
1

Coding Techniques

Mario Muñoz Organero

CHAPTER 5:
Authentication and
Digital Signatures

Chapter 5: Authentication and Digital Signatures 2

Chapter Index

 Hash functions

 MDC: Modification Detection Codes

 MAC: Message Authentication Codes

 Digital Signatures

 DSS: Digital Signature Standard

 Certificates

 X.509

 Key distribution mechanisms in
asymmetric cryptography

Chapter 5: Authentication and Digital Signatures 3

Bibliography

 Basic:

 Kaufman[5,7],

 Stallings [10,11,12,13],

 Complementary:

 Ramió [15,16,17]

 Lucena [13,17]

 Menezes [9,11,12,13]

Chapter 5: Authentication and Digital Signatures 4

Complementary bibliography

FIPS PUB 113, Computer Data Authentication,
NIST, May 1985. Available at:
http://www.itl.nist.gov/fipspubs/fip113.htm

FIPS PUB 180-1, Secure Hash Standard, NIST,
April 1995. Available at :
http://www.itl.nist.gov/fipspubs/fip180-1.htm

FIPS PUB 186, Digital Signature Standard, NIST,
May 1994. Available at :
http://www.itl.nist.gov/fipspubs/fip186.htm

R.L. Rivest, RFC 1321: The MD5 Message-Digest
Algorithm, Internet Activities Board, 1992.
Available at :
http://www.ietf.org/rfc/rfc1321.txt?number=1321

5

Motivation

Chapter 5: Authentication and Digital Signatures 6

Integrity: Problems I

a) Message integrity:

 How can Bob validate that the message received
from Alice is authentic, i.e. has not been fabricated
nor changed during transmission?

b) Data origin authentication:

 How can Bob validate that a message received from
a sender, who claims to be Alice, actually is coming
from Alice?

 Dealing with authenticity of the sender

 Usually includes message integrity

Chapter 5: Authentication and Digital Signatures 7

Integrity: Problems II

c) Non-repudiation of the sender:

 How can Bob validate that a message sent from Alice
actually has been sent by Alice, even if Alice claims not
having sent the message?

d) Non-repudiation of the receiver:

 How can Bob validate that a message sent to Alice actually
has arrived at Alice even if Alice claims not having received
the message?

e) Impersonation of the identity of the sender / the
receiver

 How can Bob check if Alice, Clare, or other users are
sending messages as if they were signed by Bob?

Chapter 5: Authentication and Digital Signatures 8

How do we achieve that?

 The following slides show how to achieve
the previous objectives taking into
account both the techniques already
studied and those introduced in this
chapter

Chapter 5: Authentication and Digital Signatures 9

Sender Authentication

 Two basic methods:

 Symmetric cryptography using shared secret:

 Explicit exchange (seen)

 Challenge/Response (seen)

 Symmetric encoding with CRC (seen)

 Use of hash functions with a secret key (this
chapter)

 Asymmetric cryptography using digital signatures

 This chapter

Chapter 5: Authentication and Digital Signatures 10

Message Integrity

 Two basic alternatives:

 Symmetric encoding with CRC

 Symmetric key does not need to be a shared secret

 If the message has redundancy or the padding helps
to detect modifications, the CRC would not be needed

 MDCs (modification detector code) using a key or
coded (this chapter)

 Other alternatives may involve the use of
secure channels

 A not very common case

Chapter 5: Authentication and Digital Signatures 11

Non-repudiation and Impersonation

 Non-repudiation:

 Digital signatures (this chapter)

 Impersonation:

 Digital certificates (this chapter)

Hash Functions

Chapter 5: Authentication and Digital Signatures 13

Hash Functions

 Hash functions (also known as message digest):

 Input: A message with an arbitrary length

 Output: A fingerprint / marker / digest / hash value / ...

 Having a fixed length (n bits)

 Calculating a hash function can be done:

 From the message alone

 Using the message and an additional key

 Two principal applications in cryptography:

 Assure integrity for a message (MDC)

 Provide authentication and integrity for a message (MAC)

 A key necessary in conjunction with the hash function

Chapter 5: Authentication and Digital Signatures 14

Hash functions v.s. CRC

 Hashes are just a fingerprint of fixed
length, so isn’t this the same as a CRC?

 The answer is NO:

 CRC was designed to countermeasure noise:

 A CRC allows the extraction of information of the
original message

 It is easy to obtain several messages with the same
CRC

 Hash functions are designed as protection
against malicious attackers

Chapter 5: Authentication and Digital Signatures 15

Desired Properties of Hash Functions

 Unidirectional (Pre-image resistance):

 Computationally infeasible to find a message
which results in a pre-specified hash value

 Compression

 A message of any length must have a digest of
fixed length.

 Easy computation

 Diffusion

 The digest must be a complex function of all the
bits of the message. If only one bit is modified,
the digest should flip almost half of its bits

Chapter 5: Authentication and Digital Signatures 16

Desired Properties of Hash Functions

 Simple collision (2nd pre-image resistance):

 Computationally infeasible to find one message which
results in the same hash value as a pre-specified
message

 Strong collision resistance:

 Computationally infeasible to find any two messages
which result in the same hash value

 Note: Requires less operations for brute-force than the
former two properties

 Remember birthday paradox:

 You do not need to search within a 2m space of messages,
searching within a 2m/2 will suffice.

 Algorithmic complexity drastically reduced.

Chapter 5: Authentication and Digital Signatures 17

Review of the birthday paradox

 Determine how many people is needed in a room
so that al least two of them have the same birthday
with probability greater than 0,5.

 Actually, this is not a paradox but it seems so
because the number of people needed is 23 only
(3661/2 = 19)

 Explanation: if each person enters the room and
deletes from the blackboard his/her birthday, this
first will have a probability that his/her birthday is
not already deleted of n/n = 1, the second of (n-
1)/n, etc. The probability of non-coincidence is
pNC = n!/(n-k)!nk. If k = 23, we have that pNC =
0,493 and the probability of coincidence is pC =
0,507.

Chapter 5: Authentication and Digital Signatures 18

MDC (manipulation detection codes) or MIC
(message integrity codes) do not use
keys
Unidirectionals or One-Way Hash Functions

(OWHFs)

Collision resistant (strong) o Collision Resistant
Hash Functions (CRHFs)

MAC (message authentication codes)
use keys
The implicit key provides integrity, and if the key is a

shared secret, it also provides authentication.

Types of hash functions

Chapter 5: Authentication and Digital Signatures 19

Generic Model for
Iterated Hash Functions

Original input x
Hash function h

Preprocessing
Append padding bits

Append length block

Iterated
processing

Compression
function f

Output h(x) = g(Ht)

f

Hi

xiHi-1

Ht

g

Formatted input x = x1...xt

H0 = IV

Chapter 5: Authentication and Digital Signatures 20

Merkle’s Meta-Method for Hashing

 INPUT: compression function f which is

collision resistant

 OUTPUT: unkeyed hash function h which is

collision resistant
 Suppose that f maps (n+r) bits to n-bit outputs

 Break an input x into t blocks xi (i=1,2,...,t)

 All having the block length r

 Pad the last block with zeros if necessary

 Add an additional block with the message length

 Letting H0 = ‘0’
m (i.e. m zeros), compute iteratively the

hash from:

 Hi = f(Hi-1 || xi) and append the length block

Chapter 5: Authentication and Digital Signatures 21

Unkeyed Hash Functions:
MDCs Based on Block Ciphers

 Most famous examples:

Hash function n m Preimage Collision Comments

Matyas-Meyer-
Oseas

n n 2n 2n/2 For key
length=n

MDC-2 (with DES) 64 128 2*282 2*254 Rate = 0.5

MDC-4 (with DES) 64 128 2109 4*254 Rate = 0.25

Merkle (with DES) 106 128 2112 256 Rate = 0.276

MD4 512 128 2128 220

MD5 512 128 2128 264

RIPEMD-128 512 128 2128 264

SHA-1, RIPEMD-
160

512 160 2160 280

Chapter 5: Authentication and Digital Signatures 22

MDCs Based on Block Ciphers

 Motivation:

 Efficient block ciphers already wide-spread

 Construct a hash function from a block cipher

 But:

 Block ciphers do not possess the properties of
random functions which would be ideal to build
hash functions

 E.g., they are invertible…

 Define the rate of an MDC as the inverse
of the number of block cipher iterations it
uses

Chapter 5: Authentication and Digital Signatures 23

MDCs Based on Block Ciphers:
Example Rates

 n: n-bit block ciphers

 k: size of the block cipher key (in bits)

 m: size of the hash value (in bits)

Hash function (n, k, m) Rate

Matyas-Meyer-Oseas (n, k, n) 1

Davies-Meyer (n, k, n) k/n

Miyaguchi-Preneel (n, k, n) 1

MDC-2 (with DES) (64, 56, 128) ½

MDC-4 (with DES) (64, 56, 128) ¼

Chapter 5: Authentication and Digital Signatures 24

Example: Matyas-Meyer-Oseas Hash

 INPUT: bit string x

 OUTPUT: n-bit hash-code of x

 Algorithm:

 Divide input x into n-bit blocks (pad if necessary)

 xi (i=1,2,...,t)

 Pre-specify an n-bit initialization vector IV

 Define a function g that can generate a valid key
from Hi.

 The output is Hi = Eg(Hi-1)(xi)xi, 1it

 With: H0 = IV

Chapter 5: Authentication and Digital Signatures 25

Customized MDC Hash Functions

 Some of the most important ones:
 MD4 (message digest 4)

 MD5 (message digest 5)

 SHA-1 (Secure hash algorithm 1)

 MD-5 is an improvement over MD-4

 SHA-1 is another improvement
 Predecessor SHA-0, published by NIST in 1993, rendered

obsolete by vulnerabilities

 Successor: SHA-224, SHA-256, SHA-384, y SHA-512

 Other functions of this type:
 RIPEMD

 RIPEMD-128

 RIPEMD-160

Chapter 5: Authentication and Digital Signatures 26

MD4: Message Digest Number 4

 128-bit hash function

 Original goals: Make it difficult to

1. Find two messages with the same hash-value:

 264 operations (collision resistance)

2. Find a message for a pre-specified hash:

 2128 operations (2nd pre-image resistance)

 Problem:

 Goal 1 was missed:

 220 operations necessary only

 MD4 no longer recommended!

Chapter 5: Authentication and Digital Signatures 27

MD4: Operation Overview

Message (b bits) 10...0 L

L: Message length (64 bits) (mod 264)

Padding (1– 512 bits)

m * 512 bits

Block 0

512 bits

Block 1

512 bits

Block i

512 bits

 Block m

512 bits

P
re

p
ro

c
e

s
s

in
g

IV HMD4128

512 512 512 512

HMD4 HMD4 HMD4128 128 128

Hash value

Chapter 5: Authentication and Digital Signatures 28

Security considerations

 SHA-1 was compromised in 2005.

 MD5 in 2004

 Xiaoyun Wang, Yiqun Lisa Yin & Hongbo Yu (the
same which broke MD-5 the year before) broke
SHA-1 with at least 269 operations, (by brute force
280 operations).

 Last attacks on SHA-1 have reduced the number
of operations to 263.

 Although 263 is a large number of operations, it is
within the limit of current computation
capabilities.

Chapter 5: Authentication and Digital Signatures 29

Hash Functions
Based on Modular Arithmetic

 Use arithmetic modulo m as principle for

the compression function

 May re-use existing software based on
public-key technology (e.g., RSA)

 Two significant disadvantages:

 Processing speed

 Guarantee of security

 One example: MASH

Chapter 5: Authentication and Digital Signatures 30

Message Authentication Codes (MAC)

 Hash function using a key k to provide
authentication

 Can be computed:

 Based on block ciphers

 Starting from MDCs and adding a key to the input
message

Chapter 5: Authentication and Digital Signatures 31

MACs Based on Block Ciphers

 Example: CBC-MAC algorithm:

DES
Encrypt

x1

k
H1

DES
Encrypt

x2

k
H2

DES
Encrypt

xn

k

H: final hash value

+

IV = ‘0’

+ +Hn-1

DES
Decrypt

DES
Encrypt

k’

k

Optional

xi: message to authenticate, split into blocks
k: key
k’: second key (optional)

Chapter 5: Authentication and Digital Signatures 32

Constructing MACs from MDCs I

 Example: Keyed-Hashing for Message
Authentication Codes (HMAC)

 H. Krawczyk, M. Bellare, R. Canetti, RFC 2104,
1997.

 Define:
 H: Generic hash function (MD5, SHA-1...)

 K: Secret key shared between two peers

 B: Block length for the input of H (in bytes)

 L: Length of the output of H (in bytes)

 MD5: L = 16 (128 bit); SHA-1: L = 20 (160 bit)

 KL: Length of the key K

 Recommendation: KL should be at least L

 If KL > B: obtain a new K’ = H(K)

Chapter 5: Authentication and Digital Signatures 33

Constructing MACs from MDCs II

 Procedure to obtain the hash value of M:

 Pad K or K' with ‘0’s to create a string K” with B

bytes

 Define:

 ipad = the byte 0x36 repeated B times

 opad = the byte 0x5C repeated B times

 To compute the hash value S for message M:

 S = H(K” XOR opad || H(K” XOR ipad || M))

 Example:

 H = MD5 to obtain a keyed variant of MD5:

 Used in IPsec

Digital Signatures

34

Chapter 5: Authentication and Digital Signatures 35

What are we going to study?

 Digital signature requirements

 Properties

 Methods

 RSA

 ElGamal

 DSS

Chapter 5: Authentication and Digital Signatures 36

What do we want?

 Obtain the following security services:

 Integrity

 Authentication

 Non-repudiation

 How?

 By means of digital signatures

Chapter 5: Authentication and Digital Signatures 37

Much stronger requirements than
for a hand-written signature!

Characteristics of a Digital Signature

 Requirements:

 Should be easy to generate

 Should be irrevocable, not to be rejected by its
owner

 Should be unique (only the owner can generate
it)

 Should be easy to authenticate or recognize by
its owner and the receivers

 Must depend on the message and the author

Chapter 5: Authentication and Digital Signatures 38

Digital signature

 We need to leave a print that only the

sender could leave in a message

 Use of the private key

 On the whole message?

 Only on the digest (speed)

 Review 3 systems:

 RSA

 ElGamal

 DSS

Chapter 5: Authentication and Digital Signatures 39

Public key (nA, eA) Private key (dA)

Signature: sA[H(M)] = H(M)
dA mod nA

Algorithm:

A sends a message M (plaintext or ciphertext) to destination
B together with the signature: {M, sA[H(M)]}

B has the public key (nA, eA) of A and decrypts
sA[H(M)] {(H(M)dA)eA mod nA} to get H(M).
On reception of message M’, B computes the hash
function H(M’) and compares:

If H(M’) = H(M) the signature is correct.

Alice

Bob

Digital Signatures using RSA

Chapter 5: Authentication and Digital Signatures 40

Possible vulnerability of RSA signature

 Working in a multiplicative body, the following scenario is
possible:

 If the signature of two messages M1 and M2 is known, a
third message can be signed M3 which is a product of the
two previous messages, without the need for knowing the
private key of the signer.

 Let the signer keys be e, d & n = pq. Therefore:

 rM1 = M1
d mod n & rM2 = M2

d mod n If now M3 = M1M2:

 rM3 = (M1M2)
d mod n = M1

d M2
d mod n = rM1 rM2 mod n

 In practice, this is not a problem, why?

 Before signing, a hash function is applied

Chapter 5: Authentication and Digital Signatures 41

ElGamal: User A generates a random number xa
(the private key) in a field with modulus p. The public
key is ya = gxa mod p, with the generator g

Digital signature algorithm

1. A generates a random number h, which should be coprime
to (p), i.e.: h | gcd{h,(p)} = 1

2. Compute: h-1 = inv{h,(p)}

3. Compute r = gh mod p

4. Solve the following congruence to get s:

M = xar + hs mod (p)
s = (M - xar) inv[h,(p) mod (p)

Signature: (r,s)

Alice

Digital Signatures using ElGamal A to B

Chapter 5: Authentication and Digital Signatures 42

Algorithm for verifying the signature, B:

1. receives the pair (r, s) and computes:

• rs mod p and yr mod p

2. Computes k = [yr * rs] mod p

• Since r = gh mod p and y = gxa mod p:

3. k = [(gxar.ghs] mod p = g(xar + hs) mod p

= g mod p

4. As M = (xar + hs) mod (p) and g is a simple
root of p, it is true that:

g = g iff = mod (p-1)

5. Verify that k = gM mod p

Bob

If:k=[(gxa)r rs] mod p

is the same as gM mod p ...

Accepts the signature

Knows:

p and y = (gxa) mod p

Digital Signatures using ElGamal:
Validation by B

Chapter 5: Authentication and Digital Signatures 43

Digital Signature Standard DSS

 1991: National Institute of Standards and Technology (NIST)

proposes DSA, Digital Signature Algorithm, a variant of the

algorithms by ElGamal y Schnoor.

 1994: DSA is established as standard known as DSS, Digital

Signature Standard.

 1996: The government of the USA allows to export Clipper

3.11, in which DSS is built in using a hash function of the

type SHS, Secure Hash Standard.

 Major disadvantage of ElGamal:

 Duplication of the message size to send in the pair (r, s) in Zp and

(p)

 However, the ElGamal scheme has been chosen for DSS

Chapter 5: Authentication and Digital Signatures 44

Digital Signature Standard DSS

 Public parameters of the signature:

 A large prime number p (512 - 1024 bits)

 A prime number q (160 bits) divisor of p-1

 A generator g “of the order q mod p”

 Generator of the order q is the root g modulus p such
that q is the smallest integer that fullfils:

q being much smaller than p

Condition: gq mod p = 1

So that:

• For all t: gt = gt (mod q) mod p

Chapter 5: Authentication and Digital Signatures 45

• Public keys at A: prime number p, q and the generator g

• Secret key of the signature: xa (1 < xa < q) random

• Public key of the signature: y = gxa mod p

• Difficult to compute xa from y !

• To sign a message 1 < M < p, the signer chooses a
random number h, 1 < h < q and computes:

• r = (gh mod p) mod q

• s = [(M + xa*r) inv(h, q)] mod q

• The digital signature for M is the pair (r, s)

Generation of the signature at A

DSS Signature: Example A B

Chapter 5: Authentication and Digital Signatures 46

• B receives a pair (r, s)

• Then, B computes

• w = inv(s, q)

• u = M * w mod q

• v = r * w mod q

• Verification of the following equation:

• r = (gu yv mod p) mod q

• If yes, the signature is accepted

Verification of A’s signature at B

The size of the signature is
smaller than p, i.e. less bits

than the modulo of the
signature, since q was chosen
by design to be smaller than p

Verification of the Signature at B

Chapter 5: Authentication and Digital Signatures 47

Key selection in DSS

 Choose a prime q of 160 bits.

 Choose a prime p of length L bits, such as p=qz+1 for an

integer z, 512 ≤ L ≤ 1024, and L is divisible by 64.

 The modification “FIPS-186-2, change notice 1” specifies that L

must be only 1024.

 Choose h, where 1 < h < p − 1 such as g = hz mod p > 1.

(remember that z = (p-1) / q.)

 Choose x randomly, where 0 < x < q.

 Compute y = gx mod p.

 The public key will be (p, q, g, y). The private will be x.

 Note that (p, q, g) can be shared among several users.

Certificates

My identity validated by a third
party

Chapter 5: Authentication and Digital Signatures 49

Our objective

 To be guaranteed the identity of
somebody without needing to have
knowledge about him/her in advance

 In the physical world?

 ID card, passport

 That is: a document which contains identity data,
"signed" by someone I trust.

 In the digital world?

 Digital certificates.

Chapter 5: Authentication and Digital Signatures 50

Our search

 How can we be sure that a specific public

key belongs to a user?

 If we are certain that a public key belongs to

somebody we trust (Certificate Authority, CA)

 And the CA signs also other associations

between identity-public key that is a certificate

(of identity)

Chapter 5: Authentication and Digital Signatures 51

Certificates of identity

 A certificate consists of:

 A public key

 An identifier of the user, signed digitally by a certification authority
(CA)

 Objective:

 Show that a public key belongs to a certain user

 Sender and receiver trust the certificate, so the sender is
authenticated from the point of view of the receiver (if the
certificate is digitally signed by the CA and the sender proves that
it has the private key)

 Format of certificates:

 X.509 (Recommendation X.509 of the CCITT: ”The Directory -
Authentication Framework”. 1988)

 Well-known and currently widely extended

 The format X.509 was adopted by PKIX group of IETF and

adopted by TCP/IP

Chapter 5: Authentication and Digital Signatures 52

Versions

 ITU-T X.509 standard:

 v1 (1988)

 v2 (1993) = minor changes

 v3 (1996) = v2 + extensions+ attribute certificates v1

 v3 (2001) = v3 + attribute certificates v2

Chapter 5: Authentication and Digital Signatures 53

Fields of a X.509 certificate

Chapter 5: Authentication and Digital Signatures 54

Data format

 To define a data structure which could be able to
travel by a network we need to use a data format
definition language (XDR, IDL…).

 X.509 makes use of ASN.1

 ASN.1 allows the definition of data structures

 Define coding rules to map those data structures to bits in
order to be transmitted from one system to another.

Chapter 5: Authentication and Digital Signatures 55

X.509v3 certificates in ASN.1

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT v1,

serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,

issuer Name,
validity Validity,

subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version must be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version must be v2 or v3

extensions [3] Extensions OPTIONAL
-- If present, version must be v3

}

Chapter 5: Authentication and Digital Signatures 56

X.509v3 certificates in ASN.1

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
notBefore UTCTime,

notAfter UTCTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

Chapter 5: Authentication and Digital Signatures 57

Certificate example X.509

Chapter 5: Authentication and Digital Signatures 58

X.509v3 extensions

 Extensions can be:

 Public (the same meaning for everybody)

 Private (particular to a specific community)

 Can be defined as:

 critical – must be understood by the verifier of the
certificate

 non-critical – may be omitted by the verifier

Chapter 5: Authentication and Digital Signatures 59

Public extensions

 Information about policies and keys

 Alternative names (non-X.500) for the
sender and subject of the certificate

 Restrictions dealing with the path of the
certificate

 Identifier of the certificate revocation list
where one has to check the legitimacy of
the certificate

Chapter 5: Authentication and Digital Signatures 60

Information about policies and keys

 For example, the use of a key:

 Sign

 Encrypt keys

 Encrypt data

 Sign certificates

 Sign certificate revocation lists

 For example, the identifier of the key of

the CA (if it has several keys)

Chapter 5: Authentication and Digital Signatures 61

Alternative names

 Names can be

 E-mail addresses

 DNS domain names

 Web URIs (Uniform Resource Identifier)

 IP addresses

 X.400 email addresses

 Registered identifiers

 Other

Chapter 5: Authentication and Digital Signatures 62

Restrictions about the path of the
certificate

 For example:

 To specify whether the subject of a certificate is a
CA or a final entity certificate chain

 To specify the maximum depth of the chain of
certificates

Chapter 5: Authentication and Digital Signatures 63

Certificate Revocation List
Identification

 Admits several formats:

 Entry of a directory

 E-mail address

 URL

Chapter 5: Authentication and Digital Signatures 64

Certificate Revocation List in X.509

 Signed list which contains the compromised certificates, and
therefore, revoked.

 CRL X.509v2
CertificateList ::= SEQUENCE {

tbsCertList TBSCertList,
signatureAlgorithm AlgorithmIdentifier,

signature BIT STRING }

TBSCertList ::= SEQUENCE {
version Version OPTIONAL,

-- if present, must be v2
signature AlgorithmIdentifier,

issuer Name,
thisUpdate UTCTime,
nextUpdate UTCTime,

revokedCertificates SEQUENCE OF SEQUENCE {
userCertificate CertificateSerialNumber,

revocationDate UTCTime,
crlEntryExtensions Extensions OPTIONAL }

OPTIONAL,
crlExtensions [0] Extensions OPTIONAL }

Version ::= INTEGER { v1(0), v2(1) }

Chapter 5: Authentication and Digital Signatures 65

Types of X.509 certificates

 Up to now we have explained the
certificates of names (PKC):

 My identity (and public key) signed by the CA

 Useful for authentication

 There is a second kind of certificates:
attribute certificates (AC).

 Associates attributes to a PKC.

 Useful for authorization

 Issued by a attribute authority (AA)

Chapter 5: Authentication and Digital Signatures 66

Two types of certificates?

 Usually, the identity of an entity is:

 Permanent in time

 Independent of the place

 The authorization by an entity to use
resources:

 It is locally issued and depends of the location

 Changes with time

Chapter 5: Authentication and Digital Signatures 67

PKI (Public Key Infrastructure)

Repository
of

certificates
and CRLs

Final user

Management
and operation
transactions

PKI
Users

PKI
Management

Management
transactions

Publication of
certificates

Management
transactions

Publication of certificates
Publication of CRL

Chapter 5: Authentication and Digital Signatures 68

PMI (Privilege Management Infrastructure)

SoA Source of Authority

Attribute authority (AA)

User

Privilege verifier

Assigns privileges

Delegates privileges

Trust

Shows privileges

Shows privileges

Chapter 5: Authentication and Digital Signatures 69

Attribute certificates

AttributeCertificate ::= SEQUENCE {

toBeSigned AttributeCertificateInfo,

algorithmIdentifier AlgorithmIdentifier,

encrypted BIT STRING

}

AttributeCertificateInfo ::= SEQUENCE {

version AttCertVersion, -- version is v2

holder Holder,

issuer AttCertIssuer,

signature AlgorithmIdentifier,

serialNumber CertificateSerialNumber,

attrCertValidityPeriod AttCertValidityPeriod,

attributes SEQUENCE OF Attribute,

issuerUniqueID UniqueIdentifier OPTIONAL,

extensions Extensions OPTIONAL

}

References to the name
certificate

Chapter 5: Authentication and Digital Signatures 70

Standard attributes

 Some attributes are defined as standard:

 Authentication information for the service

 Credentials to use the service

 Access identity

 Used by the verifier of attribute certificates

 Group and role

 Define the membership of the owner of the certificate
to a group

Chapter 5: Authentication and Digital Signatures 71

Privilege delegation

 Similarly to PKC a chain of attribute
certificate can be established

 Using extensions in the attribute
certificates, the SoA or an AA (with
privileges) can sign an attribute certificate
which allows the receiver to become, in
turn, an AA.

 You can limit the delegation depth

Exchange of
Session Keys using
Asymmetric
Algorithms

Chapter 5: Authentication and Digital Signatures 73

Encryption with Asymmetric Keys

 Can use any of the encryption methods
from chapter 4 to encrypt session keys to
be sent to the receiver

 For example:

RSAkses

kPB

RSA

kpB

kses

Chapter 5: Authentication and Digital Signatures 74

(1) (Ka)mod p

(2) (Ka)bmod p

(3) (Kab)a mod p

Aragorn Boromir

-1

Shamir

p mod)(KK (4) baab 11

1a , b p-2
coprimes (p-1)

Chapter 5: Authentication and Digital Signatures 75

Diffie-Hellman Key Exchange

1. Selection of a prime number n (public)
and g a primitive root of n

B
2. SB< n private

ngT BS
B mod3.

5. nTK BS

AB mod

B

S

A
SSSSS

BA KTggTK BBAABA)()(

A
2. SA< n private

ngT AS
A mod3.

nTK AS

BA mod5.

4. TB TA

