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Unit 1

Integration in One Variable

The Riemann Integral

Geometrically, we use the derivative of a function to get the slope of the function at a

given point. The integral of a function gives us the area under the curve.

a b

Ω

y

x

y = f(x)
The integral represents the area under
the graph of the function f(x) ≥ 0 and
over the x−axis on the interval x ∈ [a, b].

y = f(x)

x0 xi xn

Ωi

Dividing the whole interval into n subinter-
vals [x0, x1],[x1, x2],. . ., [xn−1, xn], where
a = x0 < x1 < x2 < . . . < xn−1 < xn = b.
We have now n vertical strips, the total area
is just the sum of the areas of each individual
vertical strip. We define

Mi := sup{f(x) : x ∈ [xi−1, xi]}

as the maximum value that f(x) takes on the
interval [xi−1, xi]. Similarly,

mi := inf{f(x) : x ∈ [xi−1, xi]}.
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y = f (x)

xi−1

Ωi

xi

ri

Ri
Now, let us consider the rectangles ri and Ri such
that

ri ≤ Ωi ≤ Ri,

then, we have that

area(ri) ≤ area(Ωi) ≤ area(Ri),

mi(xi − xi−1) ≤ area(Ωi) ≤ Mi(xi − xi−1).

Summing for all the intervals, we obtain that

m1(x1 − x0) + m2(x2 − x1) + · · · + mn(xn − xn−1) ≤ area(Ω) ≤
≤ M1(x1 − x0) + M2(x2 − x1) + · · · + Mn(xn − xn−1)

Let us now establish more precisely all these concepts:

Definition 1.1. A partition of the interval [a, b] is a finite sequence of numbers
P = {x0, x1, · · · , xn} such that

a = x0 < x1 < · · · < xn−1 < xn = b.

We can think that the points x0, x1, · · · , xn divide the interval [a, b] into the subin-
tervals [x0, x1], [x1, x2], · · · , [xn−1, xn]. The number n of intervals can be as small as 1
or as large as we wish.

Definition 1.2. Let f be a bounded function defined on [a, b] and P = {x0, x1, · · · , xn}
a partition of [a, b], define

mi = inf{f(x) : x ∈ [xi−1, xi]},
Mi = sup{f(x) : x ∈ [xi−1, xi]}.

We call the Lower sum of f for P on [a, b], the number

L(f, P ) =

n
∑

i=1

mi(xi − xi−1) =

n
∑

i=1

mi∆xi,

and the Upper sum of f for P on [a, b], the number

U(f, P ) =
n

∑

i=1

Mi(xi − xi−1) =
n

∑

i=1

Mi∆xi.

We observe from the definition that for any partition P we have the property

L(f, P ) ≤ U(f, P ).
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Definition 1.3. Let P and P ′ be any two partitions of [a, b], we say that P ′ is a
refinement of P or that is finer than P if every point of P is contained in P ′, that
is, if every subinterval of P is contained in P ′.

Lemma 1.4. If P ′ is finer than P , then we can assert that

L(f, P ) ≤ L(f, P ′),

U(f, P ′) ≤ U(f, P ).

The case L(f, P ) ≤ L(f, P ′) follows from the fact that the minimum of f on an interval
is less than or equal to the minimum on any interval contained in it. We can proof the
second case in a similar way.

Theorem 1.5. If f is a bounded function on [a, b] and P1, P2, are two any partitions
of [a, b]. Then,

L(f, P1) ≤ U(f, P2).

Proof. To prove this, let Q be a partition of the interval that refines both P1 and P2,
which we can arrange by using all the subdivision points of both of them Q = P1 ∪P2.
Then,

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2).

Definition 1.6. Let f be a bounded function on [a, b], we say that f is Riemann
integrable on [a, b] if

sup
{

L(f, P ), P partition of [a, b]
}

= inf
{

L(f, P ), P partition of [a, b]
}

.

In this case, we define the Riemann Integral as the common value, and we will denote

it by
∫ b

a
f(x) dx =

∫ b

a
f.

We will call it also the Definite Integral.

From now on, we will omit the word “Riemann”, and we will just use the words
integrable and integral. The function which is being integrated is called the integrand,
and the numbers a and b are called limits of integration.

If f is integrable, we have the following property for any partition P of the interval:

L(f, P ) ≤
∫ b

a
f ≤ U(f, P ).

Theorem 1.7. [Characterization of Riemann integrable functions] Let f be a bounded
function on [a, b]. f is integrable if and only if ∀ǫ > 0 there is a partition Pǫ of [a, b]

such that 0 ≤ U(f, Pǫ) − L(f, Pǫ) < ǫ.
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Theorem 1.8. Let f be a continuous function on [a, b], a finite interval, then f is
integrable on [a, b].

Proof. Continuity means that ∀ǫ > 0 there exists a δ > 0 such that ∀x, y ∈ [a, b]
verifying that |x − y| < δ ⇒ |f(x) − f(y)| < ǫ. We can take partitions P such that
|xi − xi−1| < δ, then, by Theorem (1.7),

U(f, Pǫ) − L(f, Pǫ) =
n

∑

i=1

(Mi − mi)(xi − xi−1) <
n

∑

i=1

ǫ(xi − xi−1) = ǫ(b − a) = ǫ′,

verifies the Riemann condition, thus, it is integrable.

We can generalize the previous theorem:

Theorem 1.9. Let f be a bounded function with a finite or countable number of points
of discontinuity on [a, b], a bounded interval, then f is integrable.

continuous ⇒ integrable
integrable ; continuous

We can generalize the definition of Lower and Upper sums to the so called Riemann
sums, where we approximate the value of the function on each subinterval by any of
the values taken by f on it:

Definition 1.10. Let f be bounded on [a, b] and P = {xi}n
i=0 a partition of the interval.

We call the Riemann sum of f for the partition P , the value

R(f, P ) =

n
∑

i=1

f(ci)(xi − xi−1) =

n
∑

i=1

f(ci)∆xi, where ci ∈ [xi−1, xi] is any point.

Note. The notation
∫ b
a f(x) dx for the integral is due to Leibniz. Where the symbol

“
∫

”, called an integral sign, is an elongated S which replaces the Greek symbol “Σ” of
ordinary summation. Similarly, the “dx” replaces the “∆xi” of the summation formula:

n
∑

i=1

f(ci)∆xi →
∫ b

a
f(x) dx

Theorem 1.11. Let f be continuous on [a, b]. Then, for any ǫ > 0 there exists δ > 0,
such that for any partition P = {xi}n

i=0 of [a, b] verifying that |xi − xi−1| < δ, for
ci ∈ [xi−1, xi] and for any Riemann sum, we have that

∣

∣

∣

∣

R(f, P ) −
∫ b

a
f

∣

∣

∣

∣

< ǫ.

Proof. As f is continuous, it is integrable, so U(f, P ) − L(f, P ) < ǫ.

Since L(f, P ) ≤
∫ b

a
f ≤ U(f, P ) and L(f, P ) ≤ R(f, P ) ≤ U(f, P ), we have that

∣

∣

∣

∣

R(f, P ) −
∫ b

a
f

∣

∣

∣

∣

< |U(f, P ) − L(f, P )| =
n

∑

i=1

(Mi − mi)(xi − xi−1) < ǫ′(b − a) = ǫ∗.
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The last theorem says that we can approximate the value of the integral of a con-
tinuous function as much as we want by a Riemann sum, just by making the partition
small enough.

Let us establish now some basic properties of the integral:

Properties of the Integral

1.

∫ b

a
c1f + c2g = c1

∫ b

a
f + c2

∫ b

a
g.

2.

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

3.

∫ b

a
f = −

∫ a

b
f .

4.

∫ a

a
f = 0.

5.

∫ b

a
fg 6=

∫ b

a
f

∫ b

a
g.

6. f ≥ g ⇒
∫ b

a
f ≥

∫ b

a
g.

7. f ≥ 0 ⇒
∫ b

a
f ≥ 0,

If f ≤ 0 ⇒
∫ b

a
f ≤ 0.

8.
∣

∣

∣

∫ b

a
f
∣

∣

∣
≤

∫ b

a
|f |.

9. m ≤ f(x) ≤ M, ∀x ∈ [a, b] ⇒

m(b − a) ≤
∫ b

a
f(x) ≤ M(b − a).

Theorem 1.12 (First Mean Value Theorem for integrals). Let f be continuous on
[a, b]. Then, ∃x0 ∈ [a, b] such that

∫ b

a
f = f(x0)(b − a).

1

b − a

∫ b

a
f is called the average of f over [a, b].

Theorem 1.13 (Second Mean Value Theorem for integrals). Let f be continuous on
[a, b] and g integrable such that g does not change sign on [a, b]. Then, ∃x0 ∈ [a, b]
such that

∫ b

a
fg = f(x0)

∫ b

a
g.
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The Indefinite Integral

Geometrically the problem of differentiation arises when we want to find the slope of
a curve and the problem of integration when computing the area under a curve, but

Newton found out that differentiation and integration are inverse processes:

• Differentiation: Given a function F (x), find a function f(x) satisfying

dF (x)

dx
= f(x).

• Integration: Given a function f(x), find a function F (x) satisfying

dF (x)

dx
= f(x).

A function F (x) solving the second problem is called an antiderivative, primitive or
an indefinite integral of f(x).
The problem of differentiation has always solution but the problem of integration does
not always have a solution and, in general, is more complicated.

Definition 1.14. Let f be integrable on [a,b], then

F (x) =

∫ x

a
f(t) dt,

is an antiderivative of f(x) defined on [a, b].

Theorem 1.15. f integrable on [a, b] ⇒ F continuous on [a, b].

Proof. If f is bounded on [a, b], then |f | ≤ M on [a, b]. Thus,

|F (x) − F (y)| =

∣

∣

∣

∣

∫ x

a
f(t) dt +

∫ a

y
f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

y
f(t) dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ x

y
M dt

∣

∣

∣

∣

= |M(x − y)| =

= M |x − y|.

Now, ∀x, y ∈ [a, b] and ∀ǫ ≥ 0, ∃δ ≥ 0 such that |x − y| < δ. Therefore,
|F (x) − F (y)| = M |x − y| < Mδ = ǫ, thus F is continuous on [a, b].

Theorem 1.16. The Fundamental Theorem of Calculus, FTC

Let f be integrable on [a, b] and F (x) =

∫ x

a
f(t) dt defined ∀x ∈ [a, b].

If f is continuous at c ∈ [a, b] ⇒ F is differentiable at c and F ′(c) = f(c).
If f is continuous ∀x ∈ [a, b] ⇒ F is differentiable ∀x ∈ [a, b] and F ′(x) = f(x).
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Proof. If f is continuous at c ∈ [a, b], then it attains its maximum and minimum on
[c, c + h], so we have the following inequalities:

mh ≤ f ≤ Mh ⇒

∫ c+h
c mh ≤

∫ c+h
c f ≤

∫ c+h
c Mh ⇒

∫ c+h
c mh

h
≤

∫ c+h
c f

h
≤

∫ c+h
c Mh

h
⇒

mh ≤ F (c + h) − F (c)

h
≤ Mh.

Now, taking the limit h → 0 and comparing the first and last equations, we get

lim
h→0

F (c + h) − F (c)

h
= F ′(c) = f(c) = lim

h→0
mh = lim

h→0
Mh.

Theorem 1.17 (Barrow’s Rule). Let f and g be continuous on [a, b] and g differentiable
on (a, b), such that g′(x) = f(x), ∀x ∈ (a, b). Then,

∫ b

a
f =

∫ b

a
g′ = g(b) − g(a).

Proof.

F (x) =

∫ x

a
f ⇒ F ′ = g′ ⇒ F = g + C, then,

∫ a

a
f = F (a) = g(0) + C ⇒ C = −g(a).

F (x) = g(x) − g(a) ⇒ F (b) = g(b) − g(a), therefore,
∫ b

a
f = F (b) = g(b) − g(a).

Remark. A function can be integrable without being the derivative of a function.

Theorem 1.18. Let f be integrable on [a, b] and f = g′ for some function g, then

∫ b

a
f =

∫ b

a
g′ = g(b) − g(a).
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Theorem 1.19 (FTC generalized). Let F (x) =

∫ x

a
f , with f integrable,

• Let H(x) = F (g(x)) =

∫ g(x)

a
f , then if g is differentiable, we have that

H ′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).

• Let H(x) =

∫ g(x)

l(x)
f , then if g and l are differentiable, we have that

H ′(x) = f(g(x))g′(x) − f(l(x))l′(x).

Integration Techniques

Let us see here the integration techniques for definite and indefinite integrals, we will
start with the basic antiderivatives:

Basic Antiderivatives

∫

xn =
xn+1

n + 1
+ c, n 6= −1

∫

dx

x
= ln |x| + c

∫

eax =
1

a
eax + c

∫

sin x = − cos x + c
∫

cos x = sin x + c

∫

1

cos2 x
= tan x + c

∫

1

sin2 x
= − cot x + c

∫

1

x2 + a2
=

1

a
arctan

(x

a

)

+ c
∫

1√
a2 − x2

= arcsin
(x

a

)

+ c

∫

sinh x = cosh x + c
∫

cosh x = sinhx + c

Integration by change of variables (CV)

Let g be defined on [a, b] such that g′ is continuous on [a, b], let f be integrable on
[g(a), g(b)]. Then,

• Definite integral:

∫ g(b)

g(a)
f(x) dx =

∫ b

a
f(g(t))g′(t) dt

• Indefinite integral:

∫

f(x) dx =

∫

f(g(t))g′(t) dt → undo the change
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Integration by parts (IBP):

∫

udv = uv −
∫

v du

Let f and g be defined on [a, b] such that f ′ and g′ are continuous on [a, b]. Then,

• Definite integral:

∫ b

a
fg′ = fg

∣

∣

∣

b

a
−

∫ b

a
f ′g

• Indefinite integral:

∫

fg′ = fg −
∫

f ′g

Rational functions: Partial Fraction Decomposition

∫

P (x)

Q(x)
dx → P, Q polynomials

• If deg(P ) ≥ deg(Q) → divide the polynomials:
P (x) = Q(x)C(x) + R(x) →

∫

P (x)

Q(x)
dx =

∫

C(x) +

∫

R(x)

Q(x)
dx.

•
∫

R(x)

Q(x)
dx with deg(R(x)) < deg(Q(x)):

i) First, check that the integral is not immediate:

ln type →
∫

2x + 3

x2 + 3x + 8
dx = ln |x2 + 3x + 8| + c.

arctan type →
∫

dx

x2 + 8
=

1√
8

arctan
x√
8

+ c.

ii) If not → Do partial fraction decomposition.

Factor in Term in
denominator partial fraction decomposition

x − b
A

x − b

(x − b)k
A1

x − b
+

A2

(x − b)2
+ · · · Ak

(x − b)k
, k = 1, 2, 3, · · ·

(x−a)2 +b2 Ax + B

(x − a)2 + b2

(

(x−a)2+b2
)k A1x + B1

(x − a)2 + b2
+ · · · + Akx + Bk

(

(x − a)2 + b2
)k

, k = 1, 2, 3, · · ·
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For each factor in the denominator add the corresponding term of the table and compute
the unknowns (A, B, A1, B1, A2, B2, · · · ) by setting equal denominators. After,
compute the integrals of each term.

Irrational functions or integrals involving roots

Do a change of variables that eliminates the roots.

∫

R

[

(ax + b

cx + d

)p1/q1

, · · · ,
(ax + b

cx + d

)pr/qr

]

→ tm =
ax + b

cx + d
, m = lcm(q1, · · · , qr).

R =
P

Q
is a rational function of its variables, P, Q are polynomials.

lcm → least common multiple.

Integrals involving trigonometric functions

•
∫

sin2n x,
∫

cos2n x → double angle formulas: cos 2x = cos2 x − sin2 x.

•
∫

sin2n+1 x =
∫

sin2n x sin x =
∫

(1 − cos2 x)n sin x.

•
∫

cos2n+1 x =
∫

cos2n x cos x =
∫

(1 − sin2 x)n cos x.

•
∫

sinmx cos nx → trigonometric formulas.

•
∫

R(sin x, cos x) →

R odd in sin x → t = cos x
R odd in cos x → t = sinx
R even in cos x and sin x → t = tan x

Rest of problems→ t = tan
(x

2

)

,

[

sin x =
2t

1 + t2
, cos x =

1 − t2

1 + t2
, dx =

2dt

1 + t2

]

Some change of variables

1.

∫

R(x,
√

x2 + a2) → x = a tan t

2.

∫

R(x,
√

x2 − a2) → x =
a

cos t

3.

∫

R(x,
√

a2 − x2) → x = a sin t
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Applications of the Integral: Areas, Volumes and Length

Areas

• Area between the graph of a function, the x-axis, between a and b:

A =

∫ b

a
|f | dx.

• Area between the graphs of two functions f, g, between a and b:

A =

∫ b

a
|f − g| dx.

• Area using parametric equations:
The area between the graph of x = x(t), y = y(t) and the x-axis between t = t0
and t = t1 is:

A =

∣

∣

∣

∣

∫ t1

t0

y(t)x′(t) dt

∣

∣

∣

∣

.

• Area using polar coordinates:
The area of the graph of r = r(θ) between θ = α and θ = β is

A =

∫ β

α

1

2
r2(θ) dθ.

Volumes

• Volume by parallel cross-sections: if A(x) is the area of parallel cross-sections
over the entire length of a solid, the volume between x = a and x = b is

V =

∫ b

a
A(x) dx.

• The Disk method: the volume of a solid of revolution obtained by rotating
|f(x)| about the x-axis between x = a and x = b is

V =

∫ b

a
π(f(x))2 dx.

• The Shell method: the volume of a solid of revolution obtained by rotating
f(x) ≥ 0, x ∈ [a, b], a ≥ 0, about the y-axis is

V = 2π

∫ b

a
xf(x) dx.
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Lengths

• The length of an arc of a curve f(x) between x = a and x = b is

L(f) =

∫ b

a

√

1 + (f ′(x))2 dx.

• If the curve is given in parametric form, the length is

L =

∫ t1

t0

√

(x′(t))2 + (y′(t))2 dt.

Other application: Computation of Limits

With the concept of an integrable function we can compute some type of limits, let us
see the following theorem and how can we apply it for our purpose.

Theorem 1.20. If f is a bounded function on [a, b] and there is a sequence of partitions
{Pn} of [a, b] such that

lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn).

Then, f is integrable on [a, b] and

∫ b

a
f = lim

n→∞

U(f, Pn) = lim
n→∞

L(f, Pn) = lim
n→∞

R(f, Pn).

Let us see how can we use this theorem to compute, for instance, the following limit:

lim
n→∞

[

n

n2 + 12
+

n

n2 + 22
+ · · · + n

n2 + n2

]

.

Let us consider the Riemann Sum using the right point for the partition of the interval
[0, 1] Pn = {i/n}n

i=1 where δx = 1/n, we have the identity

∫ 1

0
f = lim

n→∞

1

n

n
∑

i=1

f

(

i

n

)

.

The idea is to identify the sum as the lower, upper or Riemann sum of an integral and
then, to compute the integral. For the given example, reads as

lim
n→∞

[

n

n2 + 12
+

n

n2 + 22
+ · · · + n

n2 + n2

]

= lim
n→∞

1

n

n
∑

i=1

f

(

i

n

)

=

lim
n→∞

[

1

1 + (1/n)2
+

1

1 + (2/n)2
+ · · · + 1

1 + (1/n)2

]

→ f(x) =
1

1 + x2
⇒

lim
n→∞

[

n

n2 + 12
+

n

n2 + 22
+ · · · + n

n2 + n2

]

=

∫ 1

0
f =

∫ 1

0

1

1 + x2
= arctan x

∣

∣

∣

1

0
=

π

4
.
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Improper Integrals

An improper integral is one for which the integrand goes to ±∞ between the limits of
integration, or which has ∞ and/or −∞ as a limit of integration. That is,

f is not bounded or the interval is not bounded:

∫

∞

a
f(x) dx,

∫ b

−∞

f(x) dx,

∫ b

a
f(x) dx, | lim

x→x0

f(x)| = ∞, for some x0 ∈ [a, b].

Improper integrals are evaluated using limits. If the limit exists and is finite, we say
that the integral converges, otherwise we say that diverges.

Definition 1.21. Let f be a function defined on an infinite interval and locally in-
tegrable (that is, it is integrable on each finite subinterval), we define the improper
integral of f as:

∫

∞

a
f(x) = lim

N→∞

∫ N

a
f(x), if the limit is finite,

∫ b

−∞

f(x) = lim
N→∞

∫ b

−N
f(x), if the limit is finite,

∫

∞

−∞

f(x) =

∫ a

−∞

f(x) +

∫

∞

a
f(x), if both are finite.

From the definition, we see that an improper integral is a limit of integrals, so it is a
double limit, because an integral itself is a limit.
We cannot compute the last type as the following limit:

∫

∞

−∞
f(x) 6= limN→∞

∫ N
−N f(x),

these equality only holds if the improper integral converges. If it diverges, it is not true,
let us see it in the following example

lim
N→∞

∫ N

−N
x = lim

N→∞

[x2

2

]N

−N
= 0, but

∫

∞

−∞

x = lim
N→∞

[x2

2

]0

−N
+ lim

N→∞

[x2

2

]N

0
→ both limits diverge.
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Definition 1.22. Let f be a function verifying limx→α |f(x)| = ∞ for some α ∈ (a, b),
a finite interval, such that f is integrable on each closed subinterval of [a, b] that does
not contain α. We define the improper integral of f as

∫ b

α
f(x) = lim

ǫ→0+

∫ b

α+ǫ
f(x), if the limit is finite,

∫ α

a
f(x) = lim

ǫ→0+

∫ α−ǫ

a
f(x), if the limit is finite,

∫ b

a
f(x) =

∫ b

α
f(x) +

∫ α

a
f(x), if both are finite.

If any of these quantities is infinite or does not have a limit, we say that the integral
diverges.

Again, we cannot compute the last type as a single limit, we must compute both limits.

Definition 1.23. Consider
∫

f as one of the three types of improper integrals that we
have seen. The improper integral

∫

f is said absolutely convergent (A. C.) if
∫

|f |
converges.
If the improper integral

∫

|f | diverges but
∫

f converges, then it is said conditionally
convergent (C. C.)

Note. A. C. ⇒ Convergent

Sometimes it is not easy to see if an improper integral converges or diverges, but we can
compare with integrals whose behavior is known. Let us see some theorems to make
the comparisons, we will work only the first type of improper integrals (

∫

∞

a f):

Theorem 1.24. If
∫ b
a f exists ∀b ≥ a and |f(x)| ≤ g(x), ∀x ≥ M , for certain M ∈ R.

Then, we have the following statements:

∫

∞

a
g conv. ⇒

∫

∞

a
f conv. (A. C.), and

∫

∞

a
f ≤

∫

∞

a
g,

∫

∞

a
f div. ⇒

∫

∞

a
g div.

Theorem 1.25. Let f, g be locally integrable functions such that lim
x→∞

f(x)

g(x)
= l, and

f(x), g(x) ≥ 0, for x ≥ M , for certain M ∈ R. Then, we have the following statements:

1. If l = constant ∈ (0,∞), then

∫

∞

a
g conv. ⇐⇒

∫

∞

a
f conv.

2. If l = 0, then

∫

∞

a
g conv. ⇒

∫

∞

a
f conv.

3. If l = ∞, then

∫

∞

a
g div. ⇒

∫

∞

a
f div.
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Remark. The two previous theorems are also valid for the other types of improper
integrals, (when x → −∞ or x → α ∈ R), modifying the hypotheses appropriately.

To finish, let us see the following theorem connecting integrals with series:

Theorem 1.26 (Integral test for series). Consider f ≥ 0 a monotone decreasing func-
tion defined for x ≥ 1. Let an = f(n), then

∞
∑

n=1

an and

∫

∞

1
f(x) dx,

have the same behavior, or both converge or both diverge.


