Units 4 \& 5

Theorems of Vector Analysis

Theorem (Stokes' Theorem). Let S be an oriented surface defined by a one-to-one parametrization preserving the orientation, $\phi: D \subset \mathbb{R}^{2} \rightarrow S \subset \mathbb{R}^{3}$. Let ∂S denote the oriented boundary of S and $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{1} vector field on S. Then,

The orientation on ∂S is the orientation induced by the upward normal \mathbf{n} of S. When you walk along the boundary ∂S, with the normal \mathbf{n} as your upright direction, the surface S must be on your left.

Theorem (Gauss' Divergence Theorem). Let Ω be a solid region in \mathbb{R}^{3}. Denote by $\partial \Omega$ the oriented closed surface that bounds Ω. Let $\mathbf{F}: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{1} vector field on Ω. Then,

$$
\iiint_{\Omega} d i v \mathbf{F} d v=\iint_{\partial \Omega} \mathbf{F} \cdot d \mathbf{S} .
$$

Theorem (Green's Theorem).
Let D be a simply connected region on \mathbb{R}^{2} and let C be its boundary. Suppose $P, Q: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are C^{1}. Then,

$$
\int_{C^{+}} P d x+Q d y \iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

where C^{+}is the boundary of D with positive orientation.

Theorem. If C is a simple closed curve that bounds a region to which Green's Theorem applies, then the area of the region D bounded by $C=\partial D$ is

$$
A=\frac{1}{2} \int_{\partial D} x d y-y d x
$$

Note. If the region is not simply connected, we break the region into simply connected regions and apply the theorem to each of them.

