Universidad Carlos III de Madrid Calculus II Marina Delgado Téllez de Cepeda

Theorems of Vector Analysis

THEOREM (Stokes' Theorem)

Let S be an oriented surface defined by a one-to-one parametrization preserving the orientation, $\phi: D \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$. Let ∂S denote the oriented boundary of S and $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be a C^1 vector field on S. Then,

$$\iint_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot d\mathbf{s} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{r}.$$

The orientation on ∂S is the orientation induced by the upward normal **n** of *S*. When you walk along the boundary ∂S , with the normal **n** as your upright direction, the surface *S* must be on your left.

THEOREM (Gauss' Divergence Theorem)

Let Ω be a solid region in \mathbb{R}^3 . Denote by $\partial \Omega$ the oriented closed surface that bounds Ω . Let $\mathbf{F} \colon \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$ be a C^1 vector field on Ω . Then,

$$\iiint_{\Omega} div \mathbf{F} dv = \iint_{\partial \Omega} \mathbf{F} \cdot d\mathbf{S}.$$

THEOREM (Green's Theorem)

Let D be a simply connected region on \mathbb{R}^2 and let C be its boundary. Suppose $P, Q: D \subset \mathbb{R}^2 \to \mathbb{R}$ are C^1 . Then,

$$\int_{C^+} P dx + Q dy \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

where C^+ is the boundary of D with positive orientation.

Theorem

If C is a simple closed curve that bounds a region to which Green's Theorem applies, then the area of the region D bounded by $C = \partial D$ is

$$A=\frac{1}{2}\int_{\partial D}xdy-ydx.$$

Note. If the region is not simply connected, we break the region into simply connected regions and apply the theorem to each of them.