5. SURFACE INTEGRALS

Parametrizations of important surfaces:

Sphere: $\quad x^{2}+y^{2}+z^{2}=R^{2} \quad \Rightarrow \quad \phi_{1}(\theta, \varphi)=(R \cos \theta \sin \varphi, R \sin \theta \sin \varphi, R \cos \varphi)$.
Cylinder: $\quad x^{2}+y^{2}=R^{2} \quad \Rightarrow \quad \phi_{2}(\theta, z)=(R \cos \theta, R \sin \theta, z)$.
Cone: $\quad \sqrt{x^{2}+y^{2}}=z \quad \Rightarrow \quad \phi_{3}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.
Paraboloid: $\quad x^{2}+y^{2}=z \quad \Rightarrow \quad \phi_{4}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$.
Helicoid: $\quad \Rightarrow \quad \phi_{5}(r, \theta)=(r \cos \theta, r \sin \theta, \theta)$
Problem 5.1 Sketch the graphs of the previous surfaces.
Problem 5.2 Evaluate the area of the following surfaces:
I) sphere of radius R;
II) circular cone parametrized by $\mathbf{r}(u, v)=(u \cos v, u \sin v, u)$, where $0 \leq u \leq a$ and $0 \leq$ $v \leq 2 \pi$.
III) portion of the paraboloid $z=x^{2}+y^{2}$ inside the cylinder $x^{2}+y^{2}=a^{2}$;
IV) portion of the cylinder $x^{2}+z^{2}=16$ bounded by the cylinder $x^{2}+y^{2}=16$.

Solution: i) $4 \pi R^{2}$; ii) $\pi a^{2} \sqrt{2}$; iii) $\pi\left(\left(1+4 a^{2}\right)^{3 / 2}-1\right) / 6$; iv) 128 .
Problem 5.3
I) Deduce the area's formula of the revolution surface obtained by rotating the graph $y=$ $f(x), 0<a \leq x \leq b$, about the vertical axis:

$$
A=2 \pi \int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

using the parametrization $\mathbf{s}(r, \theta)=(r \cos \theta, r \sin \theta, f(r))$, where $a \leq r \leq b$ and $0 \leq \theta \leq 2 \pi$.
iI) Find the surface area of the torus obtained by rotating about the vertical axis the graph $(x-R)^{2}+y^{2}=c^{2}, 0<c<R$.
iII) Deduce the corresponding parametrization to obtain the analogous formula in the case of rotating the graph $y=f(x), a \leq x \leq b$, about the horizontal axis.

Solution: ii) $4 \pi^{2} R c$; iii) $\left.\mathbf{s}(x, \theta)=(x, f(x) \cos \theta, f(x) \sin \theta)\right)$.
Problem 5.4 Let $W=\left\{1 \leq z \leq\left(x^{2}+y^{2}\right)^{-1 / 2}\right\}$ be a region of \mathbb{R}^{3}. Prove that W has finite volume but its boundary has infinite area.

Solution: $V=\pi$.
Problem 5.5 Find the moment of inertia with respect to a diameter of an homogeneous spherical shell of mass m and radius a.

Solution: $2 m a^{2} / 3$.

Problem 5.6 Evaluate $\int_{S} \mathbf{F} \cdot \mathbf{n} d S$ (n the outward normal vector) in the following cases:
I) $\mathbf{F}(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)$ and S the boundary of the cube $0 \leq x, y, z \leq 1$.
iI) $\mathbf{F}(x, y, z)=\left(x y,-x^{2}, x+z\right)$ and S the portion of the plane $2 x+2 y+z=6$ on the first octant, with \mathbf{n} the normal vector with positive third component.
III) $\mathbf{F}(x, y, z)=\left(x z^{2}, x^{2} y-z^{2}, 2 x y+y^{2} z\right)$ and S the upper hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$.
IV) $\mathbf{F}(x, y, z)=\left(2 x^{2}+\cos y z, 3 y^{2} z^{2}+\cos \left(x^{2}+z^{2}\right), \mathrm{e}^{y^{2}}-2 y z^{3}\right)$ and S the surface of the solid generated by intersecting the cone $z \geq \sqrt{x^{2}+y^{2}}$ with the ball $x^{2}+y^{2}+z^{2} \leq 1$.

Solution: i) 3 ; ii) $27 / 4$; iii) $2 a^{5} \pi / 5$; iv) 0 .

Problem 5.7

Consider the surface

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1, y \geq 0\right\}
$$

(oriented with the normal vector exterior to the unit sphere) and the function

$$
\mathbf{F}(x, y, z)=(x+z, y+z, 2 z) .
$$

I) Evaluate $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S$.
iI) Evaluate $\int_{S} \mathbf{F} \cdot \mathbf{n} d S$.

Solution: i) π; ii) $8 \pi / 3$.
Problem 5.8 Using Stokes's Theorem compute the integral $\int_{S} \operatorname{curl} \mathbf{F}$ in the following cases, where S is oriented with outward normal vector:
I) $\mathbf{F}(x, y, z)=\left(x^{2} y^{2}, y z, x y\right)$ and S the paraboloid $z=a^{2}-x^{2}-y^{2}, z \geq 0$.
II) $\mathbf{F}(x, y, z)=\left((1-z) y, z \mathrm{e}^{x}, x \sin z\right)$ and S the upper hemisphere of radius a.
III) $\mathbf{F}(x, y, z)=\left(x^{3}+z^{3}, \mathrm{e}^{x+y+z}, x^{3}+y^{3}\right)$ and $S=\left\{x^{2}+y^{2}+z^{2}=1, y \geq 0\right\}$.

Solution: i) $\left.0 ; i i)-\pi a^{2} ; i i i\right) 0$.
Problem 5.9 Consider the vector field

$$
\mathbf{F}(x, y, z)=\left(y, x^{2},\left(x^{2}+y^{4}\right)^{3 / 2} \sin \left(\mathrm{e}^{\sqrt{x y z}}\right)\right) .
$$

Evaluate $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S$, where \mathbf{n} denotes the inward normal vector to the semiellipsoid

$$
S=\left\{(x, y, z): 4 x^{2}+9 y^{2}+36 z^{2}=36, z \geq 0\right\}
$$

Solution: 6π.

Problem 5.10 Let $\mathbf{F}(x, y, z)=(2 y, 3 z, x)$ and T be the triangle with vertices $A(0,0,0)$, $B(0,2,0)$ and $C(1,1,1)$.
I) Find an orientation of the triangle's surface and the one induced at the boundary.
iI) Evaluate the line integral of the vector field \mathbf{F} over the boundary of T.

Solution: i) $\mathbf{n}=(1,0,-1)$; the orientation of the boundary is $A \rightarrow B \rightarrow C \rightarrow A ; i i)-1$.
Problem 5.11 Redo parts i), $i i i$) and $i v$) of problem 5.6, using the vector calculus theorems.
Problem 5.12 Consider the function

$$
\mathbf{F}(x, y, z)=\left(y \sin \left(x^{2}+y^{2}\right),-x \sin \left(x^{2}+y^{2}\right), z(3-2 y)\right)
$$

and the region

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} / x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\} .
$$

Evaluate $\int_{\partial W} \mathbf{F}$, where ∂W denotes the boundary of W.
Solution: 2π.
Problem 5.13 Verify Stokes's Theorem for:
I) $\mathbf{F}(x, y, z)=\left(y^{2}, x y, x z\right)$, on the paraboloid $z=a^{2}-x^{2}-y^{2}, z \geq 0$.
iI) $\mathbf{F}(x, y, z)=\left(-y^{3}, x^{3}, z^{3}\right)$ on $S=\left\{z=y, y \geq 0, x^{2}+y^{2} \leq 1\right\}$.

Solution: i) 0; ii) $3 \pi / 4$.
Problem 5.14 Evaluate the integral $\int_{S} \mathbf{F}$, where
I) $\mathbf{F}(x, y, z)=(18 z,-12,3 y)$, and S is the region of the plane $2 x+3 y+6 z=12$ on the first octant.
II) $\mathbf{F}(x, y, z)=\left(x^{3}, x^{2} y, x^{2} z\right)$, and S is the closed surface formed by the cylinder $x^{2}+y^{2}=$ $a^{2}, 0 \leq z \leq b$, and its upper and lower bases.
III) $\mathbf{F}(x, y, z)=\left(4 x z,-y^{2}, y z\right)$, and S is the boundary surface of the cube $0 \leq x, y, z \leq 1$.
iv) $\mathbf{F}(x, y, z)=(x, y, z)$, and S is a simple closed surface.

Solution: i) 24; ii) $5 \pi a^{4} b / 4$; iii) $3 / 2$; iv) $3|\Omega|$, where $S=\partial \Omega$.
Problem 5.15 Compute the flux of the vector field $\mathbf{F}(x, y, z)=\left(y^{2}, y z, x z\right)$ over the surface of the tetrahedron bounded by $x=0, y=0, z=0, x+y+z=1$, oriented with outward normal.

Solution: 1/12.

Problem 5.16 Suppose a temperature function on each point of the space is proportional to the square of the vertical axis distance. Consider the region $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq\right.$ $2 z, z \leq 2\}$.
I) Compute the volume of V.
iI) Compute the average temperature on V.
iII) Compute the gradient flux of the temperature out of ∂V.

Solution: i) 4π; ii) $4 \alpha / 3$ (if α is the constant of proportionality); iii) $16 \alpha \pi$.
Problem 5.17 Let D be a region on the plane with boundary $C=\partial D$. Suppose that the inertia moments of D with respect to the coordinate axes are $I_{x}=a$ and $I_{y}=b$ respectively. If the density is $1, \mathbf{n}$ is the outward unit normal vector to C, and $r=\|\mathbf{x}\|=\sqrt{x^{2}+y^{2}}$, compute the integral

$$
\int_{C} \nabla r^{4} \cdot \mathbf{n} d s .
$$

Solution: $16(a+b)$.
Problem 5.18 Let S be the unit sphere on \mathbb{R}^{3}, and let φ be a nonzero function verifying $\|\nabla \varphi\|^{2}=4 \varphi$ and $\operatorname{div}(\varphi \nabla \varphi)=10 \varphi$. Evaluate

$$
\int_{S} \frac{\partial \varphi}{\partial \mathbf{n}} d S
$$

where \mathbf{n} is the outward unit normal vector to S.
Hint: From the two equations involving φ, compute $\Delta \varphi$.
Solution: 8π.
Problem 5.19 Let S be the sphere of radius a oriented with its outward normal vector, and let the vector field $\mathbf{F}(x, y, z)=\left(\sin y z+\mathrm{e}^{z}, x \cos z+\log \left(1+x^{2}+z^{2}\right), \mathrm{e}^{x^{2}+y^{2}+z^{2}}\right)$. Evaluate $\int_{S} \mathbf{F}$.

Solution: 0.

Problem 5.20 Let $S=S_{1} \cup S_{2}$, where S_{1} and S_{2} are the surfaces

$$
S_{1}=\left\{x^{2}+y^{2}=1,0 \leq z \leq 1\right\}, \quad S_{2}=\left\{x^{2}+y^{2}+(z-1)^{2}=1, z \geq 1\right\}
$$

and let the vector field $\mathbf{F}(x, y, z)=\left(z x+z^{2} y+x, z^{3} y x+y, z^{4} x^{2}\right)$.
I) Evaluate \int_{S} curl \mathbf{F} using Stokes's Theorem.
iI) Evaluate the same integral using Divergence's Theorem.

Solution: 0.

Problem 5.21 Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function. Find $\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{n}$, where \mathbf{n} is the inward unit normal vector to $\partial \Omega$, and

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=\left(\mathrm{e}^{y^{2}+z^{2}}+\int_{0}^{x} \frac{\mathrm{e}^{t^{2}+y^{2}}}{\sqrt{t^{2}+y^{2}}} d t, \sin \left(x^{2}+\mathrm{e}^{z}\right), h(x, y)\right) \\
& \Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1,0 \leq z \leq \sqrt{x^{2}+y^{2}}, x \geq 0, y \geq 0\right\} .
\end{aligned}
$$

Solution: $\pi(1-\mathrm{e}) / 4$.
Problem 5.22 Consider the vector field

$$
\mathbf{F}(x, y, z)=\left(y \mathrm{e}^{z}, \int_{0}^{x} \mathrm{e}^{-t^{2}+\cos z} d t, z\left(x^{2}+y^{2}\right)\right) .
$$

Evaluate $\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{n}$, where \mathbf{n} denotes the outward normal vector to the boundary of the region

$$
\Omega=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<a^{2}, x^{2}+y^{2}<z^{2}\right\} .
$$

Solution: $(8-5 \sqrt{2}) \pi a^{5} / 15$.
Problem 5.23 A vector field on \mathbb{R}^{3} has the form $\mathbf{F}(x, y, z)=\left(P_{1}(x, y)+P_{2}(x, z), x+\right.$ $Q(y, z), R(x, y, z))$, with $P_{1}, P_{2}, Q, R \in \mathcal{C}^{2}\left(\mathbb{R}^{3}\right)$. If Γ_{h} is the boundary of the cylinder's section $x^{2}+y^{2}=1$ at height h, prove that $\int_{\Gamma_{h}} \mathbf{F} \cdot d \mathbf{r}$ is independent of h.

