

Tema 9: Exposición al ruido laboral

- Dosis de exposición al ruido laboral.
- Protectores auditivos.
- Dosis de exposición al ruido. Ejercicio.

Dosis de exposición al ruido laboral

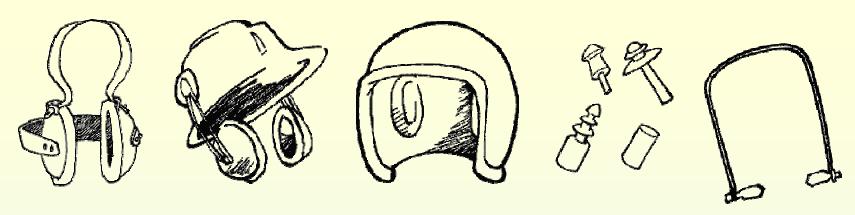
- Orientada a preservar al oído de pérdidas auditivas por daño.
- La norma ISO 1999, es aplicable en Europa. Considera aditiva la exposición y pondera con el criterio de que igual energía acústica equivale a igual exposición y no tiene en cuenta recuperaciones del oído durante períodos de bajo ruido. Luego, se basa en obtener un nivel medio equivalente durante la exposición. Recientemente:
 - Los valores se han actualizado: Directiva 2003/10/CE del Parlamento Europeo y su transposición a la normativa española, REAL DECRETO 286/2006 de 10 de marzo BOE nº 60 11-03-2006, ambos disponibles en "El ruido en el ambiente laboral", 2ª ed., monografía técnica sobre seguridad y salud en el trabajo nº 2 de la Comunidad Autónoma de la Región de Murcia, Consejería de Trabajo y Política Social, Instituto de Seguridad y Salud Laboral, 2006, G. Pérez López.
 - Por debajo de 80dB(A) no se considera que se inflinge daño, salvo ruidos impulsivos que superen 135 dB(C) relativo a 20 μPa.
 - A partir de 80dB(A) "valor inferior que da lugar a una acción" se exige que existan protectores auditivos disponibles, se informe a los trabajadores, se les forme en el uso del protector auditivo y se establezca un control médico (generalmente a través de audiometría).
 - El límite superior corresponde a $L_{Aeq,ref}$ = 87 dB(A) para una jornada laboral repetitiva de 8 horas de referencia (*nivel diario equivalente* $L_{Aeq,d}$). Se limitan los ruidos impulsivos a 140 dB(C).
 - Si la jornada laboral no es repetitiva, se usa el L_{Aeq} a lo largo de 5 días laborables (*nivel semanal equivalente* $L_{Aeq,s}$).
 - Un segundo nivel corresponde a 85 dB(A), o cuando *la presión instantánea* (posición "**Peak**") $L_{max} > 137$ dB(C). A partir de esta situación es obligatorio un programa de disposiciones encaminadas a evitar o a reducir la exposición.

Dosis de exposición al ruido laboral

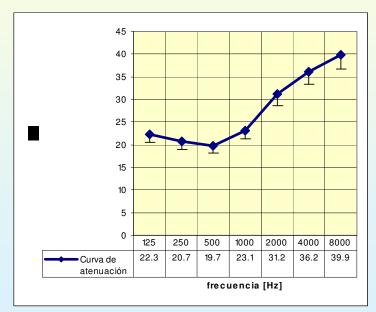
 Teniendo en cuenta la expresión anterior, ec. (&) la dosis en % es según ISO 1999 que considera el límite máximo 90 dB(A):

$$D\% = 100 \frac{E}{E_{100\%}} = \frac{100 \left(\sum_{i=1}^{n} I_{i} T_{i} \right)}{\left(\sum_{i=1}^{n} I_{i} T_{i} \right)_{100\%}} = 100 \frac{10^{\left(\frac{L_{eq}}{10} \right)}}{10^{\left(\frac{L_{eq} I_{100\%}}{10} \right)}} = 100 \cdot 10^{\left(\frac{L_{eq} - L_{eq} I_{100\%}}{10} \right)} = 100 \cdot 10^{\left(\frac{L_{eq} I_{100\%}}{10} \right)} = 100 \cdot 10^{\left(\frac{$$

Acústica Técnica


Protectores auditivos

- Caso de que las soluciones de ingeniería y los controles administrativos (colectivos) sean impracticables o mientras se ponen en marcha, se puede recurrir al uso de Equipos Protectores auditivos Individuales EPIs. Son fundamentalmente una barrera hermética portátil, que suele comprometer la comodidad y la inteligibilidad en la recepción de mensajes, aunque los hay con auriculares integrados. España: Real Decreto 773/1997.
- Son de tipo:
 - Orejera, mini-cascos acolchados que encierran la totalidad del pabellón auditivo, Ambos cascos se unen por una banda elástica ajustable que los mantiene contra el cráneo.
 - Tapón, que se introduce en el canal auditivo. Los hay premoldeados (con talla), formables (de espuma o caucho) y moldeables (de cera o silicona).
 - Semi-insertados, intermedio entre los anteriores. 2 tapones que no entran totalmente en el canal, unidos por una banda elástica, de cabeza o cuello, que los empuja hacia dentro.
- Características:
 - Atenuación: capacidad de aislamiento del protector (R, ec. (%)), función de la frecuencia y habitualmente entre 125 y 8.000 Hz. Se expresa en dB para cada banda de frecuencias (curva de atenuación). Debido a que la atenuación en el puesto de trabajo suele ser inferior a la obtenida en laboratorio, la protección real se corrige sobre la base de una:
 - Desviación estándar σ: obtenida del ensayo normalizado a 10 sujetos en tres ensayos diferentes, medida a las mismas frecuencias que la atenuación. Se expresa en dB.
 - La normativa exige que un % (95%, 98%, etc.) de la población que los use tenga garantizada la protección; luego, hay que corregir con σ rebajando la atenuación.


Protección en la banda = Atenuación - $k\sigma$

- Valores de k para un % de la población cubierta: $95\% \Rightarrow k = 2$. para el $98\% \Rightarrow k = 3$.
- Comodidad, altamente subjetiva.

Protectores auditivos

Fuente: Ministerio de Trabajo y Asuntos Sociales de España: http://www.mtas.es/insht/practice/gp_audit.htm

Atenuación por octavas (dB) de un protector auditivo, mostrando la desviación típica.

• Existen varios métodos para dar una única cifra de **factor de reducción** (SNR y NRR), suele designarse como R_A y suele ponderarse con valores A. El nivel acústico del ruido ambiente L_{iA} se reduce con este factor para dar el nivel global que percibe la persona protegida, (ec. (%) más adelante):

$$L_{A} = L_{iA} - R_{A}$$

Dosis de exposición al ruido. Ejercicio.

Ejercicio: Obtenga la dosis al ruido laboral según ISO 1999 en un puesto de trabajo si durante 2 horas se mide un $L_{A,eq}$ de 95 dB y durante 3 horas se mide 85 dB(A) de la misma manera. El resto del tiempo se midió un L_{Aeq} = 75 dB.

Solución: Aplicando la definición de dosis, ec. (a):

$$D\% = 100 \cdot 10^{\left[\log\left(\frac{1}{T}\sum_{i=1}^{n}T_{i}10^{\left(\frac{L_{A,eq_{i}}}{10}\right)}\right] - \left(\frac{L_{A,eq_{ref}}}{10}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{95}{2h \cdot 10^{10} + 3h \cdot 10^{10} + 3h \cdot 10^{10}}{8h}\right)\right] - \left(\frac{90}{10}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{6,32 \cdot 10^{9} + 9,49 \cdot 10^{8} + 9,48 \cdot 10^{7}}{8h}\right)\right] - \left(\frac{90}{10}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right] - \left(\frac{90}{10}\right)} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right] - \left(\frac{90}{10}\right)} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right]} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)} = 100 \cdot 10^{\left[\log\left(\frac{7,36 \cdot 10^{9}}{8}\right)\right]}$$

Puede observarse como:

- El efecto del primer periodo de 95 dB(A) en la dosis es dominante sobre los otros. Si lo eliminamos sale una dosis del 79%
- Los 75 dB(A) apenas afectan a la dosis. Si eliminamos esa contribución obtenemos 91 %.

Un trabajador recibe un ruido continuo en su puesto de trabajo durante todas las jornadas de 8 horas, estando situado en el centro de una nave industrial paralepipédica diáfana.

- Una primera fuente es una máquina próxima cuyo espectro de presión acústica se ofrece en bandas de octava.
- Un ventilador está situado en el centro de la pared lateral, según esquema en planta y puede considerarse una fuente isótropa. El fabricante ofrece los datos de potencia acústica hacia el lado interior en bandas de octava.

La nave tiene 5 m de altura, 20 m de anchura y 50 m de largo.

1.- Con los coeficientes de absorción de los materiales de construcción siguientes, estimar el nivel acústico equivalente que recibe el trabajador del ventilador si éste funciona a lo largo de 8 horas, o solamente 5 minutos. ¿Se sobrepasan los 85 dBA máximos indicados por la legislación?. ¿Cuánta es la dosis según ISO 1999?. Caso de sobrepasarse, ¿Qué medida propone?

Asumiremos Q = 2 en la hipótesis de que el ruido unilateral del altavoz se midió esféricamente. Si se hubiera medido con el ventilador sobre una pared, sería Q = 1.

f[Hz]	63	125	250	500	1.000	2.000	4.000	8.000
$L_{w}[dB]_{vent} = NP$	139	144	131	126	124	122	119	116
Paredes ladrillo, α	0,05	0,04	0,05	0,03	0,04	0,06	0,05	0,05
Suelo hormigón, α	0,01	0,01	0,01	0,02	0,02	0,03	0,03	0,03
Techo escayola, α	0,2	0,2	0,15	0,1	0,05	0,05	0,05	0,05

Usando la suma de campo libre y reverberante para el ventilador, Ec. (\$):

Usando la suma de campo libre y reverberante para el ventilador, Ec. (\$):
$$L_{p} = L_{w} + 10 \log \left(\frac{Q}{4\pi r^{2}} + \frac{4}{R} \right); \quad Q = 2 \quad ; \quad r = 25 \text{m} \quad ; \quad \overline{\alpha} = \frac{\sum_{j} \alpha_{j} S_{j}}{S} \quad ; \quad R = \frac{S\overline{\alpha}}{1 - \overline{\alpha}}$$
 Procedamos por octavas:

$$S_{ladrillo} = 2 \times 20 \times 5 + 2 \times 50 \times 5 = 700 \text{m}^2 \; \; ; \quad S_{hormig\acute{o}n} = 20 \times 50 = 1.000 \text{m}^2 \; \; ; \quad S_{escayola} = 20 \times 50 = 1.000 \text{m}^2 \; \; ; \quad S = 2.700 \text{m}^2 \; ; \quad S = 2.7$$

f[Hz]	63	125	250	500	1.000	2.000	4000	8.000
$\overline{\alpha} \times 10^2$	9,07	8,81	7,22	5,22	3,63	4,52	4,26	4,26
<i>R</i> [m ²]	270	261	210	149	102	128	120	120
$10\log\left(\frac{Q}{4\pi r^2} + \frac{4}{R}\right) \text{ [dB]}$	-18,1	-18	-17,0	-15,6	-14	-15	-14,7	-14,7
$(L_p)_{ m vent}$	121	126	114	110	110	107	104	101

y usando la suma logarítmica (de energía) por octavas: $(L_p)_{vent} = 10\log\sum 10^{L_{pk}/10} = 128 \text{ dB}$ Acústica Técnica

Ponderando este ruido de ventilador ponderado A:

f[Hz]	63	125	250	500	1.000	2.000	4000	8.000
A_k tabla (*) transpa 116	-26	-16	-9	-3	0	1	1	-1
$L_p + A_k [dBA]$	95	110	105	107	110	108	105	100

$$\text{... se obtiene el nivel total corregido A: } \left(L_p\right)_{vent} = 10\log\sum_k 10^{(L_{pk}+A_k)/10} = 116~\text{dB(A)}$$
 Se sobrepasan. Al ser > 100% dosis, es posible El ventilador funciona 5 min :
$$\left(L_p\right)_{eq} = 10\log\left(\frac{5/60\text{h}}{8\text{h}} \times 10^{116/10}\right) = 96~\text{dB(A)} > 90~\text{dB(A)}$$

2.- Calcule el nivel de presión acústica equivalente que recibe el trabajador cuando simultáneamente funcionan máquina y ventilador durante 8 horas, originando la máquina el siguiente espectro de presión acústica. ¿Se sobrepasan los 85 dB(A) máximos indicados por la legislación?. Proponga medidas.

f[Hz]	63	125	250	500	1.000	2.000	4000	8.000
$L_p[dB]_{m\acute{a}q}$	92	95	98	100	110	105	100	95
$L_{p}[dBA] = L_{p}[dB]_{m\acute{a}q} + A_{k}$	66	79	89	97	110	106	101	94

$$(L_p)_{maq} = 10 \log \sum_{k} 10^{(L_{pk} + A_k)/10} = 112 \text{ dB(A)}$$

Por ser 8 horas
$$(L_p)_{eq} = L_p$$
: $[(L_p)_{vent+maq}]_{eq} = 10\log(10^{(L_p)_{vent}/10} + 10^{(L_p)_{maq}/10}) = 118 \text{ dB(A)} > 90, 87 \text{ y } 85 \text{ dB(A)}$

3.- Si el trabajador lleva puestos protectores auditivos con la siguiente curva de atenuación, determinar si se cumple de esta manera la legislación laboral española. Tómese k = 1.

f[Hz]	63	125	250	500	1.000	2.000	4000	8.000
Atenuación R_A [dB]	10,2	11,2	19,1	25,7	29,2	32	36,8	39
Desviación σ [dB]	3,2	2,2	2,7	3,1	2,3	2,7	3,7	3,7
Protección R _A -k _σ [dB]	7	9	16,4	22,6	26,4	29,3	33,1	35,3
$(L_A)_{vent+maq}[dBA]$	95	110	105	108	113	110	107	101
" con protectores	88	101	88	85	86	81	74	66

$$\left[\left(L_p \right)_{vent+maq} \right]_{eq} = 10 \log \sum_{k} 10^{L_{pk}/10} = 102 \text{ dB(A)} > 90,87 \text{ y } 85 \text{ dB(A)}$$

Se sobrepasan, los protectores son insuficientes. Como medidas posibles y preferibles están el cambio o encapsulado de la máquina, el cambio de ventilador a uno menos ruidoso (al ser ambos ruidos parecidos la reducción máxima actuando sobre solo uno de ellos será en torno a 3 dB) y finalmente, el acondicionamiento acústico de la nave (más costoso) para aumentar α.

Cuestiones de autoevaluación, tema 9

- La dosis de ruido ¿atiende a la molestia en el puesto de trabajo o al daño auditivo?.
- La dosis de ruido en el puesto de trabajo, ¿considera el ruido acumulado en los periodos de descanso extralaborales?.
- El daño auditivo se valora a través de ¿la pérdida permanente del umbral de percepción auditiva o de la transitoria?.
- ¿Son los protectores auditivos personales el recurso preferente frente a un exceso de ruido permanente?.
- Los ruidos impulsivos intensos pueden causar daño permanente ¿V/F?.
- ¿Se emplea la ponderación frecuencial A para establecer la dosis?.
- Los protectores auditivos individuales proporcionan una atenuación que es muy reproducible durante el uso ¿V/F?.
- Sin la existencia de ruidos impulsivos, si el nivel medio equivalente durante la semana laboral repetitiva es de 83 dBA ¿Es necesario tamar alguna medida de cara a la protección auditiva, según normativa española?.
- Señale los tres niveles de referencia de cara al ruido en el ambiente laboral, de acuerdo a la Directiva 2003/10/CE en cuanto a ruido continuo y pico.

Acústica Técnica

Actividades propuestas, tema 9

- Haciendo uso de buscadores en Internet localice esquemas de la normativa laboral de protección frente al ruido en los EEUU y en Europa y contraste con lo descrito en estos apuntes y entre sí.
- Localice en Internet información acerca de cómo se miden los ruidos impulsivos mediante sonómetros y dosímetros laborales.
- Ciertas personas poseen la facultad de proteger su oído con un músculo frente a impulsos acústicos tras recibir el primero. Investigue este fenómeno.

Acústica Técnica