Unit 5

Surface Integrals

Integral of Scalar Functions Over Surfaces

Definition 5.1. A parametrized surface *is a* function $\phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\phi(u, v) = (x(u, v), y(u, v), z(u, v)).$

The surface S corresponding to the function ϕ is its image: $S = \phi(D)$.

If ϕ is differentiable or it is of class C^1 , we call S a differentiable or a C^1 surface, respectively.

If ϕ is differentiable at $(u_0, v_0) \in \mathbb{R}^2$, fixing u as u_0 , we get a map $\phi(u_0, t)$, whose image is a curve on the surface. The tangent vector to this curve at $\phi(u_0, v_0)$ is given by

$$\mathbf{D}_{v}\boldsymbol{\phi}(u_{0},v_{0}) = \left(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v}\right)\Big|_{(u_{0},v_{0})}$$

Similarly, fixing $v = v_0$ we obtain the tangent vector to the curve $\phi(t, v_0)$,

$$\mathbf{D}_{u}\boldsymbol{\phi}(u_{0},v_{0}) = \left(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u}\right)\Big|_{(u_{0},v_{0})}$$

Let us denote the tangent vectors as $\mathbf{T}_v := \mathbf{D}_v \boldsymbol{\phi}(u, v)$ and $\mathbf{T}_u := \mathbf{D}_u \boldsymbol{\phi}(u, v)$.

Definition 5.2. A surface S is said to be smooth at $\phi(u_0, v_0)$ if $\mathbf{T}_u \times \mathbf{T}_v \neq 0$ at (u_0, v_0) . The surface is called smooth if it is smooth at all points $\phi(u_0, v_0) \in S$. The nonzero vector $\mathbf{T}_u \times \mathbf{T}_v$ is normal to S at each point.

2

Definition 5.3. If a parametrized surface $\phi: D \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$ is smooth at $\phi(u_0, v_0)$ we define the **tangent plane** of the surface at $\phi(u_0, v_0)$ as the plane determined by the vectors \mathbf{T}_u and \mathbf{T}_v . Therefore, $\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$ is a normal vector, and the equation of the plane will be

$$(x-x_0, y-y_0, z-z_0) \cdot \mathbf{n} = 0,$$

where **n** is evaluated at (u_0, v_0) and $(x_0, y_0, z_0) = \phi(u_0, v_0)$.

Property: If the surface S is given as the graph of a differentiable function $g: \mathbb{R}^2 \to \mathbb{R}$, then S is differentiable at every point, so it is smooth and, therefore, has a tangent plane everywhere.

We will consider piecewise smooth surfaces that are unions of images of parametrized surfaces $\phi_i: D_i \subset \mathbb{R}^2 \to S_i \subset \mathbb{R}^3$ for which:

- D_i is an elementary region in the plane.
- ϕ_i is C^1 and one-to-one.
- The image of ϕ_i , S_i , is smooth, except possibly at a finite number of points.

Definition 5.4 (Integral of a scalar function over a surface).

Let $f(x, y, z) \colon \mathbb{R}^3 \to \mathbb{R}$ be a real-valued continuous function defined on a surface S, parametrized by $\phi \colon D \to S$, $\phi(u, v) = (x(u, v), y(u, v), z(u, v))$. We define the integral of f over S as

$$\iint_{S} f(x, y, z) ds = \iint_{D} f(\phi(u, v)) \| \mathbf{T}_{u} \times \mathbf{T}_{v} \| du dv.$$

Note. $Area(S) = \iint_{S} 1 ds.$

Note. If S is given as the union of several surfaces that do not intersect, $S = \bigcup_{i=1}^{n} S_i$, then $\iint_{S} fds = \sum_{i=1}^{n} \iint_{S_i} fds$. Surface Integrals

Integral of Vector Functions Over Surfaces

Definition 5.5 (Integral of a vector field over a surface). Let $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a continuous vector field defined over S, the image of a parametrized surface $\phi \colon D \to S$. The surface integral of \mathbf{F} over S is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \mathbf{F}(\boldsymbol{\phi}(u, v)) \cdot \mathbf{T}_{u} \times \mathbf{T}_{v} du dv.$$

Definition 5.6. An oriented surface is a two-sided surface with one side specified as the outside or positive side. The other side is called the inside or negative side.

At each point in S there are two unit normal vectors $\mathbf{n_1}$ and $\mathbf{n_2}$, where $\mathbf{n_2} = -\mathbf{n_1}$. We can associate each of these normals with one side of the surface. Thus, to specify a side of a surface S we choose a unit normal vector \mathbf{n} pointing away from the positive side of S at each point. We say that a parametrization $\phi: D \to S$ of the surface is

for all $(u, v) \in D$ for which S is smooth at $\phi(u, v)$.

Definition 5.7. For an oriented smooth surface S and any orientation-preserving parametrization ϕ of the surface, we define the surface integral of $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$, a continuous vector field defined over S or the flux of F across the surface S as

$$\iint_{S} \mathbf{F} \cdot d\mathbf{s} = \iint_{\phi} \mathbf{F} \cdot d\mathbf{s}.$$

The flux of \mathbf{F} across S measures the amount of the vector field \mathbf{F} that flows across the surface per unit time. It can be written also as

$$\iint_{S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, ds, \text{ where } \mathbf{F} \cdot \mathbf{n} \text{ is the normal component of } \mathbf{F} \text{ over } S.$$

Note. If we have another parametrization ψ that is orientation-reversing then

$$\iint_{\psi} \mathbf{F} \cdot d\mathbf{s} = -\iint_{\phi} \mathbf{F} \cdot d\mathbf{s}.$$