 
system)

 Shorter keys  faster computation time and smaller 
storage requirements

 Useful for small devices
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Elliptic Curves

 Equation defining elliptic curves:
 y2 [ + x·y ] = x3 + a·x2 + b

 [ + x·y ]: an optional component of the equation

 a, b: constant

 a, b, x, y: real numbers

 For application to encryption:
 x, y, a, b: belong to a finite field

 Such as provided by modular arithmetic

 Using Finite Fields (Galois Fields (GF))

 We will not cover GF but a particular case 
of GF are the ones generated by modulus 
n operations, n being prime (GF(n)) 
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Number of points in an elliptic curve

Hasse's Theorem:

 For a given elliptic curve defined over 
GF(q), the number of points on the 
curve will be:

q + 1 – t

 Where 

 t is Frobenius' trace

O is included

qt 2
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Operations over Elliptic Curves

Addition of points and product of a point 
by an integer are defined

Addition was explained in the previous 
slide (in cryptography we will use the 
same expressions applied to finite 
bodies).

Define also the multiplication of a point P
on the curve with one integer k:
2P = P+P

3P = P+P+P ...

 Analogous to ‘exponentiation’: x2=x*x
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Order of a point and order of the curve

 The order of a point P on the curve is the 
integer n such that:

 nP=O

 (n+1)P=P
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Security of Elliptic Curves

 Security comes from the fact that there is 
an efficient way of calculating:

 Q=kP …

 ..if we know k and we know P (using a 
technique similar to the method of rapid 
exponentiation seen in class) 

 AND however, if we know P and Q there is 
no efficient algorithm to find k. We use 
this to protect k when sent to the receiver.
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Complexity of Elliptic Curve Cryptography

 Complexity as known of today:
 If: the order of F is an n-bit prime number

 Then: Computing k knowing k*F and F takes 
roughly 2n/2 operations

 Example:
 Order of F is a 240-bit prime number

 Brute-force attack to get k would take 2120

operations

 Assume a machine with 1 million operations per 
second

 Brute-force attack would last:
 2100 seconds or 275 1023 years...
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ElGamal over ECC

Alice and Bob choose:
 A finite Galois Field GF

 An elliptic curve E

 A fixed point FE

Alice chooses:
 A random number a

 Publishes the point aFE as public key

To send a “message” M to Alice, Bob must:
 Calculate M (point on E whose x-component is m)

 Chooses a random number k and sends kF and M+k(aF) to 
Alice

To read the message, Alice calculates:
 M+k(aF) – a(kF) = M
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Comparison: ElGamal over ECC vs. 
ElGamal Based on Exponentiation

 Comparing ECC and Exponentiation:
 Decryption in ECC: 

 M+k(aF) – a(kF)

 Decryption in Exponentiation:
 M(ga)k / (gk)a = M(ga)k * inv((gk)a)

 General way to convert a method based 
on exponentiation to one based on ECC:
 Exponentiation  Multiplication

 The base of the exponentiation  point on the curve

 Exponent  into a scalar

 Products  Sum

 Division  Subtraction
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Elliptic Curve Cryptography: 
Example Diffie-Hellman

 Publish the definition of an elliptic curve and one 
point P on that curve (the fixed point)

 Each user creates a private key by choosing a 
random number k

 The public key: multiplication of k with P

 Example: 
 Alice chooses:  Ap = k1 and AP = k1*P

 Carol chooses: Cp = k2 and CP = k2*P
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Elliptic Curve Cryptography: 
Example Diffie-Hellman

 Both can gain a shared secret using
 Alice: Ap * CP = k1 * k2 * P

 Carol: Cp * AP = k1 * k2 * P

 The security of this scheme is based on a 
high complexity to calculate k1 and k2
from the public keys AP and CP


