Unit 4

Line and Path Integrals

The Path Integral

Definition 4.1. A path or a curve C is the image of a map $\boldsymbol{\sigma}:[a, b] \rightarrow \mathbb{R}^{n}$, $\left.\boldsymbol{\sigma}(t)=\left(x_{1}(t), x_{2}(t)\right), x_{3}(t)\right) . \boldsymbol{\sigma}$ is called a parametrization of C.

Definition 4.2. Consider the path $\boldsymbol{\sigma}:[a, b] \rightarrow \mathbb{R}^{3}$, where $\boldsymbol{\sigma}$ is of class C^{1}, and the composite function $f \circ \boldsymbol{\sigma}(t)=f(x(t), y(t), z(t))$, such that $f \circ \boldsymbol{\sigma}(t)$ is continuous on $[a, b]$. The path integral or the integral of f along $\boldsymbol{\sigma}$ is

$$
\int_{\boldsymbol{\sigma}} f d r=\int_{a}^{b} f(\boldsymbol{\sigma}(t))\left\|\boldsymbol{\sigma}^{\prime}(t)\right\| d t=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t .
$$

If $\boldsymbol{\sigma}(t)$ is only piecewise C^{1} or $f(\boldsymbol{\sigma}(t))$ is piecewise continuous, we define the path integral by breaking $[a, b]$ into pieces over which $f(\boldsymbol{\sigma}(t))\left\|\boldsymbol{\sigma}^{\prime}(t)\right\|$ is continuous, and summing the integrals over the pieces.
We give the definitions in \mathbb{R}^{3} but they are valid in R^{n} by making the natural changes. Note. $L(\boldsymbol{\sigma})=\int_{\boldsymbol{\sigma}} 1 d r$ gives us the length of the curve.

The Line Integral

Now we will consider vector fields, that is, functions $\mathbf{F}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}^{\mathbf{n}}$, that is, at each point we have a vector.

Definition 4.3. Let \mathbf{F} be a vector field on R^{3} which is continuous on the C^{1} path $\boldsymbol{\sigma}:[a, b] \rightarrow \mathbb{R}^{3}$. We define the line integral of \mathbf{F} along $\boldsymbol{\sigma}$ as

$$
\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\boldsymbol{\sigma}(t)) \cdot \boldsymbol{\sigma}^{\prime}(t) d t=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) d t
$$

Notation: $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right) \rightarrow \int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}=\int_{\boldsymbol{\sigma}} F_{1} d x+F_{2} d y+F_{3} d z$.
Note. If \mathbf{F} is a force field (electric, gravitational,...) $W=\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r} \rightarrow$ is the work done by the force field \mathbf{F} on a particle moving along a path $\boldsymbol{\sigma}:[a, b] \rightarrow \mathbb{R}^{3}$.

Definition 4.4. Let $h: I=[a, b] \rightarrow I_{1}=\left[a_{1}, b_{1}\right]$ be a C^{1} real-valued function that is a one-to-one map of an interval I onto another interval I_{1}. Let $\boldsymbol{\sigma}: I_{1} \rightarrow \mathbb{R}^{3}$ be a C^{1} path. Then we call the composition $\boldsymbol{\rho}=\boldsymbol{\sigma} \circ h: I \rightarrow \mathbb{R}^{3} a$ reparametrization of $\boldsymbol{\sigma}$ and has the same image in \mathbb{R}^{3} as $\boldsymbol{\sigma}$. The reparametrization is

- orientation preserving: if $\boldsymbol{\rho}(a)=\boldsymbol{\sigma}(a)$ and $\boldsymbol{\rho}(b)=\boldsymbol{\sigma}(b)$.
- orientation reversing: if $\boldsymbol{\rho}(a)=\boldsymbol{\sigma}(b)$ and $\boldsymbol{\rho}(b)=\boldsymbol{\sigma}(a)$.

Theorem 4.5. Let $\boldsymbol{\sigma}$ be a piecewise c^{1} and f a continuous function on the image of $\boldsymbol{\sigma}$, and let $\boldsymbol{\rho}$ be any reparametrization of $\boldsymbol{\sigma}$. Then

$$
\int_{\boldsymbol{\sigma}} f d r=\int_{\boldsymbol{\rho}} f d r .
$$

Let \mathbf{F} be a vector field continuous on the C^{1} path $\boldsymbol{\sigma}:\left[a_{1}, b_{1}\right] \rightarrow \mathbb{R}^{3}$ and let $\boldsymbol{\rho}:[a, b] \rightarrow \mathbb{R}^{3}$ be a reparametrization of $\boldsymbol{\sigma}$, then

$$
\begin{aligned}
\int_{\boldsymbol{\rho}} \mathbf{F} \cdot d \mathbf{r} & =+\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}, \text { if } \boldsymbol{\rho} \text { is orientation preserving, } \\
& =-\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}, \text { if } \boldsymbol{\rho} \text { is orientation reversing. }
\end{aligned}
$$

The previous theorem also holds for piecewise C^{1} paths by breaking up the intervals into segments on which the paths are of class C^{1} and summing the integrals over separate intervals.

Definition 4.6. We define a simple curve C to be the image of a piecewise C^{1} map $\boldsymbol{\sigma}: I=[a, b] \rightarrow \mathbb{R}^{3}$ that is one-to-one on an interval I. Thus, it is a curve that does not intersect itself.

Simply curve

Nonsimply curve
$\boldsymbol{\sigma}(a)$ and $\boldsymbol{\sigma}(b)$ are called the endpoints of the curve. Each simple curve C has two orientation or directions associated with it. The simple curve C together with a sense of direction is called an oriented simple curve.

Definition 4.7. A simple closed curve C is the image of a piecewise C^{1} map $\boldsymbol{\sigma}: I=$ $[a, b] \rightarrow \mathbb{R}^{3}$ that is one-to-one on $[a, b)$ and satisfies $\boldsymbol{\sigma}(a)=\boldsymbol{\sigma}(b)$.

Simply curve

Nonsimply curve

Simple closed curves have two possible orientations: counterclockwise or positive and clockwise or negative.

Notation: If C is a closed curve, then $\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}=\oint_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r} \rightarrow$ is called also the circulation of \mathbf{F} around C.

If C is an oriented simple curve or an oriented closed curve, we define

$$
\begin{aligned}
\int_{C} f d r & =\int_{\boldsymbol{\sigma}} f d r \\
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}
\end{aligned}
$$

Where $\boldsymbol{\sigma}$ is any orientation-preserving parametrization of C.

If C is a curve (or an oriented curve) that is made up of several (oriented) component curves $C_{i}, i=1, \cdots, k$, we can parametrize C by parametrizing the pieces $C_{1},, \cdots, C_{k}$ separately. Then, our integral will be

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\cdots+\int_{C_{k}} \mathbf{F} \cdot d \mathbf{r}
$$

One reason for writing a curve as a sum of components is that it may be easier to parametrize the components C_{i} individually than it is to do it as a whole.

Conservative Fields

Recall that a vector field \mathbf{F} is a gradient vector field if $\mathbf{F}=\nabla f$ for some real-valued function f. Thus, in \mathbb{R}^{3} this reads as $\mathbf{F}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$. We call \mathbf{F} a conservative vector field and f is called the potential of \mathbf{F}.

We have the following generalization of the Fundamental Theorem of Calculus:
Theorem 4.8. Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is of class C^{1} and that $\boldsymbol{\sigma}:[a, b] \rightarrow \mathbb{R}^{3}$ is a piecewise C^{1} path. Then

$$
\int_{\boldsymbol{\sigma}} \boldsymbol{\nabla} f \cdot d \mathbf{r}=f(\boldsymbol{\sigma}(b))-f(\boldsymbol{\sigma}(a)) .
$$

Note. if $\mathbf{F}=-\boldsymbol{\nabla} U$ is a conservative force field, the work done by \mathbf{F} on a particle does depend only on the endpoints of the curve and it does not depend on the trajectory:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \boldsymbol{\nabla} U \cdot d \mathbf{r}=U(\boldsymbol{\sigma}(a))-U(\boldsymbol{\sigma}(b)) .
$$

Where U denotes the potential energy: gravitational, electric or elastic potential energy.
Definition 4.9. Let $D \subset \mathbb{R}^{n}$, D is simply connected if every closed curve on D can be contracted continuously to a point.

A simply connected set on \mathbb{R}^{2} is one whose boundary is formed by a single closed simple curve.

Simply connected sets

Nonsimply connected sets

Theorem 4.10. Let $D \subset \mathbb{R}^{n}$, b simply connected and \mathbf{F} a C^{1} vector field defined on D. The following are equivalent:

1. \mathbf{F} is a conservative vector field on D, that is, $\exists f \in C^{2}(D)$ such that $\mathbf{F}=\nabla f$. Where f is called the potential of \mathbf{F}.
2. For every closed curve $\boldsymbol{\sigma}$ on D,

$$
\int_{\boldsymbol{\sigma}} \mathbf{F} \cdot d \mathbf{r}=0
$$

3. For every $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$ curves on D with same endpoints, we have

$$
\int_{\sigma_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\boldsymbol{\sigma}_{2}} \mathbf{F} \cdot d \mathbf{r} .
$$

4. $n=2$. If $\mathbf{F}=(P, Q)$ then $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$.
$4^{\prime} . n=3 . \nabla \times \mathbf{F}=0$.
Remark: The curl of a vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, If $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right) \in C^{1}$ is

$$
\operatorname{curl} \mathbf{F}=\boldsymbol{\nabla} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|,
$$

with the property: $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f)=0$.

