4. LINE AND PATH INTEGRALS

Parametrizations of important curves:

Problem 4.1 Sketch the previous curves.

Problem 4.2 Integrate

- I) $f(x,y) = 2xy^2$ over the first quadrant of the circumference of radius R.
- II) $f(x, y, z) = (x^2 + y^2 + z^2)^2$ along the arc of the circular helix $\mathbf{r}(t) = (\cos t, \sin t, 3t)$, from (1, 0, 0) to $(1, 0, 6\pi)$.

Solution: i) $2R^4/3$; ii) $2\pi\sqrt{10}(5+120\pi^2+1296\pi^4)/5$.

Problem 4.3 Determine the length and the mass of a thread whose shape is the parabola $y = x^2$ from (0,0) to (2,4) and whose density is $\rho(x,y) = x$.

Solution: The length is $\sqrt{17} + (\log(4 + \sqrt{17}))/4$ and the mass is $(17^{3/2} - 1)/12$.

Problem 4.4 Evaluate the following integrals, if the closed curves have positive orientation, that is, counterclockwise:

I)
$$\int_{g} (x-y)dx + (x+y)dy$$
, where g is the line segment joining (1,0) to (0,2).
II) $\int_{C} x^{3}dy - y^{3}dx$, where C is the circumference $\{x^{2} + y^{2} = 1\}$.
III) $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, where Γ is the square of vertices (1,0), (0,1), (-1,0) and (0,-1).
IV) $\int_{\rho} (x+2y)dx + (3x-y)dy$ where ρ is the ellipse $x^{2} + 4y^{2} = 4$.
V) $\int_{R} \frac{y^{3}dx - xy^{2}dy}{x^{5}}$, where R is the curve $x = \sqrt{1-t^{2}}$, $y = t\sqrt{1-t^{2}}$, $-1 \le t \le 1$.

Solution: i) 7/2; ii) $3\pi/2$; iii) 0; iv) 2π ; v) $-\pi/2$.

Problem 4.5 Evaluate:

- I) $\int_{\gamma} y \, dx x \, dy + z \, dz$, where γ is the intersection curve of the cylinder $x^2 + y^2 = a^2$ with the plane z y = a, oriented counterclockwise.
- II) $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = (2xy + z^2, x^2, 2xz)$, where γ is the intersection of the plane x = y with the sphere $x^2 + y^2 + z^2 = a^2$, positively oriented.

III) $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = (y, z, x)$, where γ is the curve intersection of $x^2 + y^2 = 2x$ and x = z.

Solution: i) $-2\pi a^2$; ii) 0; iii) 0.

Problem 4.6 Find the value of b that minimizes the work done in moving a particle by the force field $\mathbf{F}(x,y) = (3y^2 + 2, 16x)$, from (-1,0) to (1,0), along the semiellipse $b^2x^2 + y^2 = b^2$, $y \ge 0$.

Solution: The work done is $W(b) = 4b^2 - 8\pi b + 4$ and the minimum work is $4 - 4\pi^2$, obtained for $b = \pi$.

Problem 4.7 Consider the force field $\mathbf{F}(x, y) = (cxy, x^6y^2)$, a, b, c > 0. Find the parameter a in terms of c such that the work done in moving a particle along the parabola $y = ax^b$ from x = 0 to x = 1 will not depend on b.

Solution: the work is $\frac{3ac+a^3b}{3(b+2)}$, hence, a=0 or $a=\sqrt{3c/2}\,.$

Problem 4.8 Evaluate the work done in moving a particle under a force field (given in polar coordinates) $\mathbf{F}(r,\theta) = (-4\sin\theta, 4\sin\theta)$, along the path $r = e^{-\theta}$ from (1,0) to the origin.

Solution: 8/5.

Problem 4.9 Let $\mathbf{F}(x, y, z) = (\sin y + z, x \cos y + e^z, x + ye^z).$

- I) Prove that the integral over any piecewise C^1 simple closed curve is equal to 0.
- II) Obtain a potential of F, that is, find ϕ such that $\mathbf{F} = \nabla \phi$.

Solution: ii) $\phi(x, y, z) = x(\sin y + z) + ye^{z}$.

Problem 4.10 Evaluate $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = (2xze^{x^2+y^2}, 2yze^{x^2+y^2}, e^{x^2+y^2})$ and γ the path on \mathbb{R}^3 given by $\mathbf{r}(t) = (t, t^2, t^3), 0 \le t \le 1$. Hint: Prove that \mathbf{F} is a gradient field.

Solution: e^2 .

Problem 4.11 Given the curve on \mathbb{R}^3 , $\gamma(t) = \left(e^{t^2} + t(1-e) - 1, \sin^5(\pi t), \cos(t^2 - t)\right), t \in [0,1]$, and the vector field

$$\mathbf{F}(x, y, z) = (y + z + x^4 \sin x^5, x + z + \arctan y, x + y + \sin^2 z).$$

I) Find $\int_{\gamma} \mathbf{F}$.

II) Does it exist f such that $\nabla f = \mathbf{F}$? If this is the case, find f.

Solution: i) 0; ii) $f(x, y, z) = xy + xz + yz - \frac{1}{5}\cos x^5 + y \arctan y - \frac{1}{2}\log(1+y^2) + \frac{z}{2} - \frac{1}{4}\sin 2z$.

Problem 4.12 Given the curve on \mathbb{R}^3 , $\Gamma = \{x^2 + y^2 = 1, z = y^2 - x^2\}$, positively oriented, and the vector field $\mathbf{F}(x, y, z) = (y^3, e^y, z)$.

- I) Find $\int_{\Gamma} \mathbf{F}$.
- II) Does it exist f such that $\nabla f = \mathbf{F}$?

Solution: i) $-3\pi/4$; ii) No.

Problem 4.13 Determine *a* and *b* such that the vector field

$$\mathbf{w}(x,y) = e^{2x+3y} \left(a \sin x + a \cos y + \cos x, \ b \sin x + b \cos y - \sin y \right)$$

is irrotational (that is, its curl is 0) and find its potential.

Solution: $a = 2, b = 3; \varphi(x, y) = e^{2x+3y}(\sin x + \cos y) + C.$

Problem 4.14 Consider the vector field

$$\mathbf{F}(x,y) = \Big(\frac{\log x + \log y}{x}, \ \frac{\log x + \log y}{y}\Big),$$

defined on the domain $D = \{(x, y) : x > 0, y > 0\}.$

I) Evaluate $\int_{\gamma} \mathbf{F}$, where γ is the arc of the hyperbola $xy = a \ (a > 0)$, such that $x_1 \le x \le x_2$.

II) Let A be any point of the hyperbola xy = a (a > 0), B any point of the hyperbola xy = b (b > a), and γ any C^1 path, contained on D joining A to B, prove that

$$\int_{\gamma} \mathbf{F} = \frac{1}{2} \, \log \frac{b}{a} \, \log(ab)$$

Hint: \mathbf{F} is conservative.

Solution: i) 0.

Problem 4.15 Evaluate $\int_{\gamma} (5 - xy - y^2) dx - (2xy - x^2) dy$, where γ is the square of vertices (0,0), (1,0), (1,1) and (0,1), compute it directly and also applying Green's Theorem.

Solution: 3/2.

Problem 4.16 Let f be a C^1 function on \mathbb{R} . Let

$$P(x,y) = e^{x^2} - \frac{y}{3 + e^{xy}}, \quad Q(x,y) = f(y),$$

and γ the boundary of the square $[0,1] \times [0,1]$ oriented in the positive direction. Evaluate $\int_{\gamma} P dx + Q dy$.

Solution: $(1 - \log(e + 3) + \log 4)/3$.

Universidad Carlos III de Madrid Calculus II

Problem 4.17 Evaluate $\int_{\Gamma} xy \, dx + \sin^2(e^{\cos y}) \, dy$, where Γ is the curve $y = e^{-x^2}$, for $x \in (-\infty, \infty)$.

Hint: Apply Green's Formula to the same integral over the curve Γ_R , formed by the line segment (-R, R), the function $y = e^{-x^2}$ on the same interval and the vertical line segments joining both of them, positively oriented ; after, take the limit when $R \to \infty$.

Solution: 0.

Problem 4.18 Let the functions $P(x, y) = y/(x^2 + y^2)$ and $Q(x, y) = -x/(x^2 + y^2)$. Let C be a piecewise C^1 closed curve, defined outside the origin, such that is the boundary of a region D.

I) Prove that
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 for $(x, y) \neq (0, 0)$.
II) If $(0, 0) \in D$, prove that $\int_C P \, dx + Q \, dy = \pm 2\pi$.
III) If $(0, 0) \notin D$, compute $\int_C P \, dx + Q \, dy$.

Solution: *iii*) 0.

Problem 4.19 Evaluate $\int_{\gamma} \frac{-y \, dx + (x-1) \, dy}{(x-1)^2 + y^2}$, where γ is a piecewise C^1 simple closed curve, containing (1,0) in its interior, oriented in the positive direction.

Solution: 2π .

Problem 4.20 Let $P, Q \in C^1(\mathbb{R}^2)$ be two scalar fields such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ everywhere on the plane but at three points. Let C_1, C_2 and C_3 be three disjoint circles surrounding them and $I_k = \int_{C_k} P \, dx + Q \, dy$. If $I_1 = 12$, $I_2 = 10$ and $I_3 = 15$,

I) compute $\int_C P \, dx + Q \, dy$, where C is the curve of the figure, surrounding C_2 and C_3 ; II) sketch γ , such that $\int_C P \, dx + Q \, dy = 1$;

III) if $I_1 = 12$, $I_2 = 9$ and $I_3 = 15$, prove that is impossible to find such a curve γ .

Hint: *iii*) the integral is proportional to 3.

Solution: i) -5; ii) γ is any curve surrounding once C_2 in the positive direction, once C_3 in the positive direction and twice C_1 in the negative direction.

Problem 4.21

I) Let A be the area of a region D, bounded by C, a piecewise C^1 simple closed curve. Prove that

$$A = \frac{1}{2} \int_C -y \, dx + x \, dy = \int_C x \, dy = -\int_C y \, dx \,,$$

and prove also that in polar coordinates it takes the form

$$A = \frac{1}{2} \int_C r^2(\theta) \, d\theta.$$

- II) Evaluate the area of the interior of the loop of the curve parametrized as $\mathbf{s}(t) = (t^2 1, t^3 t).$
- III) Evaluate the area of the cardioid, given in polar coordinates as $r(\theta) = a(1 \cos \theta)$, $(0 \le \theta \le 2\pi)$.

Solution: *ii*) 8/15; *iii*) $3\pi a^2/2$.

Problem 4.22

- I) Evaluate $\int_D (x+2y)dxdy$, where D is the cycloid's arc $x = t \sin t$, $y = 1 \cos t$, $0 \le t \le 2\pi$.
- II) Evaluate $\int_D xy^2 dx dy$, where D is the region bounded by the astroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$ and the coordinate axes.
- III) Evaluate $\int_D y^2 dx dy$, where D is the region bounded by the curve $x = a(t \sin^2 t)$, $y = a \sin^2 t$, $0 \le t \le \pi$, and the line joining its endpoints.

Solution: i) $\pi(3\pi + 5)$; ii) 8/2145; iii) $5\pi a^4/48$.

Problem 4.23 Let a, b > 0.

I) Prove (by integrating) that:

$$\int_0^{\pi/2} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} = \frac{\pi}{2ab} \,.$$

II) Using part i) and taking derivatives inside the integral, prove that

$$\int_0^{\pi/2} \frac{\sin^2 t}{(a^2 \cos^2 t + b^2 \sin^2 t)^2} \, dt = \frac{\pi}{4ab^3} \, .$$

III) Using part ii), prove that

$$\int_{\gamma} \frac{y^3 \, dx - xy^2 \, dy}{(x^2 + y^2)^2} = \pi \; ,$$

where γ is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ clockwise oriented.

Problem 4.24 Let $r = ||\mathbf{x}||$, defined for all $\mathbf{x} \in \mathbb{R}^n$,.

- I) Find ∇f for $f(\mathbf{x}) = r^{\alpha}$.
- II) Do the same for $f(\mathbf{x}) = g(r)$, where g is a differentiable function of one variable.
- III) Find div **F** for $\mathbf{F}(\mathbf{x}) = r^{\alpha} \mathbf{x}$.
- IV) Find $\Delta f = \operatorname{div} (\nabla f)$ for $f(\mathbf{x}) = r^{\alpha}$.
- V) Find a potential for the force field $\mathbf{F}(\mathbf{x}) = g(r)\mathbf{x}$, where g is a continuous function of one variable.

Solution: i) $\alpha r^{\alpha-2}\mathbf{x}$; ii) $g'(r)\mathbf{x}/r$; iii) $(\alpha+n)r^{\alpha}$; iv) $\alpha(\alpha+n-2)r^{\alpha-2}$; v) $\varphi(r) = \int_0^r sg(s)ds$.

Problem 4.25 Let D be a region defined in \mathbb{R}^2 bounded by the regular closed curve C, and let $u, v \in C^2(\overline{D})$. If **n** denotes the unit normal vector exterior to the curve, use Divergence's Theorem to prove the following identities:

$$i) \qquad \int_{C} \frac{\partial u}{\partial \mathbf{n}} \, ds = \int_{D} \Delta u \, dx \, dy$$

$$ii) \qquad \int_{C} v \frac{\partial u}{\partial \mathbf{n}} \, ds = \int_{D} (v \Delta u + \nabla u \cdot \nabla v) \, dx \, dy$$

$$iii) \qquad \int_{C} \left(v \frac{\partial u}{\partial \mathbf{n}} - u \frac{\partial v}{\partial \mathbf{n}} \right) \, ds = \int_{D} (v \Delta u - u \Delta v) \, dx \, dy \, .$$

Problem 4.26 Let u and v be two C^1 class scalar fields defined on an open containing the unit disk D. If $\mathbf{F}(x,y) = (v(x,y), u(x,y))$ and $\mathbf{G}(x,y) = \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} - \frac{\partial v}{\partial y}\right)$. Evaluate

$$\int_D \mathbf{F} \cdot \mathbf{G} \, dx dy \,,$$

where u and v verifies that u = 1 and v = y at the unit circumference.

Solution: $-\pi$.