
2. INTEGRATION IN SEVERAL VARIABLES

Problem 2.1 Let f : Q = [0, 1] × [0, 1] −→ IR be given by f(x, y) =

{

0 0 ≤ x < 1/2
1 1/2 ≤ x ≤ 1

.

Prove that f is integrable and

∫

Q
f =

1

2
.

Problem 2.2 Let f : A ⊂ IR2 −→ IR be integrable on A and let g : A −→ IR with g = f

except for a finite number of points. Prove that g is integrable on A and

∫

A
g =

∫

A
f .

Problem 2.3

i) Prove, without computing the integral, that

4π ≤
∫

D
(x2 + y2 + 1) dx dy ≤ 20π ,

where D is the disk of radius 2 centered at the origin.

ii) Let A be the square [0, 2] × [1, 3] and let f(x, y) = x2y. Prove, without computing the
integral, that

0 ≤
∫

A
f(x, y) dx dy ≤ 48 .

iii) Improve this last estimation and prove that

3 ≤
∫

A
f(x, y) dx dy ≤ 25 .

Hint: Use a partition of A consisting of four equal squares.

Problem 2.4 Approximate in the following cases, by means of upper and lower sums, the

integral

∫

R
f(x, y) dA, where R = [0, 4]× [0, 2]. Use a partition consisting of eight equal squares.

Compute also the integral exactly and compare the results.

i) f(x, y) = x + y b) f(x, y) = xy
ii) f(x, y) = x2 + y2 d) f(x, y) = 1/[(x + 1)(y + 1)].

Solution: i) 16 < I < 32, (I = 24); ii) 6 < I < 30, (I = 16); iii) 32 < I < 80, (I =
160/3); iv) 77/72 < I < 25/8, (I = log 3 log 5).

Problem 2.5 Let f be the function defined on the square Q = [0, 1] × [0, 1]:

f(x, y) =

{

1 − x − y if x + y ≤ 1
0 if x + y ≥ 1

Sketch the graph of f over Q and evaluate

∫

Q
f .

Solution: 1/6.
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Problem 2.6 (Cavalieri’s Principle) Let A,B ⊂ IR3 be two regions. If we define the sections
Ac = {(x, y) ∈ IR2 / (x, y, c) ∈ A} and Bc = {(x, y) ∈ IR2 / (x, y, c) ∈ B}. Suppose that Ac and
Bc have the same area for each value of c. Prove that A and B have the same volume.

Problem 2.7 From the previous problem it follows that two pyramids with the same base and
height have the same volume. Find that volume by integrating.

Solution: V = Ah/3, where A = area of the base.

Problem 2.8 We call cone the three–dimensional picture obtained by joining all the points of
a planar region S to a point located out of the S plane. Let A be the area of S and h the height
of the cone, show that:

i) The area of the section of a parallel plane to the base at a distance t from the vertex is
(t/h)2A, for 0 ≤ t ≤ h.

ii) The volume of the cone is Ah/3.

Problem 2.9 Prove that the following regions of IR2 have null measure (area, in this case):

i) S = {(x, y) ∈ IR2 / |x| + |y| = 1},
ii) U = {(x, y) ∈ IR2 /x2 + y2 = 1},
iii) the graph of f : [a, b] −→ IR, continuous, G = {(x, f(x)) /x ∈ [a, b]}.

Problem 2.10 Let f : A ⊂ IR2 −→ IR be a function greater than or equal to 0 and integrable

on A, with

∫

A
f = 0.

i) Let Am = {x ∈ A/f(x) > 1/m}; prove that Am has null measure (area).

ii) Deduce that the region where f(x) 6= 0 has null measure.

Are these results true if A ⊂ IRn?

Problem 2.11 Identify the type of region and change the order of integration for the following
integrals:

i)

∫ 3

0

∫

√
25−x2

4x/3
f(x, y)dy dx ii)

∫ 1

0

∫ y

0
f(x, y)dx dy

iii)

∫ π/2

0

∫ sin(x/2)

− sin(x/2)
f(x, y)dy dx iv)

∫ e

1

∫ log x

0
f(x, y)dy dx.

Solution: i) {0 ≤ y ≤ 4, 0 ≤ x ≤ 3y/4} ∪ {4 ≤ y ≤ 5, 0 ≤ x ≤
√

25 − y2}; ii) {0 ≤ x ≤ 1, x ≤
y ≤ 1}; iii) {−

√
2/2 ≤ y ≤ 0, −2 arcsin y ≤ x ≤ π/2} ∪ {0 ≤ y ≤

√
2/2, 2 arcsin y ≤ x ≤ π/2};

iv) {0 ≤ y ≤ 1, ey ≤ x ≤ e}.

Problem 2.12

i) Over the region R = {(x, y) ∈ IR2 /x2 + (y − 1)2 ≤ 1, x ≥ 0}, consider the functions

f(x, y) =
1√

1 − x2
and g(x, y) = sin(y − 1). Apply Fubini’s Theorem to

∫

R
f and

∫

R
g in

the two possible ways. Evaluate the integrals for the more convenient order.
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ii) Find the integral over the same region of the function h(x, y) =

√

2y2 + x2

y
.

Solution: i)
∫

R f = 2,
∫

R g = 0; ii)
∫

R h = 1 + π/2.

Problem 2.13 Find the value of the integral

∫ π

0

∫ π

x

sin y

y
dy dx .

Solution: 2.

Problem 2.14 Prove the identities

i)

∫ x

0

∫ t

0
F (u) dudt =

∫ x

0
(x − u)F (u) du

ii)

∫ x

0

∫ v

0

∫ u

0
f(t) dtdudv =

1

2

∫ x

0
(x − t)2f(t) dt.

Problem 2.15 Evaluate

∫

D
(x2 + y) dx dy, where D = { (x, y) ∈ IR2 : |x| + |y| ≤ 1 }.

Hint: Transform the integral into an integral on the region of D in the first quadrant.

Solution: 1/3.

Problem 2.16 Evaluate

∫ 1

0

∫ 1

0
f(x, y) dx dy, where f(x, y) = máx(|x|, |y|).

Solution: 2/3.

Problem 2.17 Compute the following volumes:

i) volume of intersection of the cylinder x2 + y2 ≤ 4 and the ball x2 + y2 + z2 ≤ 16;

ii) volume of intersection of the cylinders x2 + y2 ≤ 4 and x2 + z2 ≤ 4;

iii) volume of the solid bounded by the six cylinders z2 = y, z2 = 2y, x2 = z, x2 = 2z,
y2 = x and y2 = 2x;

iv) volume of the solid bounded by the cones z = 1 −
√

x2 + y2 and z = −1 +
√

x2 + y2;

v) volume of the region bounded by the paraboloid z = x2+y2 and the cylinder x2+y2 = 4
in z ≥ 0;

vi) volume of the region bounded by x2 + y2 + z2 ≤ 2, x2 + y2 ≤ z and z ≤ 6/5;

vii) volume of the region bounded by the surfaces z = x2 + y2, z = 2(x2 + y2), y = x
and y2 = x.

Solution: i) 32π(8 − 3
√

3)/3; ii) 128/3; iii) 1/7; iv) 2π/3; v) 8π; vi) 493π/750; vii) 3/35.
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Problem 2.18 Let the following mapping be defined by

{

x = u + v
y = v − u2 . Evaluate:

i) the Jacobian J(u, v);

ii) the image S on the xy plane of the triangle T on the uv plane of vertices (0,0), (2,0)
and (0,2);

iii) the area of S;

iv) the integral

∫

S
(x − y + 1)−2dxdy.

Solution: i) 1 + 2u; iii) 14/3; iv) 2 + (π − 6 arc tg(5/
√

3))
√

3/9.

Problem 2.19 Use a linear mapping to compute

∫

S
(x − y)2 sin2(x + y) dxdy, where S is the

parallelogram of vertices (π, 0), (2π, π), (π, 2π) and (0, π).

Solution: π4/3.

Problem 2.20 Evaluate

∫

D
(y − x) dxdy, where D is the region of the plane bounded by

y = x + 1, y = x − 3, y = (7 − x)/3 and y = 5 − x/3.

Solution: −8.

Problem 2.21 Find the following areas:

i) area of the region A = {(x, y) ∈ IR2 : x, y > 0, a2y ≤ x3 ≤ b2y, p2x ≤ y3 ≤ q2x, },
where 0 < a < b and 0 < p < q.

ii) area bounded by the curves xy = 4, xy = 8, xy3 = 5 and xy3 = 15.

Solution: i) (b − a)(q − p)/2; ii) 2 log 3.

Problem 2.22 Find the integral of the function

f(x, y) =
y4

b4
(x2

a2
+

y2

b2

)(

1 +
x2

a2
+

y2

b2

)

+ xy2

over the region D =
{ x2

a2
+

y2

b2
≤ 1

}

, where a and b are positive constants.

Solution: 3πab(1 − log 2)/8.

Problem 2.23 Find the integral of the function

f(x, y) =
x

√

x2 + y2
e
√

x2+y2

over the regions E = {x2 + (y − 1)2 ≤ 1 } and H = {x2 + (y − 1)2 ≤ 1, x ≥ 0 }.

Solution: 0, 2.
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Problem 2.24 Evaluate

∫

D

dx dy

xy
, where D is the plain region bounded by the curves

x2 + y2 = ax , x2 + y2 = a′x , x2 + y2 = by , x2 + y2 = b′y ,

where 0 < a < a′ , 0 < b < b′.
Hint: Change variables appropriately, so the new region is the rectangle [a, a′] × [b, b′].

Solution: log(a′/a) log(b′/b).

Problem 2.25 Evaluate the integral

∫

S

x dx dy

4x2 + y2
, where S is the region on the first quadrant

bounded by the coordinate axes and the ellipses 4x2 + y2 = 16, 4x2 + y2 = 1.

Solution: 3/4.

Problem 2.26 Let f(x, y) be an odd function on the x variable, that is, f(−x, y) = −f(x, y),
and integrable on the region D ⊆ IR2 that is symmetric with respect to the x variable (that is,
(x, y) ∈ D if and only if (−x, y) ∈ D). Prove that if f is integrable on D, then

∫

D f = 0.

Problem 2.27 Evaluate the volume of the solid bounded by the surfaces y = z2, 2y = z2,
z = x2, 2z = x2, x = y2, 2x = y2.
Hint: Make a change of variables so the new region of integration is the cube [1, 2]3. Find the
Jacobian of the inverse change.

Solution: 1/7.

Problem 2.28 Let R be the region bounded by the plane z = 3 and the cone z =
√

x2 + y2,
evaluate

i)

∫

R

√

x2 + y2 + z2 dxdydz , ii)

∫

R

√

9 − x2 − y2 dxdydz .

Solution: i) 27π(2
√

2 − 1)/2; ii) 54π − 81π2/8.

Problem 2.29 Evaluate

∫

W
f(x, y, z) dxdydz , in the following cases:

i) f(x, y, z) = e−(x2+y2+z2)3/2

, and W is the region under the sphere x2 + y2 + z2 = 9 and
over the cone z =

√

x2 + y2.

ii) f(x, y, z) = z ex2+y2+z2

, and W = {x2 + y2 ≤ z2, 0 ≤ z ≤ 1 }.

iii) f(x, y, z) =
√

1 − x2 − y2 +
xyz3

1 + z2
, and W = {x2 + y2 + z2 ≤ 1, x2 + y2 ≤ a2 }, if

0 < a < 1.

Solution: i) π(2 −
√

2)(1 − e−27)/3; ii) π(e − 1)2/4; iii) πa2(2 − a2).

Problem 2.30 Evaluate the volume of the solid bounded by the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

Analyze the particular instance a = b = c = r.

Solution: i) 4πabc/3.
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Problem 2.31

i) Evaluate the area of the region D = {x = r cos3 t, y = r sin3 t, 0 ≤ r ≤ 1, 0 ≤ t ≤
π/2} = {x2/3 + y2/3 ≤ 1, x, y ≥ 0}.

ii) Find the center of mass of D if its mass density is 1.

Solution: i) 3π/32; ii) x
CM

= y
CM

= 256/(315π).

Problem 2.32 The first octant of the ball x2 +y2 +z2 ≤ c2 is sliced with the plane
x

a
+

y

b
= 1,

0 < a, b ≤ c. Find the mass of each of the resulting solids knowing that the density is ρ(x, y, z) =
z.

Solution: One of them is ab(a2 + b2 − 6c2)/24 + πc2/12.

Problem 2.33 Find the mass of the sheet corresponding to the portion of the first quadrant
of the circle x2 +y2 ≤ 4, if the density at (x, y) is proportional to the distance between the point
and the center of the circle.

Solution: 4πα/3, where α is the proportionality constant.

Problem 2.34 The temperature at points in the cube [−1, 1]3 is proportional to the square of
its distance from the origin.

i) What is the average temperature?

ii) At which points of the cube is the temperature equal to the average temperature?

Solution: i) α, where α is the proportionality constant; ii) on the unit sphere.

Problem 2.35 Find the center of mass of the hemispherical region of radius R if the density
at each point is the square of the distance of the point to the center.

Solution: (0, 0, 5R/12).

Problem 2.36 An ice cream cone is made by a cone of angle α and an ice cream hemisphere of
radius R. The cornet and the ice cream have constant densities ρc and ρh respectively. Determine
the value of ρc/ρh such that the center of mass of the ice cream is located on the plane that
separates the ice cream and the cornet.

Solution: 3 tg2 α.

Problem 2.37 Evaluate

i)

∫ 1

0

∫ 1

0
. . .

∫ 1

0
(x2

1 + x2
2 + · · · + x2

n) dx1dx2 . . . dxn,

ii)

∫ 1

0

∫ 1

0
. . .

∫ 1

0
(x1 + x2 + · · · + xn)2 dx1dx2 . . . dxn.

Solution: i) n/3; ii) (3n2 + n)/12.
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Problem 2.38 Let the function

I(p, r) =

∫

R

dxdy

(1 + x2 + y2)p
,

where R is the disk of radius r centered at the origin. Find the values of p for which I(p, r) has
finite limit when r → ∞.

Solution: πp2−2p/(p − 1) if p > 1.

Problem 2.39

i) Evaluate the integral

∫

DR

e−(x2+y2)dxdy, where DR is the disk of radius R centered at

the origin.

ii) Let Qa,b be the rectangle [−a, a] × [−b, b], prove the estimation

∫

Dr1

e−(x2+y2)dxdy ≤
∫

Qa,b

e−(x2+y2)dxdy ≤
∫

Dr2

e−(x2+y2)dxdy,

for certain r1 and r2.

iii) Taking the limit a, b → ∞, prove the formula

∫ ∞

−∞
e−x2

dx =
√

π.

Solution: i) π(1 − e−R2

); ii) r1 = mı́n{a, b}, r2 =
√

a2 + b2 .

Problem 2.40 Let f be a continuous function, find F ′(t) in the cases

i) F (t) =

∫ t

0

∫ t

0

∫ t

0
f(xyz) dxdydz.

ii) F (t) =

∫ ∫ ∫

x2+y2+z2≤t2
f(x2 + y2 + z2) dxdydz,

Hint: ii) Use spherical coordinates.

Solution: i) 3
∫ t
0

∫ t
0 f(txy)dxdy; ii) 4πt2f(t2).
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