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Unit 4

Line and Path Integrals

The Path Integral

Definition 4.1. A path or a curve C is the image of a map σ : [a, b] → R
n,

σ(t) = (x1(t), x2(t)), x3(t)). σ is called a parametrization of C.
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σ(b)
σ
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t

Definition 4.2. Consider the path σ : [a, b] → R
3, where σ is of class C1, and the

composite function f ◦ σ(t) = f(x(t), y(t), z(t)), such that f ◦ σ(t) is continuous on

[a, b]. The path integral or the integral of f along σ is

∫

σ

fdr =

∫ b

a

f(σ(t))‖σ′
(t)‖dt =

∫ b

a

f(x(t), y(t), z(t))
√

(x′(t))2 + (y′(t))2 + (z′(t))2dt.

If σ(t) is only piecewise C1
or f(σ(t)) is piecewise continuous, we define the path

integral by breaking [a, b] into pieces over which f(σ(t))‖σ′
(t)‖ is continuous, and

summing the integrals over the pieces.

We give the definitions in R
3

but they are valid in Rn
by making the natural changes.

Note. L(σ) =
∫

σ
1dr gives us the length of the curve.
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The Line Integral

Now we will consider vector fields, that is, functions F : R
n → R

n
, that is, at each point

we have a vector.

Definition 4.3. Let F be a vector field on R3 which is continuous on the C1 path

σ : [a, b] → R
3. We define the line integral of F along σ as

∫

σ

F · dr =

∫ b

a

F(σ(t)) · σ′
(t)dt =

∫ b

a

F(x(t), y(t), z(t)) · (x′
(t), y′(t), z′(t))dt.

Notation: F = (F1, F2, F3) →
∫

σ
F · dr =

∫

σ
F1dx + F2dy + F3dz.

Note. If F is a force field (electric, gravitational,. . . ) W =

∫

σ

F · dr → is the work

done by the force field F on a particle moving along a path σ : [a, b] → R
3
.

Definition 4.4. Let h : I = [a, b] → I1 = [a1, b1] be a C1 real-valued function that is

a one-to-one map of an interval I onto another interval I1. Let σ : I1 → R
3 be a C1

path. Then we call the composition ρ = σ ◦h : I → R
3 a reparametrization of σ and

has the same image in R
3 as σ. The reparametrization is

• orientation preserving: if ρ(a) = σ(a) and ρ(b) = σ(b).

• orientation reversing: if ρ(a) = σ(b) and ρ(b) = σ(a).

Theorem 4.5. Let σ be a piecewise c1 and f a continuous function on the image of

σ, and let ρ be any reparametrization of σ. Then

∫

σ

fdr =

∫

ρ

fdr.

Let F be a vector field continuous on the C1 path σ : [a1, b1] → R
3 and let ρ : [a, b] → R

3

be a reparametrization of σ, then

∫

ρ

F · dr = +

∫

σ

F · dr, if ρ is orientation preserving,

= −

∫

σ

F · dr, if ρ is orientation reversing.

The previous theorem also holds for piecewise C1
paths by breaking up the intervals

into segments on which the paths are of class C1
and summing the integrals over

separate intervals.
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Definition 4.6. We define a simple curve C to be the image of a piecewise C1 map

σ : I = [a, b] → R
3 that is one-to-one on an interval I. Thus, it is a curve that does

not intersect itself.

σ(a)

σ(b)

Simply curve

σ(a)

σ(b)

Nonsimply curve

σ(a) and σ(b) are called the endpoints of the curve. Each simple curve C has two

orientation or directions associated with it. The simple curve C together with a sense

of direction is called an oriented simple curve.

Definition 4.7. A simple closed curve C is the image of a piecewise C1 map σ : I =

[a, b] → R
3 that is one-to-one on [a, b) and satisfies σ(a) = σ(b).

σ(a) = σ(b)

Simply curve

σ(a) = σ(b)

Nonsimply curve

Simple closed curves have two possible orientations: counterclockwise or positive and

clockwise or negative.

Notation: If C is a closed curve, then
∫

σ
F · dr =

∮

σ
F · dr → is called also the

circulation of F around C.

If C is an oriented simple curve or an oriented closed curve, we define

∫

C

fdr =

∫

σ

fdr,

∫

C

F · dr =

∫

σ

F · dr.

Where σ is any orientation-preserving parametrization of C.
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C1

C2

C3

C4

If C is a curve (or an oriented curve) that is

made up of several (oriented) component curves

Ci, i = 1, · · · , k, we can parametrize C by para-

metrizing the pieces C1, , · · · , Ck separately. Then,

our integral will be

∫

C

F ·dr =

∫

C1

F ·dr+

∫

C2

F ·dr+ · · ·+

∫

Ck

F ·dr.

One reason for writing a curve as a sum of components is that it may be easier to

parametrize the components Ci individually than it is to do it as a whole.

Conservative Fields

Recall that a vector field F is a gradient vector field if F = ∇f for some real-valued

function f . Thus, in R
3

this reads as F =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

. We call F a conservative

vector field and f is called the potential of F.

We have the following generalization of the Fundamental Theorem of Calculus:

Theorem 4.8. Suppose that f : R
3 → R is of class C1 and that σ : [a, b] → R

3 is a

piecewise C1 path. Then
∫

σ

∇f · dr = f(σ(b)) − f(σ(a)).

Note. if F = −∇U is a conservative force field, the work done by F on a particle does

depend only on the endpoints of the curve and it does not depend on the trajectory:

W =

∫

C

F · dr = −

∫

C

∇U · dr = U(σ(a)) − U(σ(b)).

Where U denotes the potential energy: gravitational, electric or elastic potential energy.

Definition 4.9. Let D ⊂ R
n, D is simply connected if every closed curve on D can

be contracted continuously to a point.

A simply connected set on R
2

is one whose boundary is formed by a single closed

simple curve.

D1

D2

Simply connected sets

D3

D4

Nonsimply connected sets
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Theorem 4.10. Let D ⊂ R
n, b simply connected and F a C1 vector field defined on

D. The following are equivalent:

1. F is a conservative vector field on D, that is, ∃f ∈ C2
(D) such that F = ∇f .

Where f is called the potential of F.

2. For every closed curve σ on D,

∫

σ

F · dr = 0.

3. For every σ1 and σ2 curves on D with same endpoints, we have

∫

σ1

F · dr =

∫

σ2

F · dr.

4. n = 2. If F = (P,Q) then
∂Q

∂x
=

∂P

∂y
.

4’. n = 3. ∇ × F = 0.

Remark: The curl of a vector field F : R
3 → R

3
, If F = (F1, F2, F3) ∈ C1

is

curlF = ∇ × F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

,

with the property: ∇ × (∇f) = 0.


