Universidad Carlos III de Madrid Calculus II Marina Delgado Téllez de Cepeda

CONSERVATIVE FIELDS

F is a gradient vector field if $\mathbf{F} = \nabla f$ for some real-valued function f.

$$\ln \mathbb{R}^3 \to \mathbf{F} = \mathbf{\nabla} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

 $\mathbf{F} \rightarrow \mathbf{conservative} \ \mathbf{vector} \ \mathbf{field}, \ f \rightarrow \mathbf{potential} \ \mathbf{of} \ \mathbf{F}.$

THEOREM

Suppose that $f : \mathbb{R}^3 \to \mathbb{R}$ is of class C^1 and that $\sigma : [a, b] \to \mathbb{R}^3$ is a piecewise C^1 path. Then $\int_{\sigma} \nabla f \cdot d\mathbf{r} = f(\sigma(b)) - f(\sigma(a)).$

Note. if $\mathbf{F} = -\boldsymbol{\nabla} U$ is a conservative force field:

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = -\int_C \nabla U \cdot d\mathbf{r} = U(\sigma(a)) - U(\sigma(b)).$$

U
ightarrow potential energy: gravitational, electric or elastic potential energy.

Def.

Let $D \subset \mathbb{R}^n$, D is **simply connected** if every closed curve on D can be contracted continuously to a point.

A simply connected set on \mathbb{R}^2 is one whose boundary is formed by a single closed simple curve.

Theorem

Let $D \subset \mathbb{R}^n$, b simply connected and **F** a C^1 vector field defined on D. The following are equivalent:

- **9 F** is a conservative vector field on D, that is, $\exists f \in C^2(D)$ such that $\mathbf{F} = \nabla f$. Where f is the potential of \mathbf{F} .
- 2) For every closed curve σ on D,

$$\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

③ For every σ_1 and σ_2 curves on D with same endpoints, we have

$$\int_{\sigma_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\sigma_2} \mathbf{F} \cdot d\mathbf{r}.$$

• n = 2. If $\mathbf{F} = (P, Q)$ then $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. n = 3. $\nabla \times \mathbf{F} = 0$. **Remark:** If $\mathbf{F} = (F_1, F_2, F_3) \in C^1 \rightarrow \text{curl of } \mathbf{F} \colon \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is:

$$\operatorname{curl} \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{vmatrix},$$

with the property: $\boldsymbol{\nabla} \times (\boldsymbol{\nabla} f) = 0.$