4. LINE AND PATH INTEGRALS

Parametrizations of important curves:

Circumference: $\quad(x-a)^{2}+(y-b)^{2}=r^{2} \quad \Rightarrow \quad \gamma_{1}(t)=(a+\cos t, b+\sin t)$.
Ellipse: $\begin{array}{lll}\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & \Rightarrow & \gamma_{2}(t)=(a \cos t, b \sin t) .\end{array}$
Helix:

$$
\Rightarrow \quad \gamma_{3}(t)=(\cos t, \sin t, t)
$$

Problem 4.1 Sketch the previous curves.
Problem 4.2 Integrate
I) $f(x, y)=2 x y^{2}$ over the first quadrant of the circumference of radius R.
II) $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{2}$ along the arc of the circular helix $\mathbf{r}(t)=(\cos t, \sin t, 3 t)$, from $(1,0,0)$ to $(1,0,6 \pi)$.

Solution: i) $2 R^{4} / 3$; ii) $2 \pi \sqrt{10}\left(5+120 \pi^{2}+1296 \pi^{4}\right) / 5$.
Problem 4.3 Determine the length and the mass of a thread whose shape is the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$ and whose density is $\rho(x, y)=x$.

Solution: The length is $\sqrt{17}+(\log (4+\sqrt{17})) / 4$ and the mass is $\left(17^{3 / 2}-1\right) / 12$.
Problem 4.4 Evaluate the following integrals, if the closed curves have positive orientation, that is, counterclockwise:
I) $\int_{g}(x-y) d x+(x+y) d y$, where g is the line segment joining $(1,0)$ to $(0,2)$.
II) $\int_{C} x^{3} d y-y^{3} d x$, where C is the circumference $\left\{x^{2}+y^{2}=1\right\}$.
III) $\int_{\Gamma} \frac{d x+d y}{|x|+|y|}$, where Γ is the square of vertices $(1,0),(0,1),(-1,0)$ and $(0,-1)$.

IV) $\int_{\rho}(x+2 y) d x+(3 x-y) d y$ where ρ is the ellipse $x^{2}+4 y^{2}=4$.
v) $\int_{R} \frac{y^{3} d x-x y^{2} d y}{x^{5}}$, where R is the curve $x=\sqrt{1-t^{2}}, y=t \sqrt{1-t^{2}},-1 \leq t \leq 1$.

Solution: i) $7 / 2$; ii) $3 \pi / 2$; iii) 0 ; iv) 2π; $v)-\pi / 2$.
Problem 4.5 Evaluate:
I) $\int_{\gamma} y d x-x d y+z d z$, where γ is the intersection curve of the cylinder $x^{2}+y^{2}=a^{2}$ with the plane $z-y=a$, oriented counterclockwise.
II) $\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left(2 x y+z^{2}, x^{2}, 2 x z\right)$, where γ is the intersection of the plane $x=y$ with the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, positively oriented.
III) $\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=(y, z, x)$, where γ is the curve intersection of $x^{2}+y^{2}=2 x$ and $x=z$.

Solution: i) $-2 \pi a^{2}$; ii) 0; iii) 0.
Problem 4.6 Find the value of b that minimizes the work done in moving a particle by the force field $\mathbf{F}(x, y)=\left(3 y^{2}+2,16 x\right)$, from $(-1,0)$ to $(1,0)$, along the semiellipse $b^{2} x^{2}+y^{2}=b^{2}$, $y \geq 0$.

Solution: The work done is $W(b)=4 b^{2}-8 \pi b+4$ and the minimum work is $4-4 \pi^{2}$, obtained for $b=\pi$.

Problem 4.7 Consider the force field $\mathbf{F}(x, y)=\left(c x y, x^{6} y^{2}\right), a, b, c>0$. Find the parameter a in terms of c such that the work done in moving a particle along the parabola $y=a x^{b}$ from $x=0$ to $x=1$ will not depend on b.

Solution: the work is $\frac{3 a c+a^{3} b}{3(b+2)}$, hence, $a=0$ or $a=\sqrt{3 c / 2}$.
Problem 4.8 Evaluate the work done in moving a particle under a force field (given in polar coordinates) $\mathbf{F}(r, \theta)=(-4 \sin \theta, 4 \sin \theta)$, along the path $r=\mathrm{e}^{-\theta}$ from $(1,0)$ to the origin.

Solution: 8/5.
Problem 4.9 Let $\mathbf{F}(x, y, z)=\left(\sin y+z, x \cos y+\mathrm{e}^{z}, x+y \mathrm{e}^{z}\right)$.
I) Prove that the integral over any piecewise C^{1} simple closed curve is equal to 0 .
iI) Obtain a potential of F, that is, find ϕ such that $\mathbf{F}=\nabla \phi$.

Solution: $i i) \phi(x, y, z)=x(\sin y+z)+y \mathrm{e}^{z}$.
Problem 4.10 Evaluate $\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left(2 x z \mathrm{e}^{x^{2}+y^{2}}, 2 y z \mathrm{e}^{x^{2}+y^{2}}, \mathrm{e}^{x^{2}+y^{2}}\right)$ and γ the path on \mathbb{R}^{3} given by $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 1$.
Hint: Prove that \mathbf{F} is a gradient field.
Solution: ${ }^{2}$.
Problem 4.11 Given the curve on $\mathbb{R}^{3}, \gamma(t)=\left(\mathrm{e}^{t^{2}}+t(1-\mathrm{e})-1, \sin ^{5}(\pi t), \cos \left(t^{2}-t\right)\right), t \in$ $[0,1]$, and the vector field

$$
\mathbf{F}(x, y, z)=\left(y+z+x^{4} \sin x^{5}, x+z+\operatorname{arctg} y, x+y+\sin ^{2} z\right) .
$$

I) Find $\int_{\gamma} \mathbf{F}$.
iI) Does it exist f such that $\nabla f=\mathbf{F}$? If this is the case, find f.

Solution: i) 0; ii) $f(x, y, z)=x y+x z+y z-\frac{1}{5} \cos x^{5}+y \operatorname{arctg} y-\frac{1}{2} \log \left(1+y^{2}\right)+\frac{z}{2}-\frac{1}{4} \sin 2 z$.

Problem 4.12 Given the curve on $\mathbb{R}^{3}, \Gamma=\left\{x^{2}+y^{2}=1, z=y^{2}-x^{2}\right\}$, positively oriented, and the vector field $\mathbf{F}(x, y, z)=\left(y^{3}, \mathrm{e}^{y}, z\right)$.
I) Find $\int_{\Gamma} \mathbf{F}$.
iI) Does it exist f such that $\nabla f=\mathbf{F}$?

Solution: i) $-3 \pi / 4$; ii) No.
Problem 4.13 Determine a and b such that the vector field

$$
\mathbf{w}(x, y)=\mathrm{e}^{2 x+3 y}(a \sin x+a \cos y+\cos x, b \sin x+b \cos y-\sin y)
$$

is irrotational (that is, its curl is 0) and find its potential.
Solution: $a=2, b=3 ; \varphi(x, y)=\mathrm{e}^{2 x+3 y}(\sin x+\cos y)+C$.
Problem 4.14 Consider the vector field

$$
\mathbf{F}(x, y)=\left(\frac{\log x+\log y}{x}, \frac{\log x+\log y}{y}\right),
$$

defined on the domain $D=\{(x, y): x>0, y>0\}$.
I) Evaluate $\int_{\gamma} \mathbf{F}$, where γ is the arc of the hyperbola $x y=a(a>0)$, such that $x_{1} \leq x \leq x_{2}$.
iI) Let A be any point of the hyperbola $x y=a(a>0), B$ any point of the hyperbola $x y=b(b>a)$, and γ any C^{1} path, contained on D joining A to B, prove that

$$
\int_{\gamma} \mathbf{F}=\frac{1}{2} \log \frac{b}{a} \log (a b) .
$$

Hint: \mathbf{F} is conservative.
Solution: i) 0.
Problem 4.15 Evaluate $\int_{\gamma}\left(5-x y-y^{2}\right) d x-\left(2 x y-x^{2}\right) d y$, where γ is the square of vertices $(0,0),(1,0),(1,1)$ and $(0,1)$, compute it directly and also applying Green's Theorem.

Solution: 3/2.
Problem 4.16 Let f be a C^{1} function on \mathbb{R}. Let

$$
P(x, y)=\mathrm{e}^{x^{2}}-\frac{y}{3+\mathrm{e}^{x y}}, \quad Q(x, y)=f(y),
$$

and γ the boundary of the square $[0,1] \times[0,1]$ oriented in the positive direction. Evaluate $\int_{\gamma} P d x+Q d y$.

Solution: $(1-\log (\mathrm{e}+3)+\log 4) / 3$.

Problem 4.17 Evaluate $\int_{\Gamma} x y d x+\sin ^{2}\left(\mathrm{e}^{\cos y}\right) d y$, where Γ is the curve $y=\mathrm{e}^{-x^{2}}$, for $x \in$ $(-\infty, \infty)$.
Hint: Apply Green's Formula to the same integral over the curve Γ_{R}, formed by the line segment $(-R, R)$, the function $y=\mathrm{e}^{-x^{2}}$ on the same interval and the vertical line segments joining both of them, positively oriented ; after, take the limit when $R \rightarrow \infty$.

Solution: 0.
Problem 4.18 Let the functions $P(x, y)=y /\left(x^{2}+y^{2}\right)$ and $Q(x, y)=-x /\left(x^{2}+y^{2}\right)$. Let C be a piecewise C^{1} closed curve, defined outside the origin, such that is the boundary of a region D.
I) Prove that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ for $(x, y) \neq(0,0)$.
II) If $(0,0) \in D$, prove that $\int_{C} P d x+Q d y= \pm 2 \pi$.
III) If $(0,0) \notin D$, compute $\int_{C} P d x+Q d y$.

Solution: iii) 0.
Problem 4.19 Evaluate $\int_{\gamma} \frac{-y d x+(x-1) d y}{(x-1)^{2}+y^{2}}$, where γ is a piecewise C^{1} simple closed curve, containing $(1,0)$ in its interior, oriented in the positive direction.

Solution: 2π.
Problem 4.20 Let $P, Q \in C^{1}\left(\mathbb{R}^{2}\right)$ be two scalar fields such that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ everywhere on the plane but at three points. Let C_{1}, C_{2} and C_{3} be three disjoint circles surrounding them and $I_{k}=\int_{C_{k}} P d x+Q d y$. If $I_{1}=12, I_{2}=10$ and $I_{3}=15$,
I) compute $\int_{C} P d x+Q d y$, where C is the curve of the figure, surrounding C_{2} and C_{3};
II) sketch γ, such that $\int_{\gamma} P d x+Q d y=1$;
III) if $I_{1}=12, I_{2}=9$ and $I_{3}=15$, prove that is impossible to find such a curve γ.

Hint: $i i i$) the integral is proportional to 3.
Solution: $i)-5 ; i i) \gamma$ is any curve surrounding once C_{2} in the positive direction, once C_{3} in the positive direction and twice C_{1} in the negative direction.

Problem 4.21

I) Let A be the area of a region D, bounded by C, a piecewise C^{1} simple closed curve. Prove that

$$
A=\frac{1}{2} \int_{C}-y d x+x d y=\int_{C} x d y=-\int_{C} y d x
$$

and prove also that in polar coordinates it takes the form

$$
A=\frac{1}{2} \int_{C} r^{2}(\theta) d \theta
$$

iI) Evaluate the area of the interior of the loop of the curve parametrized as $\mathbf{s}(t)=\left(t^{2}-1, t^{3}-t\right)$.
III) Evaluate the area of the cardioid, given in polar coordinates as $r(\theta)=a(1-\cos \theta)$, ($0 \leq \theta \leq 2 \pi$).

Solution: ii) $8 / 15$; iii) $3 \pi a^{2} / 2$.
Problem 4.22
I) Evaluate $\int_{D}(x+2 y) d x d y$, where D is the cycloid's arc $x=t-\sin t, y=1-\cos t$, $0 \leq t \leq 2 \pi$.
II) Evaluate $\int_{D} x y^{2} d x d y$, where D is the region bounded by the astroid $x=\cos ^{3} t, y=$ $\sin ^{3} t, 0 \leq t \leq \pi / 2$ and the coordinate axes.
III) Evaluate $\int_{D} y^{2} d x d y$, where D is the region bounded by the curve $x=a\left(t-\sin ^{2} t\right), y=$ $a \sin ^{2} t, 0 \leq t \leq \pi$, and the line joining its endpoints.

Solution: i) $\pi(3 \pi+5)$; ii) $8 / 2145$; iii) $5 \pi a^{4} / 48$.
Problem 4.23 Let $a, b>0$.
I) Prove (by integrating) that:

$$
\int_{0}^{\pi / 2} \frac{d t}{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}=\frac{\pi}{2 a b}
$$

iI) Using part i) and taking derivatives inside the integral, prove that

$$
\int_{0}^{\pi / 2} \frac{\sin ^{2} t}{\left(a^{2} \cos ^{2} t+b^{2} \sin ^{2} t\right)^{2}} d t=\frac{\pi}{4 a b^{3}} .
$$

III) Using part ii), prove that

$$
\int_{\gamma} \frac{y^{3} d x-x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}=\pi
$$

where γ is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ clockwise oriented.

Problem 4.24 Let $r=\|\mathbf{x}\|$, defined for all $\mathbf{x} \in \mathbb{R}^{n}$, .
I) Find ∇f for $f(\mathbf{x})=r^{\alpha}$.
iI) Do the same for $f(\mathbf{x})=g(r)$, where g is a differentiable function of one variable.
iiI) Find $\operatorname{div} \mathbf{F}$ for $\mathbf{F}(\mathbf{x})=r^{\alpha} \mathbf{x}$.
iv) Find $\Delta f=\operatorname{div}(\nabla f)$ for $f(\mathbf{x})=r^{\alpha}$.
v) Find a potential for the force field $\mathbf{F}(\mathbf{x})=g(r) \mathbf{x}$, where g is a continuous function of one variable.

Solution: i) $\alpha r^{\alpha-2} \mathbf{x}$; ii) $g^{\prime}(r) \mathbf{x} / r$; iii) $(\alpha+n) r^{\alpha}$;iv) $\left.\alpha(\alpha+n-2) r^{\alpha-2} ; v\right) \varphi(r)=\int_{0}^{r} s g(s) d s$.
Problem 4.25 Let D be a region defined in \mathbb{R}^{2} bounded by the regular closed curve C, and let $u, v \in C^{2}(\bar{D})$. If \mathbf{n} denotes the unit normal vector exterior to the curve, use Divergence's Theorem to prove the following identities:

$$
\begin{aligned}
& \int_{C} \frac{\partial u}{\partial \mathbf{n}} d s=\int_{D} \Delta u d x d y \\
& \int_{C} v \frac{\partial u}{\partial \mathbf{n}} d s=\int_{D}(v \Delta u+\nabla u \cdot \nabla v) d x d y \\
&i i) \\
&i i i) \int_{C}\left(v \frac{\partial u}{\partial \mathbf{n}}-u \frac{\partial v}{\partial \mathbf{n}}\right) d s=\int_{D}(v \Delta u-u \Delta v) d x d y
\end{aligned}
$$

Problem 4.26 Let u and v be two C^{1} class scalar fields defined on an open containing the unit disk D. If $\mathbf{F}(x, y)=(v(x, y), u(x, y))$ and $\mathbf{G}(x, y)=\left(\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}-\frac{\partial v}{\partial y}\right)$. Evaluate

$$
\int_{D} \mathbf{F} \cdot \mathbf{G} d x d y
$$

where u and v verifies that $u=1$ and $v=y$ at the unit circumference.
Solution: $-\pi$.

