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4. LINE AND PATH INTEGRALS

Parametrizations of important curves:

Circumference: (z—a)?+(y—-0b2=r* = 71(t) = (a + cost,b+sint).
Ellipse: i—z + @;—2 =1 = v2(t) = (acost,bsint).
Helix: = v3(t) = (cost,sint,t).

Problem 4.1 Sketch the previous curves.

Problem 4.2 Integrate

1) f(z,y) = 2xy? over the first quadrant of the circumference of radius R.

1) f(z,y,2) = (22 +y>+2%)? along the arc of the circular helix r(t) = (cost,sint, 3t), from
(1,0,0) to (1,0,67).

Solution: i) 2R*/3; i) 2m/10(5 + 12072 + 129674) /5.

Problem 4.3 Determine the length and the mass of a thread whose shape is the parabola
y = 2?2 from (0,0) to (2,4) and whose density is p(z,y) = =.

Solution: The length is v/17 + (log(4 + v/17))/4 and the mass is (17%/2 — 1)/12.

Problem 4.4 Evaluate the following integrals, if the closed curves have positive orientation,
that is, counterclockwise:

1) /(:E —y)dz + (x 4+ y)dy, where g is the line segment joining (1,0) to (0,2).
g

1) / 23dy — y3dz, where C is the circumference {22+ ¢y =1}
C

dr + dy
r |zl + [y’

111 ) where T is the square of vertices (1,0), (0,1), (—1,0) and (0,—1).

v) /(3: + 2y)dx + (32 — y)dy where p is the ellipse x2 4 4y = 4.
p

3d _ 2d
V) / w, where R is the curve x = 1 — 2, y = tv/1 —t2, -1 <t < 1.
R x

Solution: i) 7/2; i) 3w/2; i) 0; iv) 2m; v) — w/2.
Problem 4.5 Evaluate:

1) / ydr — xdy + z dz, where v is the intersection curve of the cylinder z2 4 4% = a? with
gl
the plane z — y = a, oriented counterclockwise.
11) /F -dr, where F(z,y,2) = (2zy + 22, 22,222), where v is the intersection of the plane
gl

x = y with the sphere 22 + y? + 22 = a2, positively oriented.
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111) /F -dr, where F(z,y, z) = (y, z,z), where « is the curve intersection of 2 + y? = 2z
gl

and z = z.
Solution: i) — 2ma?; i) 0; iii) 0.

Problem 4.6 Find the value of b that minimizes the work done in moving a particle by the
force field F(x,y) = (3y* + 2,16x), from (—1,0) to (1,0), along the semiellipse b%x? + y* = b?,
y > 0.

Solution: The work done is W (b) = 4b> — 87b + 4 and the minimum work is 4 — 472, obtained
for b = 7.

Problem 4.7 Consider the force field F(x,y) = (cxy, 2%y?), a,b,¢ > 0. Find the parameter a
in terms of ¢ such that the work done in moving a particle along the parabola y = az® from
x =0 to z =1 will not depend on b.

Solution: the work is 3;&1‘53;’ , hence, a =0 or a = /3¢/2.

Problem 4.8 Evaluate the work done in moving a particle under a force field (given in polar
coordinates) F(r,0) = (—4sin 6,4sin#), along the path » = e~ from (1,0) to the origin.

Solution: 8/5.

Problem 4.9 Let F(x,y,2) = (siny + z,x cosy + €%,z + ye?).

1) Prove that the integral over any piecewise C'! simple closed curve is equal to 0.

11) Obtain a potential of F', that is, find ¢ such that F = V¢.

Solution: ii) ¢(z,y,z) = x(siny + 2) + ye.

Problem 4.10 Evaluate /F - dr, where F(z,y, 2) = (20267 1V 2yze" ¥ ¥ +¥") and ~ the

.
path on IR? given by r(t) = (t,2,13),0 <t < 1.
Hint: Prove that F is a gradient field.

Solution: €.

Problem 4.11 Given the curve on R, ~(t) = <et2 +t(1 —e) — 1,sin®(t), cos(t? — t)), t e
[0, 1], and the vector field

F(z,y,2) = (y+ 2z + 2t sinz®, 2 + 2z + arctgy, = + y + sin” 2).

1) Find /F
gl
11) Does it exist f such that Vf = F? If this is the case, find f.

Solution: i) 0; 1) f(x,y,2) =2y + vz +yz — %cos x° +yarctgy — %log(l +y?) + 5 — %sin 2z.
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Problem 4.12 Given the curve on IR?, T' = {22+ 9% =1, z =9y? — 22}, positively oriented,
and the vector field F(z,vy,2) = (y3,¢%, 2).

1) Find / F.
r
11) Does it exist f such that Vf =F?
Solution: i) — 3m/4; ii) No.
Problem 4.13 Determine a and b such that the vector field
w(z,y) = XT3y (a sinx + acosy + cosx, bsinx 4+ bcosy — sin y>
is irrotational (that is, its curl is 0) and find its potential.
Solution: a =2, b= 3; ¢(z,y) = e** T3 (sinx + cosy) + C.
Problem 4.14 Consider the vector field

F(:Evy) =

Y

(log:n +logy logz + logy)
x Y ’

defined on the domain D = {(z,y): = >0, y > 0}.

1) Evaluate / F, where v is the arc of the hyperbola zy = a (a > 0), such that x; < z < xa.
g

11) Let A be any point of the hyperbola zy = a (a > 0), B any point of the hyperbola
xy =b (b > a), and v any C! path, contained on D joining A to B, prove that

1 b
[/F =3 loga log(ab) .

Hint: F is conservative.

Solution: i) 0.

Problem 4.15 Evaluate /(5 —zy — y*)dx — (2zy — 2°)dy, where v is the square of vertices
v

(0,0), (1,0), (1,1) and (0,1), compute it directly and also applying Green’s Theorem.

Solution: 3/2.

Problem 4.16 Let f be a C! function on IR. Let

Play) = — 2 Qlawy) = f(u).

and v the boundary of the square [0,1] x [0,1] oriented in the positive direction. Evaluate
/ Pdz + Qdy.
g

Solution: (1 —log(e + 3) +log4)/3.
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Problem 4.17 Evaluate /:Ey dz + sin?(e°®Y) dy, where T' is the curve y = e‘xz, for z €
r
(—00,00).
Hint: Apply Green’s Formula to the same integral over the curve I'g, formed by the line segment
2
(=R, R), the function y = e~ on the same interval and the vertical line segments joining both

of them, positively oriented ; after, take the limit when R — oo.
Solution: 0.

Problem 4.18 Let the functions P(z,y) = y/(2? + y?) and Q(x,y) = —z /(22 + y?). Let C be
a piecewise C'! closed curve, defined outside the origin, such that is the boundary of a region D.

oQ oP
1) Prove that o oy for (z,y) # (0,0).
1) If (0,0) € D, prove that / Pdx + Qdy = +27.
C

1) If (0,0) ¢ D, compute / Pdr + Qdy.
C
Solution: iii) 0.

, where v is a piecewise C'!' simple closed curve,

Problem 4.19 Evaluate / —yde + (f - 13 %
v (@=1)2+y

containing (1,0) in its interior, oriented in the positive direction.
Solution: 2.

P
Problem 4.20 Let P,Q € C'(IR?) be two scalar fields such that (??_y = g—f everywhere on

the plane but at three points. Let C, Cy and C5 be three disjoint circles surrounding them and
I :/ Pdx+Qdy. If I; =12, I, = 10 and I3 = 15,
Ck

1) compute / Pdzx + Qdy, where C is the curve of the figure, surrounding Cy and Cs;
C

11) sketch v, such that /Pd:E +Qdy=1;
v

ur) if I;1 =12, I =9 and Iz = 15, prove that is impossible to find such a curve 7.

DC

Hint: ¢i7) the integral is proportional to 3.
Solution: i) — 5; ii) ~y is any curve surrounding once C5 in the positive direction, once C3 in the
positive direction and twice C7 in the negative direction.
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Problem 4.21

1) Let A be the area of a region D, bounded by C, a piecewise C! simple closed curve.

Prove that 1
A:—/—ydm+:ﬂdy:/xdy:—/ydx,
2 Jc c c

and prove also that in polar coordinates it takes the form
1 2
A=— [ r(0)do.
2 Je

11) Evaluate the area of the interior of the loop of the curve parametrized as
s(t) = (12 — 1,#3 — t).

111) Evaluate the area of the cardioid, given in polar coordinates as r(f) = a(1 — cos6),
(0 <6< 2m).

Solution: i) 8/15; iii) 3mwa?/2.
Problem 4.22

1) Evaluate /(a: + 2y)dzdy, where D is the cycloid’s arc x = t —sint, y = 1 — cost,
D
0<t<2m.

11) Evaluate / zy?dzdy, where D is the region bounded by the astroid z = cos®t, y =
D

sin® t, 0 <t < m/2 and the coordinate axes.
1) Evaluate / y*dzdy, where D is the region bounded by the curve z = a(t —sin’t), y =
asin®t, 0 <t 2 m, and the line joining its endpoints.
Solution: i) (3w + 5); i) 8/2145; iii) 5ma/48.
Problem 4.23 Let a,b > 0.

1) Prove (by integrating) that:

/W/ 2 dt o
o aZcos?t+b2sin?t  2ab’

11) Using part i) and taking derivatives inside the integral, prove that

/“/2 sin?t g = T
o (a2cos2t+b2sin’t)2 dabd
111) Using part i), prove that

/ygdx—xyzdy
—:ﬂ"
L (@422

2 2

where v is the ellipse x_2 + v _ 1 clockwise oriented.
a

b2
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Problem 4.24 Let r = ||x||, defined for all x € IR", .

1) Find Vf for f(x) =r®.

11) Do the same for f(x) = g(r), where g is a differentiable function of one variable.

111) Find div F for F(x) = r*x.

1v) Find Af =div (Vf) for f(x)=r.

v) Find a potential for the force field F(x) = g(r)x, where g is a continuous function of
one variable.

Solution: i) ar®2x; i1) ¢'(r)x/r; i) (o + n)r® ) el +n —2)r*"2 v) o(r) = [; sg(s)ds.

Problem 4.25 Let D be a region defined in IR? bounded by the regular closed curve C, and
let u, v € C?(D). If n denotes the unit normal vector exterior to the curve, use Divergence’s
Theorem to prove the following identities:

i) u ds = / Audxdy
c on D
11) : vg—z ds = /D(vAu + Vu - Vo) dedy
ou ov
iii) /C <v8—n - ua—n) ds = /D(vAu — uAv) dzdy .

Problem 4.26 Let v and v be two C! class scalar fields defined on an open containing the

unit disk D. If F(x,y) = (v(z,y),u(x,y)) and G(z,y) = <% _Ou dv @> Evaluate

/ F - Gdxdy,
D

where u and v verifies that © = 1 and v = y at the unit circumference.

Solution: —.





