Universidad Carlos III de Madrid

Escuela Politécnica Superior

Departamento de Matemáticas
First Course. Telecommunication Engineering

Calculus II. Final exam. May 2010
Time length 3 h 30 min .

Problem 1. (2.5 p.) Analize the convergence of the following improper integrals depending on the given parameters:
a) $\int_{1}^{\infty} \frac{d x}{x^{\alpha} \sqrt[3]{1+x^{3}}}, \quad$ for $\alpha \in \mathbb{R}$,
b) $\int_{0}^{1} x^{p}(1-x)^{q} d x, \quad$ for $p, q \in \mathbb{R}$.

Problem 2. (2.5 p.) Let $D=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2} \leq 4, x, y \geq 0\right\}$. Compute the following integral

$$
\iint_{D} \frac{\log \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d x d y
$$

Problem 3. (2.5 p.) Given the force field in \mathbb{R}^{2},

$$
\mathbf{F}(x, y)=\left(\frac{\pi}{2} \cos (\pi x / 2) e^{\sin (\pi x / 2)}+2 x y^{2}, 2 y x^{2}\right)
$$

(a) Determine if the field is conservative. In case it is conservative, find its potential function.
(b) Compute the work done by \mathbf{F} in moving a particle along the curve

$$
\{y=1+x, x \in[-1,0]\} \cup\{y=1-x, x \in[0,1]\}, \text { from }(-1,0) \text { to }(1,0)
$$

Problem 4. (2.5 p.) Verify the Gauss's Divergence Theorem to compute the outer flux through the unit sphere of the following vector field

$$
\mathbf{F}(x, y, z)=(y,-x, z)
$$

1. a) Comparing with the function $g(x)=\frac{1}{x^{\alpha+1}}$, that converges for $\alpha>0$:

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{\alpha} \sqrt[3]{1+x^{3}}}}{\frac{1}{x^{\alpha+1}}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt[3]{1+x^{3}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt[3]{1 / x^{3}+1}}=1
$$

therefore, by the limit comparison test, the integral converges for $\alpha>0$ and diverges for $\alpha \leq 0$.
b) Breaking the integral as $\int_{0}^{1} x^{p}(1-x)^{q} d x=\int_{0}^{1 / 2} x^{p}(1-x)^{q} d x+\int_{1 / 2}^{1} x^{p}(1-x)^{q} d x$.

The first one is improper at $x=0$. We compare it with x^{p} that converges for $p>-1$:

$$
\lim _{x \rightarrow 0} \frac{x^{p}(1-x)^{q}}{x^{p}}=1
$$

thus, both have the same behaviour, so it converges for $p>-1$.
The second one is improper at $x=1$. With the change of variables $t=1-x$,
$\int_{1 / 2}^{1} x^{p}(1-x)^{q} d x=\int_{0}^{1 / 2} t^{q}(1-t)^{p} d t$, the integral becomes as the previous one changing the roles of p and q, so this integral converges for $q>-1$.
Therefore, the integral converges for $p, q>-1$.
2.

$$
\begin{aligned}
& \iint_{D} \frac{\log \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d x d y \underset{\text { polar }}{=} \int_{0}^{\pi / 2} d \theta \int_{1}^{2} \frac{r \log r}{r} d r= \\
& =\frac{\pi}{2} \int_{1}^{2} \log r d r=\frac{\pi}{2}[r \log r-r]_{1}^{2}=\frac{\pi}{2}[2 \log 2-1] .
\end{aligned}
$$

To compute $\int_{1}^{2} \log r d r$ we do integration by parts with $u=\log r$ and $d v=d r$.

3. a) If we denote $\mathbf{F}=(P, Q)$, since $\frac{\partial P}{\partial y}=4 x y=\frac{\partial Q}{\partial x}$, the force field is conservative.

The potential f is obtained from $\mathbf{F}=\boldsymbol{\nabla} f$. The second equation gives us $\frac{\partial f}{\partial y}=2 y x^{2} \Rightarrow$ $f=y^{2} x^{2}+g(x)$, where $g(x)$ is a function depending only on the variable x. From the first equation:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =2 x y^{2}+g^{\prime}(x)=\frac{\pi}{2} \cos (\pi x / 2) e^{\sin (\pi x / 2)}+2 x y^{2} \Rightarrow \\
g^{\prime}(x) & =\frac{\pi}{2} \cos (\pi x / 2) e^{\sin (\pi x / 2)} \Rightarrow \\
g(x) & =\int \frac{\pi}{2} \cos (\pi x / 2) e^{\sin (\pi x / 2)} d x=e^{\sin (\pi x / 2)}+C .
\end{aligned}
$$

Therefore, the potential is $f(x, y)=e^{\sin (\pi x / 2)}+y^{2} x^{2}+C$.
b) As the force field is conservative, the work done is

$$
\begin{aligned}
W & =\int_{l} \mathbf{F} \cdot d \mathbf{r}=f(1,0)-f(-1,0)= \\
& =e^{\sin (\pi / 2)}-e^{\sin (-\pi / 2)}=e-e^{-1}
\end{aligned}
$$

We can obtain also the work without using the potential, using the fact that for two any trajectories with same endpoints the work is the same. Thus, choosing the following, $\mathbf{r}=(x, 0)$, $x \in[-1,1]$, the work done is:

$$
W=\int_{-1}^{1}\left(\frac{\pi}{2} \cos (\pi x / 2) e^{\sin (\pi x / 2)}, 0\right) \cdot(1,0) d x=\left.e^{\sin (\pi x / 2)}\right|_{-1} ^{1}=e-e^{-1}
$$

4. We have to verify the Gauss's Divergence Theorem

$$
\iiint_{\Omega} \operatorname{div} \mathbf{F} d v=\iint_{\partial \Omega} \mathbf{F} \cdot d \mathbf{S},
$$

so we have to calculate both integrals.
$\iiint_{\Omega} \operatorname{div} \mathbf{F} d v=\iiint_{\Omega} 1 d V \underset{\text { spherical }}{=} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{1} r^{2} d r=\left.2 \pi[-\cos \phi]_{0}^{\pi} \frac{r^{3}}{3}\right|_{0} ^{1}=\frac{4 \pi}{3}$.
To compute this integral, we need to parametrize the surface $\partial \Omega$ of the unit sphere:
$\boldsymbol{\Phi}(\phi, \theta)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi), \theta \in[0,2 \pi], \phi \in[0, \pi]$.
$\boldsymbol{\Phi}_{\phi} \times \boldsymbol{\Phi}_{\theta}=\left(\sin ^{2} \phi \cos \theta, \sin ^{2} \phi \sin \theta, \sin \phi \cos \phi\right)$. Therefore, we have that

$$
\begin{aligned}
\iint_{\partial \Omega} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \mathbf{F}(\boldsymbol{\Phi}(\phi, \theta)) \cdot \mathbf{\Phi}_{\phi} \times \mathbf{\Phi}_{\theta} d \phi= \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi}(\sin \theta \sin \phi,-\cos \theta \sin \phi, \cos \phi) \cdot\left(\sin ^{2} \phi \cos \theta, \sin ^{2} \phi \sin \theta, \sin \phi \cos \phi\right) d \phi= \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi=2 \pi\left[-\frac{\cos ^{3} \phi}{3}\right]_{0}^{3}=\frac{4 \pi}{3} .
\end{aligned}
$$

Notice that we have chosen this orientation, that is the one corresponding with the outwards normal. This can be seen easily choosing the point $(1,0,0)$, that is, for the values of $\theta=0$ and $\phi=\pi / 2$, so we get $\boldsymbol{\Phi}_{\phi} \times \boldsymbol{\Phi}_{\theta}=(1,0,0)$, that is the correct one.

