
0

Coding Techniques

Mario Muñoz Organero

CHAPTER 4:
Public Key Encryption

Chapter 4: Public Key Encryption 1

Basic bibliography

 CHARLIE KAUFMAN, RADIA PERLMAN, MIKE
SPECINER: Network Security: Private
Communication in a Public World. Prentice Hall;
First edition (Marzo, 1995). ISBN: 0130614661
[L/S 004.056 KAU]

 Chapter 2: 2.5, Chapter 5: 5.2, Chapter 5: 5.3 &
Chapter 6

 [2] STALLINGS, WILLIAMS: Cryptography and
network security. Principles and practice. Fourth
edition. Prentice Hall 2006.
ISBN:0131873164 http://williamstallings.com/
[L/S 004.7 TAN]

 Chapters 4, 8 & 9

Chapter 4: Public Key Encryption 2

Complementary bibliography

 [3] LUCENA, J. MANUEL: Criptografía y
seguridad en computadores. Cuarta
edición.
http://wwwdi.ujaen.es/~mlucena/bin/cysec
4.zip

 Chapters 5, 6 & 12

 [4] MENESES, ALFRED: Handbook of
applied cryptography. CRC Press. 1996.
http://www.cacr.math.uwaterloo.ca/hac/

 Chapters 2 & 8

Chapter 4: Public Key Encryption 3

Specific bibliography on Elliptic
Curves

Implementing Elliptic Curve Cryptography
by Michael Rosing

Guide to Elliptic Curve Cryptography by
Darrel Hankerson

Elliptic Curves in Cryptography by I. Blake

Chapter 4: Public Key Encryption 4

Chapter Index

 Introduction into encryption using
asymmetric keys

 Necessary mathematical basis
 Number theory for modular arithmetic

 Algorithms based on exponentiation:
 RSA

 ElGamal

 Elliptic curves

 Cryptography based on elliptic curves
 ElGamal

 Diffie-Hellman

Chapter 4: Public Key Encryption 5

Introduction: Public-Key Encryption

 Introduced by Whitfield Diffie and Martin Hellman
in the 70’s

 Fundamental novelty:
 No symmetric keys, but asymmetric key pairs

 Larger key length than in symmetric encryption
 E.g., 1024 bits

 Two different keys instead of a single one:
 Kpr: private key

 KPU: public key

 One for decryption and one for encryption

Chapter 4: Public Key Encryption 6

Public-Key Encryption: Security

 In order to be secure it must be
(computationally) extremely difficult to
calculate one key of the key pair if the
second key is known

 The calculation of the private key must be
computationally infeasible based on the public
key

 The two main applications of such
algorithms are:

 Encryption (confidentiality).

 Authentication (digital signatures).

Chapter 4: Public Key Encryption 7

Classification of Asymmetric
Algorithms

 Two main families of asymmetric
algorithms applied to cryptography
depending on the mathematical functions
used

 Exponentiation algorithms

 Elliptic curve algorithms

Mathematical Basics
(exponentiation algorithms)

Some Number Theory
for Modular Arithmetic

Chapter 4: Public Key Encryption 9

Keep Focus

 Target: What do we want to do?
 A Cryptographic operation like coding or

decoding

 What do we want to cipher? A message or
document

 In asymmetric cryptography based on
exponentiation :
 A message is a concatenation of numbers

(truncated to a block size)

 Cryptography consists of performing
exponentiation operations on each of this
numbers

Chapter 4: Public Key Encryption 10

Finite set of cryptograms needed
Congruence concept

 Modular arithmetic (discrete
mathematics):
 Mathematical basis for the operations of public-

key encryption

 Concept of congruence (“”) :
 Consider two integers a and b

 a is congruent to b in the modulo or body n in Zn if and only
if:
 An integer k exists that divides (a-b) without remainder

 n: "modulus of the congruence"

a - b = k n
a n b

a b mod n

Chapter 4: Public Key Encryption 11

Complete Set of Residues (CSR)

 For any positive integer number n, the
CSR is {0, 1, 2, ..., n-1}. That means:

 aZ ! ri CSR / a ri mod n

 Only one representation per residue

 Examples:

 CSR (11) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

 CSR (6) = {0, 1, 2, 3, 4, 5} = {12, 7, 20, 9, 16, 35}

 The second set is equivalent:

 12 0, 7 1...

 Only different “representation” of the same number

Chapter 4: Public Key Encryption 12

Divisibility of Numbers

 Important in cryptography:

 Find gcd(a,b)

 Greatest common divisor for two integers a and b

 Example in cryptography:

 Used to ensure the existence of the inverse in Zn

 Condition: base a and modulus n are coprime:

 I.e.: gcd(a,n) = 1

 Coprime = relatively prime

Chapter 4: Public Key Encryption 13

Euclid’s Algorithm

Used to calculate the gcd of a and b

If x divides both a and b, x also divides:

 a mod b and b mod a

 Because of commutativity property

Partial proof:

x,a,b,a’,b’,k: integer numbers

a) If x divides both a and b a = xa’ and b = xb’

b) Therefore: a-kb = xa’-kxb’

 a-kb = x(a’-kb’)

c) Conclusion: x also divides (a-kb)

Chapter 4: Public Key Encryption 14

Euclid’s Algorithm

 If x divides a and b

 x divides “a mod b” (a-kb)

 x divides “b mod a” (b-ka)

 Algorithm:

 If a > b r0 = a and r1 = b

 Calculate r2 = r0 mod r1

 Iterate rn = rn-2 mod rn-1

 The last remainder before reaching 0 is the
gcd(a, b)

Chapter 4: Public Key Encryption 15

gcd (148, 40)

148 = 3 40 + 28

40 = 1 28 + 12

28 = 2 12 + 4

12 = 3 4 + 0

gcd (148, 40) = 4

gcd (385, 78)

385 = 4 78 + 73

78 = 1 73 + 5

73 = 14 5 + 3

5 = 1 3 + 2

3 = 1 2 + 1

2 = 2 1 + 0

gcd (385, 78) = 1

148 = 22 37

40 = 23 5

385 = 5 7 11

78 = 2 3 13

Common

factor: 22 = 4

No common

factor

Divisibility with Euclid’s
Algorithm: Example

This is important
for cryptography

Chapter 4: Public Key Encryption 16

Inverses in Zn (I)

 For cryptography, inverting an operation must be
possible in order to recover the plaintext from
the ciphertext (decryption)

 Terminology problem:
 In mathematical terms encryption is a function,

 In colloquial speech, we use the following “analogies”

 The encryption operation is “multiplication”

 The decryption operation is “division”

 This analogy is true also for the inverses in Zn

 Thus, if in an encryption operation the function
returns a value a in Zn, we have to find an inverse
a-1 mod n for the decryption operation.

 In other words:

Chapter 4: Public Key Encryption 17

Inverses in Zn (II)

 If ax mod n = 1 then x is the
multiplicative inverse (a-1) of a in the
modulo n

 Problem:

 Inverses do not always exist (rarely in reality)

 Next slides show when the inverse exists

Chapter 4: Public Key Encryption 18

Existence of the Inverse for
Coprime Numbers

 There is an inverse a-1 in mod n iff gcd(a,n)= 1
 (iff means “if and only if”)

 Only when distinct numbers result from
a*i mod n (for all iZn)

 Example (Brute-force test):
 Reminder: gcd (a, n) = 1 x ! 0<x<n / a x mod n = 1

 a = 4 and n = 9. Values for i = {1, 2, 3, 4, 5, 6, 7, 8}

 41 mod 9 = 4 42 mod 9 = 8 43 mod 9 = 3

 44 mod 9 = 7 45 mod 9 = 2 46 mod 9 = 6

 47 mod 9 = 1 48 mod 9 = 5

 Inverse for 4 is 7

 Multiplication can be seen as ‘encryption’ here
 Simple substitution scheme

 Can be reversed for ‘decryption’

Chapter 4: Public Key Encryption 19

Non-Existence of an Inverse
(for Non-Coprime Numbers)

 What if a and n are not coprime?

 I.e.: gcd(a,n) 1

 No x exists such that ax mod n = 1 for 0<x<n

 Example (Brute-force test):

 a = 3; n = 6, values for i = {1, 2, 3, 4, 5}

31 mod 6 = 3 32 mod 6 = 0 33 mod 6 = 3

34 mod 6 = 0 35 mod 6 = 3

 There is no inverse for a=3 in the set!

Chapter 4: Public Key Encryption 20

If n=10

 How many numbers will have inverse?

(AB) mod 10

1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 0 2 4 6 8

3 3 6 9 2 5 8 1 4 7

4 4 8 2 6 0 4 8 2 6

5 5 0 5 0 5 0 5 0 5

6 6 2 8 4 0 6 2 8 4

7 7 4 1 8 5 2 9 6 3

8 8 6 4 2 0 8 6 4 2

9 9 8 7 6 5 4 3 2 1

10=2*5

=(2-1)*(5-1)

Chapter 4: Public Key Encryption 21

Reduced Set of Residues RSR (1)

 Reduced Set of Residues (RSR):

 Subset {0, 1, ... ni, ... n-1} of numbers in Zn

 Being coprime to n

 If n prime: All elements in RSR coprime to n

 “zero” is no solution, thus:

 RSR = {1, ..., ni, ... n-1} / gcd (ni, n) = 1

 Examples:

 RSR mod 8 = {1, 3, 5, 7}

 RSR mod 5 = {1, 2, 3, 4}

Chapter 4: Public Key Encryption 22

Reduced Set of Residues RSR (2)

 Why is the RSR useful in cryptography?

 The knowledge of the RSR allows
application of an algorithm to find out the
multiplicative inverse of x in Zn

 The Euler phi function (n)helps in this

task

Chapter 4: Public Key Encryption 23

Euler Phi Function (n)

 Returns the number of elements in a RSR

 Different cases for n (four forms):

 a) n is a prime number

 b) n can be represented as n = pk

 p: prime, k: integer

 c) n is a product n = pq , p and q prime

 d) n is any number (generic case).

 Let us explain the four cases

t

n = p1
e1 p2

e2 ... pt
et = pi

ei

i=1

Chapter 4: Public Key Encryption 24

Euler Phi Function (n) (n prime)

 Case 1: n is a prime number

 The RSR is the CSR without the number 0

 So (n)is the number of elements in CSR - 1
 (n) = n–1 (Used in ElGamal and DSS)

 Explanation:
 n is prime all elements in CSR are coprime

 Except for the zero

 Examples:
 RSR(7) = {1,2,3,4,5,6} (six elements)

 (7) = n-1 = 7-1 = 6

 Similar: (11) = 11-1 = 10;

(23) = 23-1 = 22

Chapter 4: Public Key Encryption 25

Euler Phi Function (n) (n=pk)

 Case 2: n = pk , p: prime, k: integer

 (n) = (pk) = pk-pk-1 = pk-1(p-1)

 From the pk elements in CSR:

 Remove the multiples of p

1p, 2p, 3p, ...,(pk-1-1)p

 And the zero

 (pk) = n–1–(pk-1–1) = pk–pk-1 = pk-1 (p–1)

 Examples:

 RSR(16) = {1,3,5,7,9,11,13,15} (eight elements)

 (16) = (24) = 24-1 (2-1) = 231 = 8

 Similar: n = 125

 (125) = (53) = 53-1(5-1) = 524 = 254 =100

Chapter 4: Public Key Encryption 26

Euler Phi Function (n) (n=pq)

 Case 3: n = pq, p and q prime numbers
 (n) = (pq) = (p)(q) = (p-1)(q-1)

 From the pq elements in CSR:

 Remove all multiples of p: 1p, 2p, ... (q - 1)p,

 Remove all multiples of q: 1q, 2q, ... (p - 1)q

 And the zero.

 (pq) = pq - (q-1)+(p-1)+1

= pq - q - p + 1

= (p–1)(q–1)

 Examples:
 RSR(15) = {1,2,4,7,8,11,13,14} (eight elements)

 (15) = (35) = (3-1)(5-1) = 24 = 8

 (143) = (1113) = (11-1)(13-1) = 1012=120

 Case 3 is used a lot:
 Basis for RSA encryption (de-facto standard)

Chapter 4: Public Key Encryption 27

Euler Phi Function (n) (n=generic)

 Case 4: n = p1
e1p2

e2 ... pt
et

 pi prime

 Not demonstrated easily...

 Examples:

 RSR(20) = {1, 3, 7, 9, 11, 13, 17, 19} (8 elem.)

 (20) = (225) = 22-1(2-1)51-1(5-1)

= 21114 = 8

 (360)= (23325)

= 23-1(2-1)32-1(3-1)51-1(5-1) = 96

n

i
i

e ppn i

i

1

1)1()(

Chapter 4: Public Key Encryption 28

Euler’s Theorem

 If gcd(a,n) = 1 a(n) mod n = 1

 Now we combine the following into one equation:
 a(n) mod n = 1

 ax mod n = 1

 Multiplying by a-1

 The operation is possible since gcd(a,n) = 1

 A unique value for an inverse exists in Zn

 a(n) a-1 mod n = x mod n

 x = a(n)-1 mod n

 The value x is the inverse of a in Zn

 a-1 = a(n)-1 mod n

Chapter 4: Public Key Encryption 29

Calculation of the Inverse using
Euler’s Theorem

 Example:
 Get the inverse x to 4 in modulo 9 x = inv(4,9)

 First problem: Existence of the inverse:
 Does an x exist such that

 ax mod n = 4x mod 9 = 1?

 Check: gcd(4,9) = 1

 Yes, although 4 and 9 are not prime.

 Calculate the inverse using Euler’s Theorem:
 (9) = 6 x = 46-1 mod 9 = 7

 74 = 28 mod 9 = 1

 Therefore: inv(4,9) = 7 and inv(7,9) = 4

Chapter 4: Public Key Encryption 30

Euler’s Theorem for n = pq

 If a is coprime with respect to n and
n=p*q (p and q primes), Euler's Theorem
verifies also with respect p and q.

 For example

 n = pq (n) = (p-1)(q-1)

 a / gcd(a,{p,q}) = 1

 Then:
 a(n) mod p = 1

 a(n) mod q = 1

Chapter 4: Public Key Encryption 31

Example: Euler’s Theorem for n = pq

 Assume: n = pq = 711 = 77

 (n) = (p-1)(q-1) = (7-1)(11-1) = 6*10 = 60

 If k = 1,2,3,...

 a = k*7: a(n) mod n = k*760 mod 77 = 56

 a = k*11: a(n) mod n = k*1160 mod 77 = 22

 a k*7,11: a(n) mod n = a60 mod 77 = 1

 Therefore:
 a k*7,11: a(n) mod p = a60 mod 7 = 1

a(n) mod q = a60 mod 11 = 1

 Else:
 a(n) mod p = 0

 a(n) mod q = 0

Chapter 4: Public Key Encryption 32

Reducibility

 If we want to compute 8130 mod 91

 How to do that?

 Ordinary calculator:

 1,7970102999144312104131798295096e+57
mod 91 [losing accuracy]

 Applying reducibility:

 8130 mod 91 = (815 mod 91)6 mod 91 = 96 mod 91
= 1

 Result:

 816 mod 91 = 1

Chapter 4: Public Key Encryption 33

What to do if (n) is not known?

 When the values of ‘(n)’ and / or ‘a’ are
large computing “a(n)-1 mod n” to obtain

the inverse requires a lot of effort

 Using the reducibility property repeatedly is not
the best way.

 If (n) is not known or Euler’s Theorem is

not convenient:

 Use the Extended Euclid’s Algorithm to find the
inverse of a in Zn

 Very fast and feasible method

Chapter 4: Public Key Encryption 34

Extended Euclid’s Algorithm

Based on Euclid's algorithm but besides
the remainders it also takes into account
the quotients in each iteration:

Both a mod n and n div a

The algorithm performs a series of
iterations in the form:

gi=nui+avi

The last gi is the gcd(a,n). If a and n are

coprimes this equals to:

1=nui+avi

Chapter 4: Public Key Encryption 35

2 1 3 2

25 9 7 2 1 0

Find inv(9,25) by Euclid's algorithm.

a) 25 = 2*9 + 7

b) 9 = 1*7 + 2

c) 7 = 3*2 + 1

d) 2 = 2*1 + 0

7 = 25 - 29

2 = 9 - 17

1 = 7 - 32

7 = 25 - 29

2 = 9 - 1(25 - 29) = 39 -125

1 = (25 - 29) - 3(39 -125)

1 = 425 - 119 mod 25

Inv (9,25) = -11

-11 + 25 = 14

inv (9, 25) = 14

remainders

Remainders Table

Computing inverses with the EEA

Chapter 4: Public Key Encryption 36

To find x = inv (A,B)

Do (g0, g1, u0, u1, v0, v1, i) = (B, A, 1, 0, 0, 1, 1)

While gi 0 do

yi+1 = integer part of (gi-1/gi)

gi+1 = gi-1 - yi+1* gi

ui+1 = ui-1 - yi+1* ui

vi+1 = vi-1 - yi+1* vi

i = i+1

If (vi-1 < 0) do

vi-1 = vi-1 + B

x = vi-1

i yi gi ui vi

0 - 25 1 0

1 - 9 0 1

2 2 7 1 -2

3 1 2 -1 3

4 3 1 4 -11

5 2 0 -9 25

x = inv (A, B)

x = inv (9, 25)

x = inv (9, 25) = -11+25 = 14

Algorithm for inverse calculation

Example

Algorithms based on
Exponentiation

Chapter 4: Public Key Encryption 38

Algorithms based on Exponentiation

 Basic assumption of all these algorithms:
 Calculation of exponents is sufficiently fast

 Solving a discrete logarithm or factorizing large
numbers is slow

 Some well-known algorithms:
 RSA

 ElGamal (and its generalized version)

 Rabin

 McEliece

 Merkle-Hellman

 Chor-Rivest

 Goldwasser-Micali

 Blum-Goldwasser

Chapter 4: Public Key Encryption 39

RSA

 Invented in 1978 by:

 Ron Rivest, Adi Shamir, and Leonard Adleman

 Very easy to understand

 Believed one of the most secure asymmetric encryption
schemes

 No one has proven there is no mechanism to break it…

 Security based on the difficulty to factorize large numbers

 Pair of keys can be used for encryption and authentication

 Public-key and private-key

 Obtained from a number n which is the product of two large prime
numbers p and q

 The key length is variable (e.g., 512 / 1024 bits)

 The plaintext must be smaller than the key length

 RSA mainly intended for encryption of symmetric keys

Chapter 4: Public Key Encryption 40

RSA: The Basic Mathematics I

 The mathematics of RSA can be expressed as:
1. Find two large prime numbers p and q, keep them secret

 Example: Two 1024-bit numbers

2. Calculate the product n = pq

3. Choose e such that:

1. 1 < e < (n)

2. e and (n)=(p-1)(q-1) are coprime (case 3 of Euler phi)

That is: they have no common divisor other than 1

3. e is not needed to be prime, but must be odd

4. (p-1)(q-1)cannot be prime:

Its two factors (p-1) and (q-1)are even numbers

 Then: e will have an inverse modulo (n)=(p-1)(q-1)

4. The public key is (e,n)

Chapter 4: Public Key Encryption 41

RSA: The Basic Mathematics II

5. Calculate d as the multiplicative inverse to e
modulo (n) = (p-1)(q-1)

 That is: d*e = 1 (mod (n))

6. The private key is (d,n)

7. Encryption is performed according to:

 c = me (mod n)

8. Decryption is performed according to:

 m = cd (mod n)

Chapter 4: Public Key Encryption 42

RSA

Decryption obtains the following
message:

cd=(me)d=med=mk(p-1)(q-1)+1=(mk)(p-1)(q-1)m

Considerations:

p and q must have a large number of bits

 If an attacker wants to recover the private key
from the public key he/she must know p and q
factors of n (computationally expensive).

Chapter 4: Public Key Encryption 43

n = 91 = 713; (n) = (713) = (7-1)(13-1) = 72 M = 48

Choose: e = 5 , gcd (5,72) = 1 and d = inv(5,72) = 29

Encryption:

C = Me mod n = 485 mod 91 = 5245803968 mod 91 = 55

Decryption:

M = Cd mod n = 5529 mod 91 = 48 ... but 5529 is a large number!

5529 is a number with 51 digits...
5529 = 295473131755644748809642476009391248226165771484375
How to accelerate this operation of decryption?

More optimization?
Fast exponentiation1st option: use reducibility bad ok

Example: RSA

Chapter 4: Public Key Encryption 44

One Method of Fast Exponentiation

 Consider xy mod n

 The y exponent represented in binary

 Compute xy = x2
j
, j = 0…n-1

 n being the number of bits of y

 Consider only the products where the bit at
position j is 1

 Example:

 Calculate 1237 mod 221 = 207

 1237 is a number with 40 digits!

Chapter 4: Public Key Encryption 45

Calculate 1237 mod 221 = 207

3710 = 1001012

mod 221

j 0 1 2 3 4 5x = 12

12 144 183 118 1 1
Bits 5 4 3 2 1 0

z = 121831 mod 221 = 207

122 mod 221

1442 mod 221

x2
j

One Method of Fast Exponentiation:
Example

1832 mod 221

 Original version: 36 multiplications and reductions modulo 211

 72 operations

 Fast version: 5 multiplications (for j=0 the value is x) plus 5
reductions modulo 221 plus two final multiplications

 10 operations

 Saves more than 80%

etc

Chapter 4: Public Key Encryption 46

The other history of RSA

 Rivest, Shamir & Adleman are the authors of RSA but an

asymmetric encryption algorithm based on the complexity

of factoring big numbers as the unidirectional function was

discovered previously...

 In 1969 the Government Communications Headquarters

(GCHQ) in Great Britain begins to work in the idea of

distributing keys by means of asymmetric encryption. In

1973, the mathematic Clifford Cocks reachs the same

conclusion than the creators of RSA.

 Unfortunately, this work was considered top secret and its

content is not publicized nor patented, something that

Diffie and Hellman made in 1976 with their key exchange

algorithms and in 1978 the creators of RSA algorithm.

Chapter 4: Public Key Encryption 47

Choosing the prime numbers

 Prime numbers p and q must be chosen

appropriately. Follow these guidelines:

 p and q size must difer in a few digits.

 p and q must not be close primes.

 Minimum length of p and q : 250 bits.

 Values of p-1 and q-1 of the Euler function

must have large prime factors.

 The gcd between p-1 and q-1 must be small.

Chapter 4: Public Key Encryption 48

Secure primes: r large prime is chosen so that:

p = 2r+1 and q = 2p+1 are also primes

EXAMPLE: If r is the 4 digits prime 1019:

p = 21019 + 1 = 2039 Prime ok
q = 22039 + 1 = 4079 Prime ok
p-1 = 2038; q-1 = 4078

p-1 = 21019; q-1 = 22.039 gcd (p, q) = 2

The modulo would be n = pq = 8.317.081

Secure prime numbers

Chapter 4: Public Key Encryption 49

Attack to the key: Factoring n

 What is the algorithm strength?

 An intruder who wants to know the secret key
from the values of n and e must solve the

problem of factoring large numbers, given that to
know the private key the value of the Euler phi
function must be known previously

(n)=(p-1)(q-1)

…in order to find…

d = inv [e,(n)]

…but first the value of the primes p and q is

needed.

Chapter 4: Public Key Encryption 50

No bits (n) No digits Days Years

60 18 1,7 x 10-8 -

120 36 1,5 x 10-5 -

256 77 1,0 -

363 109 9,0 x 102 2,5

442 133 9,4 x 104 2,5 x 102

665 200 3,8 x 108 1,0 x 106

Processor: 2x108 instructions per second (90s).
Source: Criptografía Digital, José Pastor. Prensas Univ. de Zaragoza, 1998.

• RSA640 Challenge (193 digits) broken in november 2005 Bonn University.

• What in 1998 was estimated about a million years, today can be broken in 30
years with a 2,2 GHz PC.

• Challenges for larger numbers will be solved… so we must be careful.

Factorization time needed

Chapter 4: Public Key Encryption 51

Equivalent Private Key in RSA
 An equivalent private key dP, allows decryption of a

cryptogram C (previously encrypted with a public key e)

without dP needing to be the inverse of e. Any RSA system

has at least one equivalent key of private key d.

 Reason: e and d are inverse in (n), but encryption is

carried out in n.

 If p=13; q=19; n=247, (n)=216 and e=41 is chosen, then

d=inv(41,216)=137, which is unique.

 Encrypting N=87 with the public key produces C=8741 mod

247= 159.

 Therefore we know that N=Cd mod n=159137 mod 247=87

 But also decrypt it with dP=29,65,101,173,209 and 245.

Chapter 4: Public Key Encryption 52

Number of equivalent Private Keys

 If = lcm [(p-1),(q-1)]

and d = e-1 mod =inv (e,)

 Public key e will have equivalent keys di of the form:

di = d + i 1 < di < n

i = 0, 1, ... = (n - d)/

 In the previous example:

 = lcm [(p-1),(q-1)] = lcm (12,18) = 36

 Then: d = inv(41, 36) = 29,

so di = d + i = 29+i36

 That is di = 29,65,101,137,173,209,245. Note that

(137) is the private key d and we verify that:

 = (n - d)/ = (247 – 29)/36) = 6,05 = 6

Chapter 4: Public Key Encryption 53

Numbers that cannot be encrypted in RSA

 If Ne mod n = N then N is a number that cannot
be encrypted. Although key e is valid, N will be
sent as plaintext .

 In RSA there will be at least 9 of such numbers.
 In a critical case, all numbers of n could not be

encrypted.

 To know such values, a brute force attack is
needed in p and q, that is we need to check that
Xe mod p = X and Xe mod q = X with 1 < X <
n-1 .

 Example:
 n = 35 (p = 5, q = 7), with (n) = 24 and e = 11.
 Among the possible numbers {0, 34}, the following {6, 14,

15, 20, 21, 29, 34} cannot be encrypted. Additionally, {0, 1}
and n-1 (in this case 34) are always non-encryptable.

Chapter 4: Public Key Encryption 54

Birthday problem

 We can design an attack to the private key
based on this problem.

 Question: the probability of at least two
people sharing a birthday amongst a
certain group of k people.

 Solution: In a group of 23 (or more)
randomly chosen people, there is more
than 50% probability (0,507) that some
pair of them will have the same birthday.

pNB = n!/(n-k)!nk

n = number days of the year

Chapter 4: Public Key Encryption 55

Birthday problem (attack on the key)

 Algorithm proposed by Merkle and Hellman
in 1981:
 The attacker chooses two different random numbers
i, j within n. Additionally, chooses any message or
number N.

 For i=i+1 and j=j+1 calculates Ni mod n and Nj

mod n.

 When a ciphertext match for a give pair (i,j) is
found, the attacker is able to find d.

 An example in the following slides:
 Let p = 7; q = 13, n = 91, e = 11, d = 59. The attacker only

knows n and e. Start with N = 20 and choose i = 10 and j =
50.

Chapter 4: Public Key Encryption 56

i Ci j Ci

i = 10 C10 = 2010 mod 91 = 43 j = 50 C50 = 2050 mod 91 = 36
i = 11 C11 = 2011 mod 91 = 41 j = 51 C51 = 2051 mod 91 = 83
i = 12 C12 = 2012 mod 91 = 1 j = 52 C52 = 2052 mod 91 = 22
i = 13 C13 = 2013 mod 91 = 20 j = 53 C53 = 2053 mod 91 = 76
i = 14 C14 = 2014 mod 91 = 36 j = 54 C54 = 2054 mod 91 = 64
i = 15 C15 = 2015 mod 91 = 83 j = 55 C55 = 2055 mod 91 = 6
i = 16 C16 = 2016 mod 91 = 22 j = 56 C56 = 2056 mod 91 = 29
i = 17 C17 = 2017 mod 91 = 76 j = 57 C57 = 2057 mod 91 = 34

There is a coincidence/collision with C = 36 for i and j. Note the
repetition.

Using i, j and the difference between them when the coincidence is
noticed (i = 14), a equation system can be established and if the attack is
successful we get either the private key, an equivalent private key, or a
specific private key value which only works with a given number (in this
case 20). In the last case, we have a false positive.

Birthday paradox attack

Chapter 4: Public Key Encryption 57

Results of a birthday paradox attack

 First match for i = 14; j = 50. Attacker uses the public key e = 11,
and calculates :

w = (14-50) / gcd (11, |14-50|) = -36 / gcd (11, 36) = - 36

 Then there will exist values of s and t so that verify the
following:

ws + et = 1 -36s + 11t = 1

 Possible solutions to the equation are:

ws mod e = 1; et mod w = 1

-36s = 1 mod 11 s = inv (-36, 11) = inv (8, 11) = 7

11t = 1 mod 36 t = inv (11, 36) = 23

 Value t = 23 will be an equivalent private key of d = 59. Check
that ws + et = 1 is verified and that the equivalent private keys
are 11, 23, 35, 47, 71 y 83.

Chapter 4: Public Key Encryption 58

ElGamal

 Designed to produce digital signatures

 Extended for encryption

 Security based on the problem of solving
discrete logarithms

 Choose a prime number p and two
random numbers g and x smaller than p

 Calculate:
 y = gx (mod p)

 The public key is (g,y,p)

 The private key is x

Chapter 4: Public Key Encryption 59

ElGamal

Encryption of message m:
a = gk (mod p), k: random integer

b = M·yk (mod p)

The ciphertext is (a,b)

Twice the length of the plaintext!

Decryption (x: private key):

M = b * inv(ax,p) (mod p)

M = M·(gx)k / (gk)x (mod p)

Chapter 4: Public Key Encryption 60

Example: Encryption with ElGamal

 Alice wants to send a message to Bob
 M = 10

 Encrypted using the modulus p = 13

 Encryption:
 Public key of Bob:

 p = 13, g = 6, y = (gx) mod p = 2

 Alice chooses, e.g., k = 4 and calculates:
 a = (gk) mod p = 64 mod 13 = 9

 yk mod p = 16 mod 13 = 3

 b = M*yk mod p = 10*3 mod 13 = 4

 Alice sends to Bob:
 (gk) mod p, Myk mod p => [9,4]

Chapter 4: Public Key Encryption 61

Example: Decryption with ElGamal

 Private key of Bob: x = 5
 So: y = (gx) mod p = (65) mod 13 = 2

 Bob receives: [a,b]
 [(gk) mod p, Myk mod p] = [9,4]

 Bob computes:
 ax =(gk)x mod p = 95 mod 13 = 3
 b * inv(ax,p) = [M(gx)k] inv[(gk)x, p] =

= 4 inv (3, 13) = 4 9

 Finally, to recover the plaintext message:
 M = 4 9 mod 13 = 10
 Note that Bob recovers the message without knowing

Alice’s random number

Chapter 4: Public Key Encryption 62

Summary of public key systems
based on exponentiation

 Sender and receiver generate a pair of keys, public and

private, both related by a one-way trap function.

 Sender and receiver use different keys for encryption and

decryption operations.

 The system security is associated with the solution of a

difficult and time-consuming mathematical problem.

 Allow digital signature.

 They are very slow.

 They are useful for encryption of short messages (like

session keys) or to sign hashes (message digests).

Algorithms based on
Elliptic Curves

63

Chapter 4: Public Key Encryption 64

ECC

 Elliptic curve-based cryptography (ECC) was
introduced by Victor Miller and Neal Koblitz in
1985.

 Its first advantage over exponentiation-based is
that it requires shorter keys in order to achive
similar security (computational cost to break the
system)

 Shorter keys faster computation time and smaller
storage requirements

 Useful for small devices

Chapter 4: Public Key Encryption 65

Elliptic Curves

 Equation defining elliptic curves:
 y2 [+ x·y] = x3 + a·x2 + b

 [+ x·y]: an optional component of the equation

 a, b: constant

 a, b, x, y: real numbers

 For application to encryption:
 x, y, a, b: belong to a finite field

 Such as provided by modular arithmetic

 Using Finite Fields (Galois Fields (GF))

 We will not cover GF but a particular case
of GF are the ones generated by modulus
n operations, n being prime (GF(n))

Chapter 4: Public Key Encryption 66

Number of points in an elliptic curve

Hasse's Theorem:

 For a given elliptic curve defined over
GF(q), the number of points on the
curve will be:

q + 1 – t

 Where

 t is Frobenius' trace

O is included

qt 2

Chapter 4: Public Key Encryption 67

Operations over Elliptic Curves

Addition of points and product of a point
by an integer are defined

Addition was explained in the previous
slide (in cryptography we will use the
same expressions applied to finite
bodies).

Define also the multiplication of a point P
on the curve with one integer k:
2P = P+P

3P = P+P+P ...

 Analogous to ‘exponentiation’: x2=x*x

Chapter 4: Public Key Encryption 68

Order of a point and order of the curve

 The order of a point P on the curve is the
integer n such that:

 nP=O

 (n+1)P=P

Chapter 4: Public Key Encryption 69

Security of Elliptic Curves

 Security comes from the fact that there is
an efficient way of calculating:

 Q=kP …

 ..if we know k and we know P (using a
technique similar to the method of rapid
exponentiation seen in class)

 AND however, if we know P and Q there is
no efficient algorithm to find k. We use
this to protect k when sent to the receiver.

Chapter 4: Public Key Encryption 70

Complexity of Elliptic Curve Cryptography

 Complexity as known of today:
 If: the order of F is an n-bit prime number

 Then: Computing k knowing k*F and F takes
roughly 2n/2 operations

 Example:
 Order of F is a 240-bit prime number

 Brute-force attack to get k would take 2120

operations

 Assume a machine with 1 million operations per
second

 Brute-force attack would last:
 2100 seconds or 275 1023 years...

Chapter 4: Public Key Encryption 71

ElGamal over ECC

Alice and Bob choose:
 A finite Galois Field GF

 An elliptic curve E

 A fixed point FE

Alice chooses:
 A random number a

 Publishes the point aFE as public key

To send a “message” M to Alice, Bob must:
 Calculate M (point on E whose x-component is m)

 Chooses a random number k and sends kF and M+k(aF) to
Alice

To read the message, Alice calculates:
 M+k(aF) – a(kF) = M

Chapter 4: Public Key Encryption 72

Comparison: ElGamal over ECC vs.
ElGamal Based on Exponentiation

 Comparing ECC and Exponentiation:
 Decryption in ECC:

 M+k(aF) – a(kF)

 Decryption in Exponentiation:
 M(ga)k / (gk)a = M(ga)k * inv((gk)a)

 General way to convert a method based
on exponentiation to one based on ECC:
 Exponentiation Multiplication

 The base of the exponentiation point on the curve

 Exponent into a scalar

 Products Sum

 Division Subtraction

Chapter 4: Public Key Encryption 73

Elliptic Curve Cryptography:
Example Diffie-Hellman

 Publish the definition of an elliptic curve and one
point P on that curve (the fixed point)

 Each user creates a private key by choosing a
random number k

 The public key: multiplication of k with P

 Example:
 Alice chooses: Ap = k1 and AP = k1*P

 Carol chooses: Cp = k2 and CP = k2*P

Chapter 4: Public Key Encryption 74

Elliptic Curve Cryptography:
Example Diffie-Hellman

 Both can gain a shared secret using
 Alice: Ap * CP = k1 * k2 * P

 Carol: Cp * AP = k1 * k2 * P

 The security of this scheme is based on a
high complexity to calculate k1 and k2
from the public keys AP and CP

