Unit 5

Surface Integrals

Integral of Scalar Functions Over Surfaces

Definition 5.1. A parametrized surface is a function $\phi: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, $\boldsymbol{\phi}(u, v)=(x(u, v), y(u, v), z(u, v))$.

The surface S corresponding to the function ϕ is its image: $S=\phi(D)$.

If ϕ is differentiable or it is of class C^{1}, we call S a differentiable or a C^{1} surface, respectively.

If $\boldsymbol{\phi}$ is differentiable at $\left(u_{0}, v_{0}\right) \in \mathbb{R}^{2}$, fixing u as u_{0}, we get a map $\boldsymbol{\phi}\left(u_{0}, t\right)$, whose image is a curve on the surface. The tangent vector to this curve at $\phi\left(u_{0}, v_{0}\right)$ is given by

$$
\mathbf{D}_{v} \boldsymbol{\phi}\left(u_{0}, v_{0}\right)=\left.\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)\right|_{\left(u_{0}, v_{0}\right)} .
$$

Similarly, fixing $v=v_{0}$ we obtain the tangent vector to the curve $\phi\left(t, v_{0}\right)$,

$$
\mathbf{D}_{u} \boldsymbol{\phi}\left(u_{0}, v_{0}\right)=\left.\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)\right|_{\left(u_{0}, v_{0}\right)}
$$

Let us denote the tangent vectors as $\mathbf{T}_{v}:=\mathbf{D}_{v} \boldsymbol{\phi}(u, v)$ and $\mathbf{T}_{u}:=\mathbf{D}_{u} \boldsymbol{\phi}(u, v)$.
Definition 5.2. A surface S is said to be smooth at $\boldsymbol{\phi}\left(u_{0}, v_{0}\right)$ if $\mathbf{T}_{u} \times \mathbf{T}_{v} \neq 0$ at $\left(u_{0}, v_{0}\right)$. The surface is called smooth if it is smooth at all points $\boldsymbol{\phi}\left(u_{0}, v_{0}\right) \in S$. The nonzero vector $\mathbf{T}_{u} \times \mathbf{T}_{v}$ is normal to S at each point.

Definition 5.3. If a parametrized surface $\boldsymbol{\phi}: D \subset \mathbb{R}^{2} \rightarrow S \subset \mathbb{R}^{3}$ is smooth at $\boldsymbol{\phi}\left(u_{0}, v_{0}\right)$ we define the tangent plane of the surface at $\boldsymbol{\phi}\left(u_{0}, v_{0}\right)$ as the plane determined by the vectors \mathbf{T}_{u} and \mathbf{T}_{v}. Therefore, $\mathbf{n}=\mathbf{T}_{u} \times \mathbf{T}_{v}$ is a normal vector, and the equation of the plane will be

$$
\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot \mathbf{n}=0,
$$

where \mathbf{n} is evaluated at $\left(u_{0}, v_{0}\right)$ and $\left(x_{0}, y_{0}, z_{0}\right)=\boldsymbol{\phi}\left(u_{0}, v_{0}\right)$.
Property: If the surface S is given as the graph of a differentiable function $g: R^{2} \rightarrow \mathbb{R}$, then S is differentiable at every point, so it is smooth and, therefore, has a tangent plane everywhere.

We will consider piecewise smooth surfaces that are unions of images of parametrized surfaces $\phi_{i}: D_{i} \subset \mathbb{R}^{2} \rightarrow S_{i} \subset \mathbb{R}^{3}$ for which:

- D_{i} is an elementary region in the plane.
- ϕ_{i} is C^{1} and one-to-one.
- The image of $\boldsymbol{\phi}_{\boldsymbol{i}}, S_{i}$, is smooth, except possibly at a finite number of points.

Definition 5.4 (Integral of a scalar function over a surface).
Let $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a real-valued continuous function defined on a surface S, parametrized by $\boldsymbol{\phi}: D \rightarrow S, \boldsymbol{\phi}(u, v)=(x(u, v), y(u, v), z(u, v))$. We define the integral of f over S as

$$
\iint_{S} f(x, y, z) d s=\iint_{D} f(\boldsymbol{\phi}(u, v))\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| d u d v
$$

Note. $\operatorname{Area}(S)=\iint_{S} 1 d s$.
Note. If S is given as the union of several surfaces that do not intersect, $S=\cup_{i=1}^{n} S_{i}$, then $\iint_{S} f d s=\sum_{i=1}^{n} \iint_{S_{i}} f d s$.

Integral of Vector Functions Over Surfaces

Definition 5.5 (Integral of a vector field over a surface). Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a continuous vector field defined over S, the image of a parametrized surface $\phi: D \rightarrow S$. The surface integral of \mathbf{F} over S is

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{s}=\iint_{D} \mathbf{F}(\phi(u, v)) \cdot \mathbf{T}_{u} \times \mathbf{T}_{v} d u d v .
$$

Definition 5.6. An oriented surface is a two-sided surface with one side specified as the outside or positive side. The other side is called the inside or negative side.

At each point in S there are two unit normal vectors $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$, where $\mathbf{n}_{\mathbf{2}}=-\mathbf{n}_{\mathbf{1}}$. We can associate each of these normals with one side of the surface. Thus, to specify a side of a surface S we choose a unit normal vector \mathbf{n} pointing away from the positive side of S at each point. We say that a parametrization $\phi: D \rightarrow S$ of the surface is

- orientation-preserving if $\frac{\mathbf{T}_{u} \times \mathbf{T}_{v}}{\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\|}=\mathbf{n}(\phi(u, v))$,
- orientation-reversing if $\frac{\mathbf{T}_{u} \times \mathbf{T}_{v}}{\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\|}=-\mathbf{n}(\boldsymbol{\phi}(u, v))$,

$$
\text { for all }(u, v) \in D \text { for which } S \text { is smooth at } \phi(u, v) \text {. }
$$

Definition 5.7. For an oriented smooth surface S and any orientation-preserving parametrization ϕ of the surface, we define the surface integral of $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, a continuous vector field defined over S or the flux of \mathbf{F} across the surface S as

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{s}=\iint_{\phi} \mathbf{F} \cdot d \mathbf{s} .
$$

The flux of \mathbf{F} across S measures the amount of the vector field \mathbf{F} that flows across the surface per unit time. It can be written also as

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{s}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d s, \text { where } \mathbf{F} \cdot \mathbf{n} \text { is the normal component of } \mathbf{F} \text { over } S
$$

Note. If we have another parametrization $\boldsymbol{\psi}$ that is orientation-reversing then

$$
\iint_{\psi} \mathbf{F} \cdot d \mathbf{s}=-\iint_{\phi} \mathbf{F} \cdot d \mathbf{s}
$$

