SURFACE INTEGRALS

INTEGRAL OF SCALAR FUNCTIONS OVER SURFACES

DEF.

A parametrized surface is a function $\phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\phi(u,v) = (x(u,v),y(u,v),z(u,v))$.

The surface S corresponding to the function ϕ is its image: $S = \phi(D)$. ϕ differentiable or $C^1 \to S$ differentiable or C^1 surface.

 ϕ differentiable at $(u_0, v_0) \in \mathbb{R}^2 \to$

$$\mathbf{D}_{\nu}\phi(u_0,v_0)=\left(\frac{\partial x}{\partial \nu},\frac{\partial y}{\partial \nu},\frac{\partial z}{\partial \nu}\right)\bigg|_{(u_0,v_0)}.$$

$$\mathbf{D}_{u}\phi(u_{0},v_{0})=\left(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u}\right)\bigg|_{(u_{0},v_{0})}.$$

Denote $\mathbf{T}_v := \mathbf{D}_v \phi(u, v)$ and $\mathbf{T}_u := \mathbf{D}_u \phi(u, v)$.

Def.

A surface S is said to be **smooth** at $\phi(u_0, v_0)$ if $\mathbf{T}_u \times \mathbf{T}_v \neq 0$ at (u_0, v_0) . The surface is called **smooth** if it is smooth at all points $\phi(u_0, v_0) \in S$. The nonzero vector $\mathbf{T}_u \times \mathbf{T}_v$ is normal to S at each point.

DEF.

If a parametrized surface $\phi \colon D \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$ is smooth at $\phi(u_0, v_0)$ we define the **tangent plane** of the surface at $\phi(u_0, v_0)$ as the plane determined by the vectors \mathbf{T}_u and \mathbf{T}_v . Therefore, $\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$ is a normal vector, and the equation of the plane will be

$$(x-x_0, y-y_0, z-z_0) \cdot \mathbf{n} = 0,$$

where **n** is evaluated at (u_0, v_0) and $(x_0, y_0, z_0) = \phi(u_0, v_0)$.

We will consider piecewise smooth surfaces that are unions of images of parametrized surfaces ϕ_i : $D_i \subset \mathbb{R}^2 \to S_i \subset \mathbb{R}^3$ for which:

- D_i is an elementary region in the plane.
- ϕ_i is C^1 and one-to-one.
- The image of ϕ_i , S_i , is smooth, except at a finite number of points.

Def. (Integral of a scalar function over a surface)

Let $f(x,y,z)\colon \mathbb{R}^3 \to \mathbb{R}$ be a real-valued continuous function defined on a surface S, parametrized by $\phi\colon D \to S$, $\phi(u,v) = \big(x(u,v),y(u,v),z(u,v)\big)$. We define the integral of f over S as

$$\iint\limits_{S} f(x,y,z)ds = \iint\limits_{D} f(\phi(u,v)) \|\mathbf{T}_{u} \times \mathbf{T}_{v}\| du dv.$$

Note. $Area(S) = \iint_S 1 ds$.

Note. If S is given as the union of several surfaces that do not intersect,

$$S = \bigcup_{i=1}^n S_i$$
, then $\iint\limits_{S} f ds = \sum_{i=1}^n \iint\limits_{S} f ds$.

Integral of Vector Functions Over Surfaces

Def. (Integral of a vector field over a surface)

Let $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a continuous vector field defined over S, the image of a parametrized surface

 $\phi \colon D \to S$. The surface integral of **F** over S is

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{s} = \iint\limits_{D} \mathbf{F}(\phi(u,v)) \cdot \mathbf{T}_{u} \times \mathbf{T}_{v} du dv.$$

Def. (An oriented surface)

is a two-sided surface with one side specified as the outside or positive **side**. The other side is called the **inside or negative side**.

A side of a surface $S \rightarrow$ choose a unit normal vector **n** pointing away from the positive side of S at each point. A parametrization $\phi \colon D \to S$ is

- orientation-preserving if $\frac{\mathbf{T}_u \times \mathbf{T}_v}{\|\mathbf{T}_u \times \mathbf{T}_v\|} = \mathbf{n}\big(\phi(u,v)\big),$ orientation-reversing if $\frac{\mathbf{T}_u \times \mathbf{T}_v}{\|\mathbf{T}_u \times \mathbf{T}_v\|} = -\mathbf{n}\big(\phi(u,v)\big),$

for all $(u, v) \in D$ for which S is smooth at $\phi(u, v)$.

DEF.

For an oriented smooth surface S and any orientation-preserving parametrization ϕ of the surface, we define the **surface integral of** $F \colon \mathbb{R}^3 \to \mathbb{R}^3$, a continuous vector field defined over S or the **flux of F** across the surface S as

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{s} = \iint\limits_{\phi} \mathbf{F} \cdot d\mathbf{s}.$$

The flux of \mathbf{F} across S measures the amount of the vector field \mathbf{F} that flows across the surface per unit time. It can be written also as

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{s} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, ds, \text{ where } \mathbf{F} \cdot \mathbf{n} \text{ is the normal component of } \mathbf{F} \text{ over } S.$$

Note. If we have another parametrization ψ that is orientation-reversing then

$$\iint_{\Psi} \mathbf{F} \cdot d\mathbf{s} = -\iint_{\Phi} \mathbf{F} \cdot d\mathbf{s}.$$