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Integrity: Problems I

a) Message integrity:

 How can Bob validate that the message received 
from Alice is authentic, i.e. has not been fabricated 
nor changed during transmission?

b) Data origin authentication:

 How can Bob validate that a message received from 
a sender, who claims to be Alice, actually is coming 
from Alice?

 Dealing with authenticity of the sender

 Usually includes message integrity
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Integrity: Problems II

c) Non-repudiation of the sender:

 How can Bob validate that a message sent from Alice 
actually has been sent by Alice, even if Alice claims not 
having sent the message?

d) Non-repudiation of the receiver:

 How can Bob validate that a message sent to Alice actually 
has arrived at Alice even if Alice claims not having received 
the message?

e) Impersonation of the identity of the sender / the 
receiver

 How can Bob check if Alice, Clare, or other users are 
sending messages as if they were signed by Bob?
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How do we achieve that?

 The following slides show how to achieve 
the previous objectives taking into 
account both the techniques already 
studied and those introduced in this 
chapter
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Sender Authentication

 Two basic methods: 

 Symmetric cryptography using shared secret:

 Explicit exchange (seen) 

 Challenge/Response (seen) 

 Symmetric encoding with CRC (seen)

 Use of hash functions with a secret key (this 
chapter)

 Asymmetric cryptography using digital signatures

 This chapter
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Message Integrity

 Two basic alternatives: 

 Symmetric encoding with CRC  

 Symmetric key does not need to be a shared secret

 If the message has redundancy or the padding helps 
to detect modifications, the CRC would not be needed

 MDCs (modification detector code) using a key or 
coded (this chapter)

 Other alternatives may involve the use of 
secure channels

 A not very common case
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Non-repudiation and Impersonation

 Non-repudiation: 

 Digital signatures (this chapter) 

 Impersonation: 

 Digital certificates (this chapter)



Hash Functions
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Hash Functions

 Hash functions (also known as message digest):

 Input: A message with an arbitrary length

 Output: A fingerprint / marker / digest / hash value / ...

 Having a fixed length (n bits)

 Calculating a hash function can be done:

 From the message alone

 Using the message and an additional key

 Two principal applications in cryptography:

 Assure integrity for a message (MDC)

 Provide authentication and integrity for a message (MAC)

 A key necessary in conjunction with the hash function
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Hash functions v.s. CRC

 Hashes are just a fingerprint of fixed 
length, so isn’t this the same as a CRC? 

 The answer is NO: 

 CRC was designed to countermeasure noise: 

 A CRC allows the extraction of information of the 
original message

 It is easy to obtain several messages with the same 
CRC 

 Hash functions are designed as protection 
against malicious attackers
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Desired Properties of Hash Functions

 Unidirectional (Pre-image resistance):

 Computationally infeasible to find a message 
which results in a pre-specified hash value

 Compression

 A message of any length must have a digest of 
fixed length.

 Easy computation

 Diffusion

 The digest must be a complex function of all the 
bits of the message. If only one bit is modified, 
the digest should flip almost half of its bits
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Desired Properties of Hash Functions

 Simple collision (2nd pre-image resistance):

 Computationally infeasible to find one message which 
results in the same hash value as a pre-specified 
message

 Strong collision resistance:

 Computationally infeasible to find any two messages 
which result in the same hash value

 Note: Requires less operations for brute-force than the 
former two properties

 Remember birthday paradox:

 You do not need to search within a 2m space of messages, 
searching within a 2m/2 will suffice.

 Algorithmic complexity drastically reduced.
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Review of the birthday paradox

 Determine how many people is needed in a room 
so that al least two of them have the same birthday 
with probability greater than 0,5. 

 Actually, this is not a paradox but it seems so 
because the number of people needed is 23 only 
(3661/2 = 19)

 Explanation: if each person enters the room and 
deletes from the blackboard his/her birthday, this 
first will have a probability that his/her birthday is 
not already deleted of n/n = 1, the second of (n-
1)/n, etc. The probability of non-coincidence is 
pNC = n!/(n-k)!nk. If k = 23, we have that pNC = 
0,493 and the probability of coincidence is pC = 
0,507.
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MDC (manipulation detection codes) or MIC 
(message integrity codes)  do not use 
keys
Unidirectionals or One-Way Hash Functions 

(OWHFs)

Collision resistant (strong) o Collision Resistant 
Hash Functions (CRHFs)

MAC (message authentication codes) 
use keys
The implicit key provides integrity, and if the key is a 

shared secret, it also provides authentication.

Types of hash functions
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Generic Model for 
Iterated Hash Functions

Original input x
Hash function h

Preprocessing
Append padding bits

Append length block

Iterated 
processing

Compression 
function f

Output h(x) = g(Ht)

f

Hi

xiHi-1

Ht

g

Formatted input x = x1...xt

H0 = IV
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Merkle’s Meta-Method for Hashing

 INPUT: compression function f which is 

collision resistant

 OUTPUT: unkeyed hash function h which is 

collision resistant
 Suppose that f maps (n+r) bits to n-bit outputs

 Break an input x into t blocks xi (i=1,2,...,t)

 All having the block length r

 Pad the last block with zeros if necessary

 Add an additional block with the message length 

 Letting H0 = ‘0’
m (i.e. m zeros), compute iteratively the 

hash from:

 Hi = f(Hi-1 || xi) and append the length block



Chapter 5: Authentication and  Digital Signatures         21

Unkeyed Hash Functions: 
MDCs Based on Block Ciphers

 Most famous examples:

Hash function n m Preimage Collision Comments

Matyas-Meyer-
Oseas

n n 2n 2n/2 For key 
length=n

MDC-2 (with DES) 64 128 2*282 2*254 Rate = 0.5

MDC-4 (with DES) 64 128 2109 4*254 Rate = 0.25

Merkle (with DES) 106 128 2112 256 Rate = 0.276

MD4 512 128 2128 220

MD5 512 128 2128 264

RIPEMD-128 512 128 2128 264

SHA-1, RIPEMD-
160

512 160 2160 280
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MDCs Based on Block Ciphers

 Motivation:

 Efficient block ciphers already wide-spread

 Construct a hash function from a block cipher

 But:

 Block ciphers do not possess the properties of 
random functions which would be ideal to build 
hash functions

 E.g., they are invertible…

 Define the rate of an MDC as the inverse 
of the number of block cipher iterations it 
uses
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MDCs Based on Block Ciphers: 
Example Rates

 n: n-bit block ciphers

 k: size of the block cipher key (in bits)

 m: size of the hash value (in bits)

Hash function (n, k, m) Rate

Matyas-Meyer-Oseas (n, k, n) 1

Davies-Meyer (n, k, n) k/n

Miyaguchi-Preneel (n, k, n) 1

MDC-2 (with DES) (64, 56, 128) ½

MDC-4 (with DES) (64, 56, 128) ¼
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Example: Matyas-Meyer-Oseas Hash

 INPUT: bit string x

 OUTPUT: n-bit hash-code of x

 Algorithm:

 Divide input x into n-bit blocks (pad if necessary)

 xi (i=1,2,...,t)

 Pre-specify an n-bit initialization vector IV

 Define a function g that can generate a valid key 
from Hi. 

 The output is Hi = Eg(Hi-1)(xi)xi, 1it

 With: H0 = IV



Chapter 5: Authentication and  Digital Signatures         25

Customized MDC Hash Functions 

 Some of the most important ones:
 MD4 (message digest 4)

 MD5 (message digest 5)

 SHA-1 (Secure hash algorithm 1)

 MD-5 is an improvement over MD-4

 SHA-1 is another improvement
 Predecessor SHA-0, published by NIST in 1993, rendered 

obsolete by vulnerabilities

 Successor: SHA-224, SHA-256, SHA-384, y SHA-512

 Other functions of this type:
 RIPEMD

 RIPEMD-128

 RIPEMD-160
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MD4: Message Digest Number 4

 128-bit hash function

 Original goals: Make it difficult to

1. Find two messages with the same hash-value: 

 264 operations (collision resistance)

2. Find a message for a pre-specified hash:

 2128 operations (2nd pre-image resistance)

 Problem:

 Goal 1 was missed:

 220 operations necessary only

 MD4 no longer recommended!
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MD4: Operation Overview

Message (b bits) 10...0 L

L: Message length (64 bits)  (mod 264)

Padding (1– 512 bits)

m * 512 bits

Block 0

512 bits

Block 1

512 bits

Block i

512 bits

 Block m

512 bits

P
re

p
ro

c
e

s
s

in
g

IV HMD4128

512 512 512 512

HMD4 HMD4 HMD4128 128 128
 

Hash value
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Security considerations

 SHA-1 was compromised in 2005. 

 MD5 in 2004 

 Xiaoyun Wang, Yiqun Lisa Yin & Hongbo Yu (the 
same which broke MD-5 the year before) broke 
SHA-1 with at least 269 operations, (by brute force 
280 operations). 

 Last attacks on SHA-1 have reduced the number 
of operations to 263.

 Although 263 is a large number of operations, it is 
within the limit of current computation 
capabilities.
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Hash Functions 
Based on Modular Arithmetic

 Use arithmetic modulo m as principle for 

the compression function

 May re-use existing software based on 
public-key technology (e.g., RSA)

 Two significant disadvantages:

 Processing speed

 Guarantee of security

 One example: MASH
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Message Authentication Codes (MAC)

 Hash function using a key k to provide 
authentication

 Can be computed:

 Based on block ciphers 

 Starting from MDCs and adding a key to the input 
message
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MACs Based on Block Ciphers

 Example: CBC-MAC algorithm:

DES
Encrypt

x1

k
H1

DES
Encrypt

x2

k
H2

DES
Encrypt

xn

k

H: final hash value



+

IV = ‘0’

+ +Hn-1

DES
Decrypt

DES
Encrypt

k’

k

Optional

xi: message to authenticate, split into blocks
k: key
k’: second key (optional)
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Constructing MACs from MDCs I 

 Example: Keyed-Hashing for Message 
Authentication Codes (HMAC)

 H. Krawczyk, M. Bellare, R. Canetti, RFC 2104, 
1997.

 Define:
 H: Generic hash function (MD5, SHA-1...)

 K: Secret key shared between two peers

 B: Block length for the input of H (in bytes)

 L: Length of the output of H (in bytes)

 MD5: L = 16 (128 bit); SHA-1: L = 20 (160 bit)

 KL: Length of the key K

 Recommendation: KL should be at least L

 If KL > B: obtain a new K’ = H(K)
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Constructing MACs from MDCs II

 Procedure to obtain the hash value of M:

 Pad K or K' with ‘0’s to create a string K” with B

bytes

 Define:

 ipad = the byte 0x36 repeated B times

 opad =  the byte 0x5C repeated B times

 To compute the hash value S for message M:

 S = H(K” XOR opad || H(K” XOR ipad || M))

 Example:

 H = MD5 to obtain a keyed variant of MD5:

 Used in IPsec



Digital Signatures

34
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What are we going to study?

 Digital signature requirements

 Properties

 Methods

 RSA

 ElGamal

 DSS
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What do we want?

 Obtain the following security services:

 Integrity

 Authentication

 Non-repudiation

 How?

 By means of digital signatures
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Much stronger requirements than 
for a hand-written signature!

Characteristics of a Digital Signature

 Requirements:

 Should be easy to generate

 Should be irrevocable, not to be rejected by its 
owner

 Should be unique (only the owner can generate 
it)

 Should be easy to authenticate or recognize by 
its owner and the receivers

 Must depend on the message and the author
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Digital signature

 We need to leave a print that only the 

sender could leave in a message

 Use of the private key

 On the whole message?

 Only on the digest (speed)

 Review 3 systems:

 RSA 

 ElGamal

 DSS
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Public key (nA, eA)  Private key (dA)

Signature: sA[H(M)] = H(M)
dA mod nA

Algorithm:

A sends a message M (plaintext or ciphertext) to destination 
B together with the signature:  {M, sA[H(M)]}

B has the public key (nA, eA) of A and decrypts 
sA[H(M)]  {(H(M)dA)eA mod nA} to get H(M).
On reception of message M’, B computes the hash 
function H(M’) and compares:

If H(M’) = H(M) the signature is correct.

Alice



Bob

Digital Signatures using RSA
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Possible vulnerability of RSA signature

 Working in a multiplicative body, the following scenario is 
possible: 

 If the signature of two messages M1 and M2 is known, a 
third message can be signed M3 which is a product of the 
two previous messages, without the need for knowing the 
private key of the signer.

 Let the signer keys be e, d & n = pq. Therefore:

 rM1 = M1
d mod n    &    rM2 = M2

d mod n If now M3 = M1M2:

 rM3 = (M1M2)
d mod n = M1

d M2
d mod n = rM1 rM2 mod n

 In practice, this is not a problem, why? 

 Before signing, a hash function is applied
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ElGamal: User A generates a random number xa
(the private key) in a field with modulus p. The public 
key is ya = gxa mod p, with the generator g

Digital signature algorithm

1. A generates a random number h, which should be coprime 
to (p), i.e.:    h | gcd{h,(p)} = 1

2. Compute: h-1 = inv{h,(p)}

3. Compute r = gh mod p

4. Solve the following congruence to get s:

M = xar + hs mod (p)     
s = (M - xar)  inv[h,(p) mod (p)

Signature: (r,s)

Alice

Digital Signatures using ElGamal A to B
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Algorithm for verifying the signature, B:

1. receives the pair (r, s) and computes:

• rs mod p and    yr mod p

2. Computes k = [yr * rs] mod p

• Since r = gh mod p and y = gxa mod p:

3. k = [(gxar.ghs] mod p = g(xar + hs) mod p 

= g mod p

4. As M = (xar + hs) mod (p) and g is a simple 
root of p, it is true that:

g = g iff  =  mod (p-1)

5. Verify that k = gM mod p

Bob

If:k=[(gxa)r  rs] mod p

is the same as gM mod p ...

Accepts the signature

Knows: 

p and  y = (gxa) mod p

Digital Signatures using ElGamal:
Validation by B
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Digital Signature Standard DSS

 1991: National Institute of Standards and Technology (NIST) 

proposes DSA, Digital Signature Algorithm, a variant of the 

algorithms by ElGamal y Schnoor. 

 1994: DSA is established as standard known as DSS, Digital 

Signature Standard.

 1996: The government of the USA allows to export Clipper 

3.11, in which DSS is built in using a hash function of the 

type SHS, Secure Hash Standard.

 Major disadvantage of ElGamal:

 Duplication of the message size to send in the pair (r, s) in Zp and 

(p)

 However, the ElGamal scheme has been chosen for DSS
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Digital Signature Standard DSS

 Public parameters of the signature:

 A large prime number p (512 - 1024 bits)

 A prime number q (160 bits) divisor of p-1

 A generator g “of the order q mod p”

 Generator of the order q is the root g modulus p such 
that q is the smallest integer that fullfils:

q being much smaller than p

Condition: gq mod p = 1

So that:

• For all t: gt = gt (mod q) mod p
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• Public keys at A: prime number p, q and the generator g

• Secret key of the signature: xa (1 < xa < q) random

• Public key of the signature: y = gxa mod p

• Difficult to compute xa from y !

• To sign a message 1 < M < p, the signer chooses a 
random number h, 1 < h < q and computes: 

• r = (gh mod p) mod q

• s = [(M + xa*r)  inv(h, q)] mod q

• The digital signature for M is the pair (r, s)

Generation of the signature at A

DSS Signature: Example A  B
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• B receives a pair (r, s)

• Then, B computes 

• w = inv(s, q)

• u = M * w mod q

• v = r * w mod q

• Verification of the following equation:

• r = (gu yv mod p) mod q

• If yes, the signature is accepted

Verification of A’s signature at B

The size of the signature is 
smaller than p, i.e. less bits 

than the modulo of the 
signature, since q was chosen 
by design to be smaller than p

Verification of the Signature at B
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Key selection in DSS

 Choose a prime q of 160 bits. 

 Choose a prime p of length L bits, such as p=qz+1 for an 

integer z, 512 ≤ L ≤ 1024, and L is divisible by 64.

 The modification “FIPS-186-2, change notice 1” specifies that L

must be only 1024. 

 Choose h, where 1 < h < p − 1 such as g = hz mod p > 1. 

(remember that z = (p-1) / q.) 

 Choose x randomly, where 0 < x < q. 

 Compute y = gx mod p. 

 The public key will be (p, q, g, y). The private will be x. 

 Note that (p, q, g) can be shared among several users.



Certificates

My identity validated by a third 
party
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Our objective

 To be guaranteed the identity of 
somebody without needing to have 
knowledge about him/her in advance

 In the physical world?

 ID card, passport

 That is: a document which contains identity data, 
"signed" by someone I trust.

 In the digital world?

 Digital certificates.
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Our search

 How can we be sure that a specific public 

key belongs to a user?

 If we are certain that a public key belongs to 

somebody we trust (Certificate Authority, CA)

 And the CA signs also other associations 

between identity-public key  that is a certificate 

(of identity)



Chapter 5: Authentication and  Digital Signatures         51

Certificates of identity 

 A certificate consists of:

 A public key 

 An identifier of the user, signed digitally by a certification authority 
(CA)

 Objective:

 Show that a public key belongs to a certain user

 Sender and receiver trust the certificate, so the sender is 
authenticated from the point of view of the receiver (if the 
certificate is digitally signed by the CA and the sender proves that 
it has the private key)

 Format of certificates:

 X.509 (Recommendation X.509 of the CCITT: ”The Directory -
Authentication Framework”. 1988) 

 Well-known and currently widely extended

 The format X.509 was adopted by PKIX group of IETF and 

adopted by TCP/IP
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Versions

 ITU-T X.509 standard:

 v1 (1988)

 v2 (1993) = minor changes

 v3 (1996) = v2 + extensions+ attribute certificates v1

 v3 (2001) = v3 + attribute certificates v2



Chapter 5: Authentication and  Digital Signatures         53

Fields of a X.509 certificate
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Data format

 To define a data structure which could be able to 
travel by a network we need to use a data format 
definition language (XDR, IDL…).

 X.509 makes use of ASN.1

 ASN.1 allows the definition of data structures

 Define coding rules to map those data structures to bits in 
order to be transmitted from one system to another.
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X.509v3 certificates in ASN.1

Certificate  ::=  SEQUENCE  {
tbsCertificate       TBSCertificate,

signatureAlgorithm   AlgorithmIdentifier,
signature            BIT STRING  }

TBSCertificate  ::=  SEQUENCE  {
version         [0]  Version DEFAULT v1,

serialNumber         CertificateSerialNumber,
signature            AlgorithmIdentifier,

issuer               Name,
validity             Validity,

subject              Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version must be v2 or v3

subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version must be v2 or v3

extensions      [3]  Extensions OPTIONAL
-- If present, version must be v3

}
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X.509v3 certificates in ASN.1

Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  }

CertificateSerialNumber  ::=  INTEGER

Validity  ::=  SEQUENCE  {
notBefore            UTCTime,

notAfter             UTCTime  }

UniqueIdentifier  ::=  BIT STRING

SubjectPublicKeyInfo  ::=  SEQUENCE  {
algorithm            AlgorithmIdentifier,

subjectPublicKey     BIT STRING  }

Extensions  ::=  SEQUENCE OF Extension

Extension  ::=  SEQUENCE  {
extnID      OBJECT IDENTIFIER,

critical    BOOLEAN DEFAULT FALSE,
extnValue   OCTET STRING  }
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Certificate example X.509
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X.509v3 extensions

 Extensions can be:

 Public (the same meaning for everybody)

 Private (particular to a specific community)

 Can be defined as:

 critical – must be understood by the verifier of the 
certificate

 non-critical – may be omitted by the verifier
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Public extensions

 Information about policies and keys

 Alternative names (non-X.500) for the 
sender and subject of the certificate

 Restrictions dealing with the path of the 
certificate

 Identifier of the certificate revocation list 
where one has to check the legitimacy of 
the certificate
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Information about policies and keys

 For example, the use of a key:

 Sign

 Encrypt keys

 Encrypt data

 Sign certificates

 Sign certificate revocation lists

 For example, the identifier of the key of 

the CA (if it has several keys)
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Alternative names

 Names can be

 E-mail addresses

 DNS domain names

 Web URIs (Uniform Resource Identifier)

 IP addresses

 X.400 email addresses

 Registered identifiers

 Other
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Restrictions about the path of the 
certificate

 For example:

 To specify whether the subject of a certificate is a 
CA or a final entity  certificate chain

 To specify the maximum depth of the chain of 
certificates
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Certificate Revocation List 
Identification

 Admits several formats:

 Entry of a directory

 E-mail address

 URL
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Certificate Revocation List in X.509

 Signed list which contains the compromised certificates, and 
therefore, revoked.

 CRL X.509v2
CertificateList  ::=  SEQUENCE  {

tbsCertList          TBSCertList,
signatureAlgorithm   AlgorithmIdentifier,

signature            BIT STRING  }

TBSCertList  ::=  SEQUENCE  {
version                 Version OPTIONAL,

-- if present, must be v2
signature               AlgorithmIdentifier,

issuer                  Name,
thisUpdate              UTCTime,
nextUpdate              UTCTime,

revokedCertificates     SEQUENCE OF SEQUENCE  {
userCertificate         CertificateSerialNumber,

revocationDate          UTCTime,
crlEntryExtensions      Extensions OPTIONAL  }  

OPTIONAL,
crlExtensions           [0]  Extensions OPTIONAL  }

Version  ::= INTEGER  {  v1(0), v2(1) }
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Types of  X.509 certificates

 Up to now we have explained the 
certificates of names (PKC):

 My identity (and public key) signed by the CA

 Useful for authentication

 There is a second kind of certificates: 
attribute certificates (AC).

 Associates attributes to a PKC.

 Useful for authorization

 Issued by a attribute authority (AA)



Chapter 5: Authentication and  Digital Signatures         66

Two types of certificates?

 Usually, the identity of an entity is:

 Permanent in time

 Independent of the place

 The authorization by an entity to use 
resources:

 It is locally issued and depends of the location

 Changes with time
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PKI (Public Key Infrastructure)

Repository 
of 

certificates 
and CRLs

Final user   

Management 
and operation 
transactions

PKI
Users

PKI
Management

Management 
transactions

Publication of 
certificates

Management 
transactions

Publication of certificates
Publication of CRL
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PMI (Privilege Management Infrastructure)

SoA Source of Authority

Attribute authority (AA)

User 

Privilege verifier

Assigns privileges

Delegates privileges

Trust

Shows privileges

Shows privileges
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Attribute certificates

AttributeCertificate ::= SEQUENCE {

toBeSigned  AttributeCertificateInfo, 

algorithmIdentifier  AlgorithmIdentifier,

encrypted            BIT STRING 

}

AttributeCertificateInfo ::= SEQUENCE {

version                 AttCertVersion, -- version is v2

holder                  Holder,

issuer                  AttCertIssuer,

signature               AlgorithmIdentifier,

serialNumber            CertificateSerialNumber,

attrCertValidityPeriod  AttCertValidityPeriod,

attributes              SEQUENCE OF Attribute,

issuerUniqueID      UniqueIdentifier OPTIONAL,

extensions              Extensions OPTIONAL

}

References to the name 
certificate
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Standard attributes

 Some attributes are defined as standard:

 Authentication information for the service

 Credentials to use the service

 Access identity

 Used by the verifier of attribute certificates

 Group and role

 Define the membership of the owner of the certificate 
to a group
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Privilege delegation

 Similarly to PKC a chain of attribute 
certificate can be established

 Using extensions in the attribute 
certificates, the SoA or an AA (with 
privileges) can sign an attribute certificate 
which allows the receiver to become, in 
turn, an AA.

 You can limit the delegation depth



Exchange of 
Session Keys using 
Asymmetric
Algorithms
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Encryption with Asymmetric Keys

 Can use any of the encryption methods 
from chapter 4 to encrypt session keys to 
be sent to the receiver

 For example:

RSAkses

kPB

RSA

kpB

kses
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(1) (Ka)mod p

(2) (Ka)bmod p

(3) (Kab)a  mod p

Aragorn Boromir

-1

Shamir

p mod)(KK (4) baab 11 



1a , b p-2
coprimes (p-1)



Chapter 5: Authentication and  Digital Signatures         75

Diffie-Hellman Key Exchange

1. Selection of a prime number n (public) 
and g a primitive root of n

B
2. SB< n private

ngT BS
B mod3.

5. nTK BS

AB mod

B

S

A
SSSSS

BA KTggTK BBAABA  )()(

A
2. SA< n private

ngT AS
A mod3.

nTK AS

BA mod5.

4. TB TA


