
Universidad Carlos III de Madrid
Calculus II

Marina Delgado Téllez de Cepeda

Unit 2

Integration in Several Variables

The n-dimensional integral

Here we will give the definition of the n-dimensional integral, and then we will parti-
cularize to the special case of n = 2, 3.

Definition 2.1. Let R be a n-dimensional rectangle, R = [a1, b1]×[a2, b2]×· · ·×[an, bn],
with ai, bi ∈ R, i = 1, . . . , n. We define the measure of R as

|R| = (b1 − a1)(b2 − a2) · · · (bn − an).

Note. For n = 1 the measure is just the length of the interval, for n = 2, the area, and
for n = 3, the volume.

Definition 2.2. A partition P of the n-dimensional rectangle R is a set of partitions
of each interval [ai, bi], i = 1, . . . , n. Such that R =

⋃N
i=1 Ri is a union of subrectangles.

Definition 2.3. Let f be a bounded function defined on an n-dimensional rectangle R
and P a partition of R such that R =

⋃N
i=1 Ri, we define the

Upper sum of f for the partition P → U(f, p) =
N∑

i=1

Mi|Ri|,

Lower sum of f for the partition P → L(f, p) =

N∑

i=1

mi|Ri|,

Riemann sum of f for the partition P → R(f, p) =

N∑

i=1

f(ci)|Ri|,

where Mi = sup{f(x) : x ∈ Ri}, mi = inf{f(x) : x ∈ Ri}, and ci ∈ Ri is any point,
i = 1, . . . , n.

Theorem 2.4. Let f be a bounded function on R, then

sup
P

{L(f, P )} ≤ inf
P
{U(f, P )}.
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Definition 2.5. Let f be a bounded function on R, if there exists a real number I
verifying

I = sup
P

{L(f, P )} = inf
P
{U(f, P )},

we say that f is Riemann integrable over R. The number I is called the

Riemann integral of f over R, and we will denote it by

I =

∫

R

f =

∫

R

f(x1, · · · , xn) dx1 · · · dxn =

∫ bn

an

· · ·

∫ b1

a1

f(x1, · · · , xn) dx1 · · · dxn.

Note. If f is integrable over R, then I is the unique number verifying

L(f, P ) ≤ I ≤ U(f, P ) forall given partition P of R.

Theorem 2.6. Let f be a bounded function on R, if there is a sequence of partitions
{Pn} of R such that

lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn),

we say that f is integrable over R and that
∫

R

f = lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn).

Theorem 2.7. f continuous on R ⇒ f integrable over R.

Theorem 2.8. If f is bounded on R and the set of discontinuities is formed by a finite
or countable union of graphs of continuous functions, then f is integrable over R.

Properties

Let f, g be integrable functions, c ∈ R. Then

1. f + g is integrable over R and

∫

R

f + g =

∫

R

f +

∫

R

g.

2. cf is integrable over R and

∫

R

cf = c

∫

R

f .

3. |f | is integrable over R and

∣∣∣∣
∫

R

f

∣∣∣∣ ≤
∫

R

|f |.

4. If f ≤ g on R, then

∫

R

f ≤

∫

R

g.

5. If R1, . . . , Rm are disjoint rectangles such that f is integrable over Ri and

Q = R1 ∪ R2 ∪ · · · ∪ Rm, then f is integrable over Q and

∫

Q

f =

m∑

i=1

∫

Ri

f .

All the definitions and theorems can be extended to more general regions than n-
dimensional rectangles, we will see it in the special case of n = 2, 3.
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Double Integrals

a

b

c d

z = f(x, y)

W

R

First of all, let us see the meaning of
a double integral. Consider a nonnega-
tive continuous function of two variables
f : R ⊂ R

2 → R, whose domain R is a
rectangle with sides parallel to the co-
ordinate axes. R is the cartesian prod-
uct
R = [a, b] × [c, d], the graph of
z = f(x, y), is a surface lying above the
rectangle R. This surface, the rectangle
R and the four planes x = a, x = b,
y = c and y = d, form the boundary
of a region W in the space, the double

integral of f over R is the volume of that region W . To compute this volume, we can

use Cavalieri’s Principle, or volume by parallel cross-sections. If we have a solid body
whose cross-sectional area is is given by A(x), for x ∈ [a, b], according to Cavalieri’s

Principle, its volume is given by

∫ b

a

A(x) dx. Therefore, cutting planes perpendicular

to the x plane, the cross-sectional area is A(x) =

∫ d

c

f(x, y) dy, obtaining the following

formula for the volume

V =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx.

This integral is known as an iterated integral, because it is obtained by integrating
with respect to y and then by integrating the result with respect to x. If we reverse
the roles of x and y, that is, cutting perpendicular planes to the y axis, we obtain that

V =

∫ d

c

∫ b

a

A(y) dy =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy.

If the function is not a nonnegative function, that is, it takes positive and negative
values, then we shall interpret the integral as a signed volume.

Now we will write the integral as a limit of a Riemann sum. Let us consider a
function f : R ⊂ R

2 → R defined on R = [a, b] × [c, d]. Take a regular partition, {Pn},

of order n: ∆xi = xi+1 − xi =
b − a

n
and ∆yj = yj+1 − yj =

d − c

n
. Thus, we can write

the Riemann sum as

R(f, Pn) =

n∑

i=1

n∑

j=1

f(cij)∆xi ∆yj =

n∑

i=1

n∑

j=1

f(cij)∆Aij ,

where ∆Aij = ∆xi ∆yj, cij ∈ Rij , and Rij denotes the ij-th subrectangle of the
partition of R. If the function is integrable (that is, it verifies the conditions given
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before for the n- dimensional case in Definition 2.5, applied to n = 2), then we have

the Definition of the double integral:

∫∫

R

f(x, y) dx dy =

∫∫

R

f(x, y) dA := lim
n→∞

R(f, Pn) = lim
n→∞

n∑

i=1

n∑

j=1

f(cij)∆Aij .

Theorem 2.9. Fubini’s Theorem. Let f : R ⊂ R
2 → R be an integrable function

with a rectangular domain R = [a, b] × [c, d]. Then,

∫∫

R

f(x, y) dA =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx.

The double integral over more general regions

D

Rf
∗(x, y) = 0

f
∗(x, y) = f (x, y)

If we wish to define the double integral on a region D more
general than a rectangle, first let us see that everything
works. We will extend the function f(x, y) defined on D
to a rectangle R, verifying D ⊂ R, such that the value of
the new function f∗ outside D is cero, that is

f∗(x, y) =

{
f(x, y), if (x, y) ∈ D,

0, if (x, y) /∈ D.

Therefore, with this extension, the value of the integral is the same as before, and all
the definitions, theorems and properties that we have seen, also hold for more general
regions: ∫∫

D

f(x, y) dA =

∫∫

R

f∗(x, y) dA.

Now we will define three special types of subset of the xy plane, and then we will extend
the notion of the double integral to them:
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Elementary regions in the plane

We have three types

• Type I: D1 = {(x, y) ∈ R
2 : x ∈ [a, b], g1(x) ≤ y ≤ g2(x)}, g1, g2 continuous.

• Type II: D2 = {(x, y) ∈ R
2 : y ∈ [c, d], h1(y) ≤ x ≤ h2(y)}, h1, h2 continuous.

• Type III: D3 : is one that is both type I and type II simultaneously.

D1

a b

g1

g2

D2

c

d

h1 h2

Any other region can be considered as the union of these elementary regions. To
compute a double integral over these elementary regions we have the following theorem:

Theorem 2.10. The double integral of an elementary region of

• Type I, is:
∫∫

D1

f(x, y) dA =

∫ b

a

dx

∫ g2(x)

g1(x)
f(x, y) dy.

• Type II, is:
∫∫

D2

f(x, y) dA =

∫ d

c

dy

∫ h2(y)

h1(y)
f(x, y) dx.

Changing the order of integration

If D is of type III we can use either both ways to compute the integral, sometimes one
of the iterated integrals can be more difficult to compute than the other, so it is very
useful to change the order of integration in these cases.
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Triple Integrals

As we did before for the double integral, consider a function f : R ⊂ R
3 → R, defined

on R = [a, b] × [c, d] × [e, l], a regular partition, {Pn}, of order n:

∆xi = xi+1 − xi =
b − a

n
, ∆yj = yj+1 − yj =

d − c

n
, and ∆zk = zk+1 − zk =

l − e

n
.

Then, we can write the Riemann sum as

R(f, Pn) =

n∑

i=1

n∑

j=1

n∑

k=1

f(cijk)∆xi ∆yj ∆zk =

n∑

i=1

n∑

j=1

n∑

k=1

f(cijk)∆Vijk,

where ∆Vij = ∆xi ∆yj ∆zk, cijk ∈ Rijk, and Rijk is the ijk-th rectangular box of the
partition of R. If the function is integrable then we have the

Definition of the triple integral:

∫∫∫

R

f(x, y, z) dx dy dz =

∫∫∫

R

f(x, y, z) dV := lim
n→∞

R(f, Pn) =

= lim
n→∞

n∑

i=1

n∑

j=1

n∑

k=1

f(cijk)∆Vijk.

Theorem 2.11. Fubini’s Theorem. Let f : R ⊂ R
3 → R be an integrable function

with a rectangular domain R = [a, b] × [c, d] × [e, l]. Then,

∫∫∫

R

f(x, y, z) dV =

∫ l

e

∫ d

c

∫ b

a

f(x, y, z) dx dy dz =

∫ d

c

∫ l

e

∫ b

a

f(x, y, z) dx dz dy

=

∫ d

c

∫ b

a

∫ l

e

f(x, y, z) dz dx dy =

= etc. (six posible iterated integrals).

Now, we will consider more general regions as we did in the two dimensional case.
Given f : W ⊂ R

3 → R, include the region on a rectangular box W ⊂ R and extend f
to a function f∗, defined on R, that agrees with f on W and is zero outside W . If R
is a box containing W , and ∂W consists of graphs of finitely many functions, then f∗

will be integrable and

∫∫∫

W

f(x, y, z) dV =

∫∫∫

R

f∗(x, y, z) dV.

The value of the integral is independent of the choice of R.
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Elementary regions in the space

We have four types

• Type I: Top and bottom are surfaces, z = h(x, y).

W1 = {(x, y, z) ∈ R
2 : x ∈ [a, b], g1(x) ≤ y ≤ g2(x), h1(x, y) ≤ z ≤ h2(x, y)},

where g1, g2, h1, h2 are continuous functions. The integral over W1 will be:

∫∫∫

W1

f(x, y, z) dV =

∫ b

a

dx

∫ g2(x)

g1(x)
dy

∫ h2(x,y)

h1(x,y)
f(x, y, z) dz.

Also Type I is

W̃1 = {(x, y, z) ∈ R
2 : y ∈ [c, d], k1(y) ≤ x ≤ k2(y), h1(x, y) ≤ z ≤ h2(x, y)},

where k1, k2, h1, h2 are continuous functions. The integral over W̃1 will be:

∫∫∫

fW1

f(x, y, z) dV =

∫ d

c

dy

∫ k2(y)

k1(y)
dx

∫ h2(x,y)

h1(x,y)
f(x, y, z) dz.

• Type II: Front and rear are surfaces, x = h(y, z). Change the roles of x ↔ z.

• Type III: Left and right are surfaces, y = h(x, z). Change the roles of y ↔ z.

• Type IV: Type I, II and III simultaneously.

Change of variables

Let us remember the formula of the one dimensional case:
∫ b

a

f(x) dx =

∫ g−1(b)

g−1(a)
f(g(t))g′(t) dt. Here, g′(t) → measures how the length of the

interval is changed by the transformation. g′(t)dt becomes |J(u, v)| du dv in

the two dimensional case and |J(u, v,w)| du dv dw in the three dimensional, where J

is de Jacobian Determinant, that is a measure of how the change of variables transfor-
mation distorts the area and the volume, respectively, of the region.

Definition 2.12. Let T : D∗ ⊂ R
2 → R

2 be a C1 transformation given by x = x(u, v)
and y = y(u, v). The Jacobian of T is the determinant of the derivative matrix
DT(x,y) of T:

J(u, v) =

∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
.
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Theorem 2.13. Change of variables for double integrals. Let D and D∗ be

elementary regions in the plane and let T : D∗ → D be of class C1 (that is: T,
∂T

∂u
,
∂T

∂v
continuous). Suppose that T is one-to-one in the interior of D∗. Furthermore, suppose
that D = T (D∗). Then, for any integrable function f : D → R, we have

∫∫

D

f(x, y)dxdy =

∫∫

D∗

f(x(u, v), y(u, v)) · |J(u, v)| du dv.

Note. |J(u, v)| is the absolute value of the Jacobian determinant.

Similarly for triple integrals:

Definition 2.14. Let T : W ∗ ⊂ R
3 → R

3 be a C1 transformation given by x =
x(u, v,w), y = y(u, v,w) and z = z(u, v,w). The Jacobian of T is the determinant of
the derivative matrix DT(x,y, z) of T:

J(u, v,w) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 2.15. Change of variables for triple integrals. Let W and W ∗ be

elementary regions in the space and let T : W ∗ → W be of class C1. Suppose that T is
one-to-one in the interior of D∗. Furthermore, suppose that W = T (W ∗). Then, for
any integrable function f : W → R, we have

∫∫∫

W

f(x, y, z)dxdydz =

∫∫∫

W ∗

f(x(u, v,w), y(u, v,w), z(u, v,w)) · |J(u, v,w)| du dv dw.

Note. There is an analogous formula for the n-dimensional case.
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Some Changes of variables

Polar coordinates in R
2:

{
x = r cos θ

y = r sin θ
, r ∈ [0,∞), θ ∈ [0, 2π] →

J(r, θ) =

∣∣∣∣∣∣

∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

cos θ −r sin θ

sinθ r cos θ

∣∣∣∣∣∣
= r.

Notice that is not one-to-one, because (0, θ) → (0, 0), but it is one-to-one in the interior
of D∗. We use polar coordinates when we have symmetry around the origin.

Cylindrical coordinates in R
3:





x = r cos θ

y = r sin θ

z = z

, r ∈ [0,∞), θ ∈ [0, 2π], z ∈ R →

J(r, θ, z) =

∣∣∣∣∣∣

cos θ −r sin θ 0
sinθ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r.

We use cylindrical coordinates when there is symmetry around the z-axis. We can define
analogous changes interchanging the roles of x ↔ z and y ↔ z, when the symmetry is
around the x or y axis, respectively.

Spherical coordinates in R
3:





x = r sin φ cos θ

y = r sin φ sin θ

z = r cos φ

, r ∈ [0,∞), θ ∈ [0, 2π], φ ∈ [0, π] →

J(r, θ, φ) =

∣∣∣∣∣∣

sin φ cos θ −r sin φ sin θ r cos φ cos θ
sin φsinθ r sin φ cos θ r cos φ sin θ

cos φ 0 −r sinφ

∣∣∣∣∣∣
= −r2 sin φ.

Thus |J(r, θ, φ)| = |r2 sin φ|. Useful when there is spherical symmetry around the origin.

Mean Value Theorems

Theorem 2.16 (Mean Value Theorem for double integrals). Suppose f : D → R is
continuous and D is an elementary region in R2. Then, for some point (x0, y0) ∈ D
we have that

∫∫

D

f(x, y) dA = f(x0, y0)A(D), where A(D) denotes the area of D.

Theorem 2.17 (Mean Value Theorem for triple integrals). Suppose f : W → R is
continuous and W is an elementary region in R3. Then, for some point (x0, y0, z0) ∈ W
we have that
∫∫∫

W

f(x, y, z) dV = f(x0, y0, z0)V ol(W ), where V ol(W ) denotes the volume of W.
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Applications

Areas and volumes

•

∫∫

D

f(x, y) dA. Volume under f and over the xy plane if f(x, y) ≥ 0 on D.

• A(D) =

∫∫

D

1 dA. Area of D. • V ol(W ) =

∫∫∫

W

1 dV. Volume of W .

Average values

• Discrete set: [xi]av =
1

n

n∑

i=1

xi.

• 1-dim:
1

b − a

∫ b

a

f(x) dx. Average of a function defined on [a, b].

• 2-dim:
1

A(D)

∫∫

D

f(x, y) dx dy. Average of a function defined on D.

• 3-dim:
1

V ol(W )

∫∫∫

W

f(x, y, z) dx dy dz. Average of a function defined on W .

Centers of mass

• Discrete set: rCM = (xCM , yCM , zCM ) =

∑n
i=1 Miri

M
. Where M is the total mass

of the system.

• 1-dim: xCM =
1

M

∫ b

a

xρ(x) dx. Linear body with mass density ρ(x) defined on

[a, b]. M =
∫ b

a
ρ(x) dx is the mass of the body.

• 2-dim: (xCM , yCM ) =
1

M




∫∫

D

xρ(x, y) dx dy,

∫∫

D

yρ(x, y) dx dy


.

Plane body with mass density ρ(x, y) defined on D.
M =

∫∫
D

ρ(x, y) dx dy is the mass of the body.
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• 3-dim:

xCM =
1

M

∫∫∫

W

xρ(x, y, z) dx dy dz,

yCM =
1

M

∫∫∫
W

yρ(x, y, z) dx dy dz,

zCM =
1

M

∫∫∫
W

zρ(x, y, z) dx dy dz,

Three-dimensional body with mass density ρ(x, y, z) defined on W .
M =

∫∫∫
W

ρ(x, y, z) dx dy dz is the mass of the body.

Moments of inertia of a rigid homogeneous body about an axis

The moment of inertia of a body about an axis measures its response to efforts to rotate
around the axis.

• Discrete mass m at a distance d of an axis: Iaxis = md2.

• 2-dim:

Iaxis =

∫∫

D

ρ(x, y)d2(x, y) dx dy, if the distance to the axis is given by d(x, y).

Ix =

∫∫

D

ρ(x, y)y2 dx dy, Iy =

∫∫

D

ρ(x, y)x2 dx dy.

• 3dim: Iaxis =

∫∫∫

W

ρ(x, y, z)d2(x, y, z) dx dy dz, if the distance to the axis is given

by d(x, y, z).

Ix =

∫∫∫

W

ρ(x, y, z)(y2 + z2) dx dy dz, Iy =

∫∫∫

W

ρ(x, y, z)(x2 + z2) dx dy dz,

Iz =

∫∫∫

W

ρ(x, y, z)(x2 + y2) dx dy dz.


