Unit 4

Line and Path Integrals

The Path Integral

Definition 4.1. A path or a curve C is the image of a map $\boldsymbol{\sigma} \colon [a,b] \to \mathbb{R}^n$, $\boldsymbol{\sigma}(t) = (x_1(t), x_2(t)), x_3(t)). \boldsymbol{\sigma}$ is called a parametrization of C.

Definition 4.2. Consider the path $\sigma: [a, b] \to \mathbb{R}^3$, where σ is of class C^1 , and the composite function $f \circ \sigma(t) = f(x(t), y(t), z(t))$, such that $f \circ \sigma(t)$ is continuous on [a, b]. The path integral or the integral of f along σ is

$$\int_{\sigma} f dr = \int_{a}^{b} f(\sigma(t)) \|\sigma'(t)\| dt = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt.$$

If $\boldsymbol{\sigma}(t)$ is only piecewise C^1 or $f(\boldsymbol{\sigma}(t))$ is piecewise continuous, we define the path integral by breaking [a, b] into pieces over which $f(\boldsymbol{\sigma}(t)) \| \boldsymbol{\sigma}'(t) \|$ is continuous, and summing the integrals over the pieces.

We give the definitions in \mathbb{R}^3 but they are valid in \mathbb{R}^n by making the natural changes. Note. $L(\boldsymbol{\sigma}) = \int_{\boldsymbol{\sigma}} 1 dr$ gives us the length of the curve. 2

The Line Integral

Now we will consider vector fields, that is, functions $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}^n$, that is, at each point we have a vector.

Definition 4.3. Let **F** be a vector field on \mathbb{R}^3 which is continuous on the \mathbb{C}^1 path $\sigma: [a, b] \to \mathbb{R}^3$. We define the line integral of **F** along σ as

$$\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\boldsymbol{\sigma}(t)) \cdot \boldsymbol{\sigma}'(t) dt = \int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot (x'(t), y'(t), z'(t)) dt.$$

Notation: $\mathbf{F} = (F_1, F_2, F_3) \rightarrow \int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d\mathbf{r} = \int_{\boldsymbol{\sigma}} F_1 dx + F_2 dy + F_3 dz.$

Note. If **F** is a force field (electric, gravitational,...) $W = \int_{\sigma} \mathbf{F} \cdot d\mathbf{r} \rightarrow \text{ is the work}$ done by the force field **F** on a particle moving along a path $\sigma : [a, b] \rightarrow \mathbb{R}^3$.

Definition 4.4. Let $h: I = [a, b] \to I_1 = [a_1, b_1]$ be a C^1 real-valued function that is a one-to-one map of an interval I onto another interval I_1 . Let $\sigma: I_1 \to \mathbb{R}^3$ be a C^1 path. Then we call the composition $\rho = \sigma \circ h: I \to \mathbb{R}^3$ a reparametrization of σ and has the same image in \mathbb{R}^3 as σ . The reparametrization is

- orientation preserving: if $\rho(a) = \sigma(a)$ and $\rho(b) = \sigma(b)$.
- orientation reversing: if $\rho(a) = \sigma(b)$ and $\rho(b) = \sigma(a)$.

Theorem 4.5. Let σ be a piecewise c^1 and f a continuous function on the image of σ , and let ρ be any reparametrization of σ . Then

$$\int_{\pmb{\sigma}} f dr = \int_{\pmb{\rho}} f dr$$

Let **F** be a vector field continuous on the C^1 path $\boldsymbol{\sigma} \colon [a_1, b_1] \to \mathbb{R}^3$ and let $\boldsymbol{\rho} \colon [a, b] \to \mathbb{R}^3$ be a reparametrization of $\boldsymbol{\sigma}$, then

$$\int_{\rho} \mathbf{F} \cdot d\mathbf{r} = + \int_{\sigma} \mathbf{F} \cdot d\mathbf{r}, \text{ if } \boldsymbol{\rho} \text{ is orientation preserving,}$$
$$= - \int_{\sigma} \mathbf{F} \cdot d\mathbf{r}, \text{ if } \boldsymbol{\rho} \text{ is orientation reversing.}$$

The previous theorem also holds for piecewise C^1 paths by breaking up the intervals into segments on which the paths are of class C^1 and summing the integrals over separate intervals. Line and Path Integrals

3

Definition 4.6. We define a simple curve C to be the image of a piecewise C^1 map $\sigma: I = [a, b] \to \mathbb{R}^3$ that is one-to-one on an interval I. Thus, it is a curve that does not intersect itself.

Simply curve

Nonsimply curve

 $\sigma(a)$ and $\sigma(b)$ are called the endpoints of the curve. Each simple curve C has two orientation or directions associated with it. The simple curve C together with a sense of direction is called an oriented simple curve.

Definition 4.7. A simple closed curve C is the image of a piecewise C^1 map $\sigma : I = [a, b] \to \mathbb{R}^3$ that is one-to-one on [a, b) and satisfies $\sigma(a) = \sigma(b)$.

Simply curve

Nonsimply curve

Simple closed curves have two possible orientations: counterclockwise or positive and clockwise or negative.

Notation: If C is a closed curve, then $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r} = \oint_{\sigma} \mathbf{F} \cdot d\mathbf{r} \rightarrow$ is called also the circulation of \mathbf{F} around C.

If C is an oriented simple curve or an oriented closed curve, we define

$$\int_{C} f dr = \int_{\sigma} f dr,$$
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{\sigma} \mathbf{F} \cdot d\mathbf{r}.$$

Where $\boldsymbol{\sigma}$ is any orientation-preserving parametrization of C.

Line and Path Integrals

If C is a curve (or an oriented curve) that is made up of several (oriented) component curves $C_i, i = 1, \dots, k$, we can parametrize C by parametrizing the pieces C_1, \dots, C_k separately. Then, our integral will be

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \dots + \int_{C_k} \mathbf{F} \cdot d\mathbf{r}.$$

One reason for writing a curve as a sum of components is that it may be easier to parametrize the components C_i individually than it is to do it as a whole.

Conservative Fields

Recall that a vector field **F** is a **gradient vector field** if $\mathbf{F} = \nabla f$ for some real-valued function f. Thus, in \mathbb{R}^3 this reads as $\mathbf{F} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$. We call **F** a **conservative vector field** and f is called the **potential** of **F**.

We have the following generalization of the Fundamental Theorem of Calculus:

Theorem 4.8. Suppose that $f: \mathbb{R}^3 \to \mathbb{R}$ is of class C^1 and that $\sigma: [a,b] \to \mathbb{R}^3$ is a piecewise C^1 path. Then

$$\int_{\boldsymbol{\sigma}} \boldsymbol{\nabla} f \cdot d\mathbf{r} = f(\boldsymbol{\sigma}(b)) - f(\boldsymbol{\sigma}(a)).$$

Note. if $\mathbf{F} = -\nabla U$ is a conservative force field, the work done by \mathbf{F} on a particle does depend only on the endpoints of the curve and it does not depend on the trajectory:

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = -\int_C \nabla U \cdot d\mathbf{r} = U(\boldsymbol{\sigma}(a)) - U(\boldsymbol{\sigma}(b)).$$

Where U denotes the potential energy: gravitational, electric or elastic potential energy.

Definition 4.9. Let $D \subset \mathbb{R}^n$, D is simply connected if every closed curve on D can be contracted continuously to a point.

A simply connected set on \mathbb{R}^2 is one whose boundary is formed by a single closed simple curve.

4

Line and Path Integrals

Theorem 4.10. Let $D \subset \mathbb{R}^n$, b simply connected and \mathbf{F} a C^1 vector field defined on D. The following are equivalent:

- 1. **F** is a conservative vector field on D, that is, $\exists f \in C^2(D)$ such that $\mathbf{F} = \nabla f$. Where f is called the potential of \mathbf{F} .
- 2. For every closed curve σ on D,

$$\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

3. For every σ_1 and σ_2 curves on D with same endpoints, we have

$$\int_{\boldsymbol{\sigma_1}} \mathbf{F} \cdot d\mathbf{r} = \int_{\boldsymbol{\sigma_2}} \mathbf{F} \cdot d\mathbf{r}$$

4. n = 2. If $\mathbf{F} = (P, Q)$ then $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. 4'. n = 3. $\nabla \times \mathbf{F} = 0$.

Remark: The curl of a vector field $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$, If $\mathbf{F} = (F_1, F_2, F_3) \in C^1$ is

$$\operatorname{curl} \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{array} \right|,$$

with the property: $\nabla \times (\nabla f) = 0$.