INTEGRALS DEPENDING ON A PARAMETER

DEF.

Let $f: [a,b] \times [c,d] \to \mathbb{R}$, if for each fixed $t \in [c,d]$ the function f(x,t) is integrable over [a,b] on the x variable, we define the following function $F: [a,b] \to \mathbb{R}$ as

$$F(t) = \int_a^b f(x,t) dx.$$

We call F(t) an integral depending on a parameter.

THEOREM

f continuous on $[a,b] \times [c,d] \Rightarrow F$ continuous on [c,d].

THEOREM

$$f$$
 and $f_t = \frac{\partial f}{\partial t}$ continuous on $[a,b] \times [c,d] \Rightarrow F$ differentiable on $[c,d]$

$$F'(t) = \int_a^b f_t(x, t) dx$$

THEOREM (LEIBNIZ'S THEOREM)

Let f and $f_t = \frac{\partial f}{\partial t}$ be continuous functions on $[a,b] \times [c,d]$ and α,β differentiable functions on [c,d] with image on [a,b], that is, $\alpha(t),\beta(t)\colon [c,d]\to [a,b],\ x\in [\alpha(t),\beta(t)]\subset [a,b].$ We define

$$G(t) = \int_{\alpha(t)}^{\beta(t)} f(x, t) dx,$$

then G is differentiable on [c,d] and

$$G'(t) = f(\beta(t), t) \cdot \beta'(t) - f(\alpha(t), t) \cdot \alpha'(t) + \int_{\alpha(t)}^{\beta(t)} f_t(x, t) dx$$

The previows theorems cannot be used when the integrals are improper. So we have the following results that are valid if the integrals are improper or not.

THEOREM

Let f(x,t) be a cont. function of t on [c,d] for almost every $x \in [a,b]$, if there exists g(x) integrable on [a,b] s. t. $|f(x,t)| \le g(x)$, $\forall t \in [c,d]$ and for almost every $x \in [a,b]$, then F is continuous on [c,d].

THEOREM

Let $f_t(x,t)$ be a cont. function of t on [c,d] for almost every $x \in [a,b]$, if there exists g(x) integrable on [a,b] s. t. $|f_t(x,t)| \leq g(x)$, $\forall t \in [c,d]$ and for almost every $x \in [a,b]$, then F is differentiable on [c,d] and

$$F'(t) = \int_a^b f_t(x, t) dx$$

Theorem

f(x,t) be integrable on $[a,b] \times [c,d] \Rightarrow F(t)$ is integrable on [c,d], and

$$\int_{c}^{d} F(t)dt = \int_{c}^{d} \int_{a}^{b} f(x,t)dxdt = \int_{a}^{b} \int_{c}^{d} f(x,t)dtdx.$$

THE GAMMA FUNCTION

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad x > 0$$

It is a generalization of the factorial function to real and complex numbers.

Properties of the Gamma function

- \bullet $\Gamma(x)$ is continuous and differentiable.
- **3** $\Gamma(1) = \Gamma(2) = 1$, $\Gamma(1/2) = \sqrt{\pi}$.
- $\Gamma(x+1) = x\Gamma(x).$
- $\lim_{x \to 0^+} \Gamma(x) = \infty.$

THE BETA FUNCTION

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx, \quad p, q > 0$$

- **1** B(p,q) = B(q,p).
- \bigcirc B(p,q) is continuous and differentiable on each variable.
- $B(p,q) \in C^{\infty}.$

$$\frac{\partial^{n+m}}{\partial p^n \partial q^m} B(p,q) = \int_0^1 x^{p-1} (\log x)^n (1-x)^{q-1} (\log (1-x))^m dx, \ p,q > 0.$$

- **3** $B(p,q) = \frac{q-1}{p+q-1}B(p,q-1), \quad q>1.$
- **3** $B(m+1, n+1) = \frac{1}{m+n+1} {m+n \choose n}^{-1}, m, n \in \mathbb{N}.$
- $B(p,q) = 2 \int_0^{\pi/2} (\cos t)^{2p-1} (\sin t)^{2q-1} dt.$
- $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$
- $B(p,q) = \int_{0}^{\infty} \frac{t^{p-1}}{(1+t)^{p+q}} dt.$
- $B(1/2,1/2) = \pi$.

THE TRANSFORM OF LAPLACE

Def.

Let $f:[0,\infty)\to\mathbb{R}$ be integrable, with exponential growth, that is, $|f(x)|\leq C\mathrm{e}^{\alpha x}, \forall x>T$, where C,α,T are constants depending of f, we define the **Laplace Transform of** f as

$$L[f(x)](s) \equiv F(s) = \int_0^\infty e^{-sx} f(x) dx.$$

Properties

- L[f(x)](s) converges for $s \in (\alpha, \infty)$ and is continuous on (α, ∞) .
- $2 L[f(x)](s) \leq \frac{C}{s-\alpha}, \quad s > \alpha.$

$$L[1](s) = \frac{1}{s}, \ s > 0.$$

$$L[e^{ax}](s) = \frac{1}{s-a}, \ s > a.$$

$$L[x^n](s) = \frac{n!}{s^{n+1}}, \ s > 0, \ n \in \mathbb{N}.$$

$$L[x^{\alpha}](s) = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, s > 0, \alpha > -1.$$

$$L[\sin(ax)](s) = \frac{a}{s^2 + a^2}, \ s > 0.$$

$$L[\cos(ax)](s) = \frac{s}{s^2 + a^2}, \ s > 0.$$

THE TRANSFORM OF LAPLACE

Properties

• Translation:
$$L[e^{-ax}f(x)](s) = L[f(x)](s+a) = F(s+a), \ a \in \mathbb{R}.$$

Redef.
$$f(x) = \begin{cases} f(x), & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$L[f(x-a)](s) = e^{-as}L[f(x)](s), a > 0.$$

$$\mathcal{L}[f(ax)](s) = \frac{1}{a}\mathcal{L}[f(x)]\left(\frac{s}{a}\right), \ a > 0.$$

• Let $f^{(n-1)}$ be differentiable on $(0,\infty)$ and $f,f',\ldots,f^{(n-1)}$ continuous on $x\geq 0$, then

$$L[f^{(n)}(x)](s) = s^n L[f(x)](s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0).$$

In particular

$$L[f'(x)](s) = sL[f(x)](s) - f(0),$$

$$L[f''(x)](s) = s^2L[f(x)](s) - sf(0) - f'(0).$$

Def. (The convolution of f(x) and g(x))

$$f \star g(x) = \int_0^x f(u)g(x-u)du$$
, def. for $x \ge 0$.

Properties:
$$\begin{cases} f \star g(x) = g \star f(x). \\ L[f \star g(x)](s) = F(s)G(s). \end{cases}$$

Def. (The Inverse Laplace Transform of F(s))

Given a function F(s), if there exists f(x), continuous on $x \ge 0$, such that L[f(x)](s) = F(s), we define it as $L^{-1}[F(s)](x) = f(x)$.

Application of The Transform of Laplace

Differential equation for f(x)

Transformed equation for F(s)

$$\forall$$
 Solve $F(s)$

The solution is f(x)