5. SURFACE INTEGRALS

Parametrizations of important surfaces:

Sphere:	$x^2 + y^2 + z^2 = R^2$	\Rightarrow	$\phi_1(\theta,\varphi) = (R\cos\theta\sin\varphi, R\sin\theta\sin\varphi, R\cos\varphi).$
Cylinder:	$x^2 + y^2 = R^2$	\Rightarrow	$\phi_2(\theta, z) = (R\cos\theta, R\sin\theta, z).$
Cone:	$\sqrt{x^2 + y^2} = z$	\Rightarrow	$\phi_3(r,\theta) = (r\cos\theta, r\sin\theta, r).$
Paraboloid:	$x^2 + y^2 = z$	\Rightarrow	$\phi_4(r,\theta) = (r\cos\theta, r\sin\theta, r^2).$
Helicoid:		\Rightarrow	$\phi_5(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$

Problem 5.1 Sketch the graphs of the previous surfaces.

Problem 5.2 Evaluate the area of the following surfaces:

- I) sphere of radius R;
- II) circular cone parametrized by $\mathbf{r}(u, v) = (u \cos v, u \sin v, u)$, where $0 \le u \le a$ and $0 \le v \le 2\pi$.
- III) portion of the paraboloid $z = x^2 + y^2$ inside the cylinder $x^2 + y^2 = a^2$;
- IV) portion of the cylinder $x^2 + z^2 = 16$ bounded by the cylinder $x^2 + y^2 = 16$.

Solution: i) $4\pi R^2$; ii) $\pi a^2 \sqrt{2}$; iii) $\pi ((1 + 4a^2)^{3/2} - 1)/6$; iv) 128.

Problem 5.3

I) Deduce the area's formula of the revolution surface obtained by rotating the graph y = f(x), $0 < a \le x \le b$, about the vertical axis:

$$A = 2\pi \int_{a}^{b} x \sqrt{1 + (f'(x))^2} \, dx$$

using the parametrization $\mathbf{s}(r,\theta) = (r\cos\theta, r\sin\theta, f(r))$, where $a \le r \le b$ and $0 \le \theta \le 2\pi$. II) Find the surface area of the torus obtained by rotating about the vertical axis the graph $(x-R)^2 + y^2 = c^2$, 0 < c < R.

III) Deduce the corresponding parametrization to obtain the analogous formula in the case of rotating the graph y = f(x), $a \le x \le b$, about the horizontal axis.

Solution: ii) $4\pi^2 Rc$; iii) $\mathbf{s}(x,\theta) = (x, f(x)\cos\theta, f(x)\sin\theta)).$

Problem 5.4 Let $W = \{1 \le z \le (x^2 + y^2)^{-1/2}\}$ be a region of \mathbb{R}^3 . Prove that W has finite volume but its boundary has infinite area.

Solution: $V = \pi$.

Problem 5.5 Find the moment of inertia with respect to a diameter of an homogeneous spherical shell of mass m and radius a.

Solution: $2ma^2/3$.

Problem 5.6 Evaluate $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$ (**n** the outward normal vector) in the following cases:

- I) $\mathbf{F}(x, y, z) = (x^2, y^2, z^2)$ and S the boundary of the cube $0 \le x, y, z \le 1$.
- II) $\mathbf{F}(x, y, z) = (xy, -x^2, x+z)$ and S the portion of the plane 2x + 2y + z = 6 on the first octant, with **n** the normal vector with positive third component.
- III) $\mathbf{F}(x, y, z) = (xz^2, x^2y z^2, 2xy + y^2z)$ and S the upper hemisphere $z = \sqrt{a^2 x^2 y^2}$.
- IV) $\mathbf{F}(x, y, z) = (2x^2 + \cos yz, 3y^2z^2 + \cos(x^2 + z^2), e^{y^2} 2yz^3)$ and S the surface of the solid generated by intersecting the cone $z \ge \sqrt{x^2 + y^2}$ with the ball $x^2 + y^2 + z^2 \le 1$.

Solution: i) 3; ii) 27/4; iii) $2a^5\pi/5$; iv) 0.

Problem 5.7

Consider the surface

$$S = \{ (x, y, z) \in I\!\!R^3 : x^2 + y^2 + z^2 = 1, y \ge 0 \}$$

(oriented with the normal vector exterior to the unit sphere) and the function

$$\mathbf{F}(x, y, z) = (x + z, y + z, 2z).$$

- I) Evaluate $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$.
- II) Evaluate $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$.

Solution: i) π ; ii) $8\pi/3$.

Problem 5.8 Using Stokes's Theorem compute the integral $\int_{S} \text{curl } \mathbf{F}$ in the following cases, where S is oriented with outward normal vector:

- I) $\mathbf{F}(x, y, z) = (x^2 y^2, yz, xy)$ and S the paraboloid $z = a^2 x^2 y^2, z \ge 0$.
- II) $\mathbf{F}(x, y, z) = ((1 z)y, ze^x, x \sin z)$ and S the upper hemisphere of radius a.
- III) $\mathbf{F}(x, y, z) = (x^3 + z^3, e^{x+y+z}, x^3 + y^3)$ and $S = \{x^2 + y^2 + z^2 = 1, y \ge 0\}.$

Solution: i) 0; ii) $-\pi a^2$; iii) 0.

Problem 5.9 Consider the vector field

$$\mathbf{F}(x, y, z) = \left(y, \ x^2, \ (x^2 + y^4)^{3/2} \sin(e^{\sqrt{xyz}})\right).$$

Evaluate $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$, where **n** denotes the inward normal vector to the semiellipsoid

$$S = \{(x, y, z): 4x^{2} + 9y^{2} + 36z^{2} = 36, z \ge 0\}.$$

Solution: 6π .

Problem 5.10 Let $\mathbf{F}(x, y, z) = (2y, 3z, x)$ and T be the triangle with vertices A(0, 0, 0), B(0, 2, 0) and C(1, 1, 1).

- I) Find an orientation of the triangle's surface and the one induced at the boundary.
- II) Evaluate the line integral of the vector field \mathbf{F} over the boundary of T.

Solution: i) $\mathbf{n} = (1, 0, -1)$; the orientation of the boundary is $A \to B \to C \to A$; ii) -1.

Problem 5.11 Redo parts i), iii) and iv) of problem 5.6, using the vector calculus theorems.

Problem 5.12 Consider the function

$$\mathbf{F}(x,y,z) = (y\sin(x^2+y^2), -x\sin(x^2+y^2), z(3-2y))$$

and the region

$$W = \{ (x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 1, z \ge 0 \}.$$

Evaluate $\int_{\partial W} \mathbf{F}$, where ∂W denotes the boundary of W.

Solution: 2π .

Problem 5.13 Verify Stokes's Theorem for:

I) $\mathbf{F}(x, y, z) = (y^2, xy, xz)$, on the paraboloid $z = a^2 - x^2 - y^2$, $z \ge 0$. II) $\mathbf{F}(x, y, z) = (-y^3, x^3, z^3)$ on $S = \{z = y, y \ge 0, x^2 + y^2 \le 1\}$.

Solution: i) 0; ii) $3\pi/4$.

Problem 5.14 Evaluate the integral $\int_{S} \mathbf{F}$, where

I) $\mathbf{F}(x, y, z) = (18z, -12, 3y)$, and S is the region of the plane 2x + 3y + 6z = 12 on the first octant.

II) $\mathbf{F}(x, y, z) = (x^3, x^2y, x^2z)$, and S is the closed surface formed by the cylinder $x^2 + y^2 = a^2$, $0 \le z \le b$, and its upper and lower bases.

III) $\mathbf{F}(x, y, z) = (4xz, -y^2, yz)$, and S is the boundary surface of the cube $0 \le x, y, z \le 1$. IV) $\mathbf{F}(x, y, z) = (x, y, z)$, and S is a simple closed surface.

Solution: i) 24; ii) $5\pi a^4 b/4$; iii) 3/2; iv) $3|\Omega|$, where $S = \partial \Omega$.

Problem 5.15 Compute the flux of the vector field $\mathbf{F}(x, y, z) = (y^2, yz, xz)$ over the surface of the tetrahedron bounded by x = 0, y = 0, z = 0, x + y + z = 1, oriented with outward normal.

Solution: 1/12.

Universidad Carlos III de Madrid Calculus II

Problem 5.16 Suppose a temperature function on each point of the space is proportional to the square of the vertical axis distance. Consider the region $V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 2z, z \leq 2\}.$

- I) Compute the volume of V.
- II) Compute the average temperature on V.
- III) Compute the gradient flux of the temperature out of ∂V .

Solution: i) 4π ; ii) $4\alpha/3$ (if α is the constant of proportionality); iii) $16\alpha\pi$.

Problem 5.17 Let *D* be a region on the plane with boundary $C = \partial D$. Suppose that the inertia moments of *D* with respect to the coordinate axes are $I_x = a$ and $I_y = b$ respectively. If the density is 1, **n** is the outward unit normal vector to *C*, and $r = ||\mathbf{x}|| = \sqrt{x^2 + y^2}$, compute the integral

$$\int_C \nabla r^4 \cdot \mathbf{n} \, ds.$$

Solution: 16(a + b).

Problem 5.18 Let S be the unit sphere on \mathbb{R}^3 , and let φ be a nonzero function verifying $\|\nabla \varphi\|^2 = 4\varphi$ and $\operatorname{div}(\varphi \nabla \varphi) = 10\varphi$. Evaluate

$$\int_{S} \frac{\partial \varphi}{\partial \mathbf{n}} \, dS,$$

where **n** is the outward unit normal vector to S. Hint: From the two equations involving φ , compute $\Delta \varphi$.

Solution: 8π .

Problem 5.19 Let S be the sphere of radius a oriented with its outward normal vector, and let the vector field $\mathbf{F}(x, y, z) = (\sin yz + e^z, x \cos z + \log(1 + x^2 + z^2), e^{x^2 + y^2 + z^2})$. Evaluate $\int_S \mathbf{F}$.

Solution: 0.

Problem 5.20 Let $S = S_1 \cup S_2$, where S_1 and S_2 are the surfaces

$$S_1 = \{ x^2 + y^2 = 1, 0 \le z \le 1 \}, \qquad S_2 = \{ x^2 + y^2 + (z - 1)^2 = 1, z \ge 1 \},$$

and let the vector field $\mathbf{F}(x, y, z) = (zx + z^2y + x, z^3yx + y, z^4x^2).$

- I) Evaluate $\int_{S} \operatorname{curl} \mathbf{F}$ using Stokes's Theorem.
- II) Evaluate the same integral using Divergence's Theorem.

Solution: 0.

Universidad Carlos III de Madrid Calculus II

Problem 5.21 Let $h : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Find $\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{n}$, where \mathbf{n} is the inward unit normal vector to $\partial\Omega$, and

$$\mathbf{F}(x, y, z) = \left(e^{y^2 + z^2} + \int_0^x \frac{e^{t^2 + y^2}}{\sqrt{t^2 + y^2}} dt, \sin(x^2 + e^z), h(x, y) \right),$$

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, 0 \le z \le \sqrt{x^2 + y^2}, x \ge 0, y \ge 0 \}.$$

Solution: $\pi(1-e)/4$.

Problem 5.22 Consider the vector field

$$\mathbf{F}(x, y, z) = \left(y \, \mathrm{e}^z \, , \, \int_0^x \mathrm{e}^{-t^2 + \cos z} dt \, , \, z(x^2 + y^2) \right).$$

Evaluate $\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{n}$, where **n** denotes the outward normal vector to the boundary of the region

$$\Omega = \{(x, y, z): \ x^2 + y^2 + z^2 < a^2 \,, \ x^2 + y^2 < z^2 \} \,.$$

Solution: $(8 - 5\sqrt{2})\pi a^5/15$.

Problem 5.23 A vector field on $\mathbb{I}\!\!R^3$ has the form $\mathbf{F}(x, y, z) = (P_1(x, y) + P_2(x, z), x + Q(y, z), R(x, y, z))$, with $P_1, P_2, Q, R \in \mathcal{C}^2(\mathbb{I}\!\!R^3)$. If Γ_h is the boundary of the cylinder's section $x^2 + y^2 = 1$ at height h, prove that $\int_{\Gamma_h} \mathbf{F} \cdot d\mathbf{r}$ is independent of h.