

· UNIVERSIDAD CARLOS III DE MADRID ·
FINAL PROJECT

COMPUTER SCIENCE

USER MANUALUSER MANUAL

Student: Alberto Vegas Estrada
Supervisors: César Estébanez Tascón
 Ricardo Aler Mur

Version: 1.0
Leganés, June 2008

USER MANUAL

 2

IINDEXNDEX::

PPAGEAGE::

4...................1. Introduction

6...................2. How to use this manual?

8..............................3. Definitions

11............................4. Quick start guide

11......................................4.1. System requirements

12......................................4.2. Installation of ProGen

13......................................4.3. Creation of a new project

14...4.3.1. The project file

16...4.3.2. The experiment properties file

20...4.3.3. The main properties file

20......................................4.4. Execution of an experiment

22............................5. Detailed user’s manual

22......................................5.1. Description of classes

23...5.1.1. ProGen’s packages

23..5.1.1.1. Package progen

23..5.1.1.2. Package progen.functions

24..5.1.1.3. Package progen.evolution

24..5.1.1.4. Package progen.kernel

24..5.1.1.5. Package progen.userprogram

24......................................5.2. Data input

37......................................5.3. Using ADF’s

41......................................5.4. Inclusion of new functions

43......................................5.5. Inclusion of new operators

44...5.5.1. Some useful methods

46......................................5.6. Inclusion of new selectors

46...5.6.1. Some useful methods

48......................................5.7. Pass-Parameter, easy and unlimited

49......................................5.8. Experimenter

USER MANUAL

 3

51......................................5.9. Output

58......................................5.10. Errors: description and solutions

71............................6. Available library:

71......................................6.1. Functions and terminals

73......................................6.2. Operators

74......................................6.3. Selectors

78............................7. Implementation details

78......................................7.1. Grammars

80......................................7.2. Generational evolution

80......................................7.3. Rejection of individuals

81…………………………..7.4. The method setVariable()

83............................8. Frequently asked questions

USER MANUAL

 4

1. I1. I NTRODUCTIONNTRODUCTION

 This manual will help you to solve every doubt that you have about how to

use ProGen. If you still don’t know what is ProGen or what is it useful for please

dedicate a couple of minutes to read the point “frequently asked questions” at

the end of this manual. As a matter of general definition we can say that

ProGen is a tool that allows you, in a very easy and quick way, to define

experiments of Genetic Programming, to execute them and to obtain results.

ProGen (the name is a combination of the Spanish words Programación y

Genética) has been designed with several clear goals: Ease, efficiency,

scalability, portability, robustness and transparency.

 ProGen is written in Java. It has been designed using every advantage

offered by an object oriented programming language, including dynamic

polymorphism. This allows ProGen to grow and adopt new code and new

classes without any problem. Also, ProGen can work with any kind of data since

it is strongly typed.

 ProGen’s design is thought to satisfy a wide set of users. Those who have

not a big knowledge about Genetic Programming or programming in general

can create their projects in an easy way. They can use the tool fearless

because ProGen expects the minimum from them. Just a java file where the

fitness function is written is enough. Once the file is compiled, users can

execute infinity of different experiments and they will not even need to compile

anymore.

 Users with a bigger experience in GP (Genetic Programming) could need

more complex functionality. ProGen offers it and it is highly flexible at the setting

time. Almost any experiment desired can be designed in a few minutes with the

intuitive experiment file.

USER MANUAL

 5

 Expert users could need very specific features, functions, operators that

can adapt themselves perfectly to a particular problem. ProGen is ready to

incorporate everything that it does not contain yet. In this user manual it is

explained how to achieve that in very few steps.

 We have cared very much about the design and the source code. We have

tried to make it readable and understandable for users to feel comfortable

exploring it and, if they consider it necessary, modify it fearless.

USER MANUAL

 6

2. H2. HOW TO USE THIS MANUAOW TO USE THIS MANUALL

 We don’t want you to lose your time, and you don’t need to read this

manual as if it was a novel. In the index you can find a very accurate idea of

what you are going to find across the document, and where each part is

located. Anyway you can have a look to the following table and find out how

many pages you can skip.

Excuse me, I’m just arrived… what is

an individual?

Go to the definitions page. After that

we advise you to read the frequently

asked questions section and following

you can read the quick start guide to

start using ProGen.

I would like to launch an experiment.

Nothing really difficult. The set of

functions, operators and selectors

provided with ProGen will be more

than enough.

Go to the quick start guide. You will

learn how to create and launch your

experiment in a very few minutes.

I already know other Genetic

Programming tools and what I want is

to check if ProGen is as easy to use

as they say.

Do you already know how to execute

ProGen? If so, let’s for example give

ProGen a new function. Follow the

instructions in section “inclusion of

new functions” and check it yourself

(see you here in 5 minutes). If you

don’t know how to execute ProGen

you should start reading de quick start

guide.

I have already made some projects in

ProGen and now I have invented a

new genetic operator. I want to

analyze if this operator works better or

worse than the conventional

You can read the section “inclusion of

new operators” Once you have

included it you can use it in all your

projects as any other operator simply

by selecting it in the experiment

USER MANUAL

 7

operators. properties file.

I am working on a complex

investigation project and I need to

take advantage of every Genetic

Programming feature (multiple trees,

ADFs, ARGs, etc)

In your case you can find interesting

information in each part of this

manual. You can use the index to go

directly to the specific section you

want to check in each moment.

Can I incorporate a new module to

ProGen? I have a very good idea, but

I don’t want to implement a Genetic

Programming engine from scratch. If I

could use ProGen I would save a lot

of time.

You can. ProGen is very modular and

it is written completely using Java. It

has been designed to grow and

actually we are also working in new

and very interesting modules. What

you need to know is the interface of

the classes to engage your module.

You can find a detailed description of

each class and each method in

ProGen’s documentation. If you need

more help don’t hesitate contacting

us.

USER MANUAL

 8

3. D3. DEFINITIONSEFINITIONS

 With the objective of making readers understand better what is written in

this manual, especially for those that are not very familiar with the concepts of

Genetic Programming, we think it is useful collecting some definitions.

- ADF: (Automatic Defined Function). If the individual’s main trees (see below)

can be considered the representation of the main program, an ADF is the

representation of a subroutine of the program. ADFs evolve parallel and

independently from the rest of the trees. ADFs are invoked from main trees as

any other function (see below).

- ARG: Argument. When in one tree we have a node that points to an ADF (a

subroutine invocation), is possible that this node has more nodes hanging from

it (its branches or children). These branches are called arguments (from ARG0

to the number of branches hanging from the node minus one). ADF trees can

contain nodes that point to those branches to return the execution flow to the

tree that invoked the ADF. The next figure illustrates more clearly the described

structure.

Note: ProGen trees are executed in preorder.

USER MANUAL

 9

Figure 1: Execution flow with ADF’s and ARG’s

- Experiment: We call experiment to an execution of a project under a

determined configuration. For example, the regression problem can be

executed under infinite different configurations. Each time we execute the

regression problem we are launching a different experiment (even when it’s the

same configuration).

- Fitness: Numeric value that measures how appropriate is the individual to

solve certain problem that means, how good the individual is. ProGen, following

a non written standard, minimizes fitness to measure individuals. This means

that lower values are considered better than higher values. When an individual

is evaluated using the fitness function, and the value returned is zero, this

individual is considered perfect.

- Function: At the end, a program is a set of operations and data. Each

different function can accomplish a different operation over the data or over the

environment like for example add, subtract, multiply, jump, eat… whatever.

USER MANUAL

 10

Each node in the tree contains a pointer to a function. Leaf nodes contain

pointers to functions that do not need to operate over data, or data used by the

nodes that they are hanging from. Some examples of functions included in

ProGen are PlusFc or LwThanFc.

- Individual: The base of Genetic Programming is emulation of the biological

life. In biology individuals are leaving beings. A ProGen individual is the

equivalent. It is a data structure that codifies a program. More in detail, this

structure is a set of trees divided in two groups (main trees and ADF’s). In the

simplest case an individual is a single tree. The evaluation of the tree returns a

result that is a piece of data that can be any type. The evaluation process will

look for an individual whose tree or trees codify a program able to solve a

certain problem as for example the symbolic regression.

- Operator: An operator is an object able to turn one or more individuals into

one or more different individuals. This new individuals belong to a new

generation of individuals, that hopefully will be more able to find the solution for

the given problem, or at least a better approach than the individuals belonging

to the previous generation. Said with another words, application of operators

over individuals usually returns individuals with better fitness. Examples of

genetic operators included in ProGen are: PointMutation or Crossover.

- Selector: A selector is an object able to select individuals among a population,

according to certain criteria (best fitness value, winners in a tournament, etc).

Examples of selectors included in ProGen are: Roulette or Tournament.

- Terminal: With terminal we are defining the data, or the functions that don’t

receive arguments. Since ProGen can manage typed evaluation, a terminal can

be an integer, a boolean, a map, a tree… anything. ARG nodes are also

terminals as they have not branches.

USER MANUAL

 11

4. Q4. Q UICK START GUIDEUICK START GUIDE

This will help you to start using ProGen. Here are briefly explained the

minimum steps to create a project and to set up and run an experiment. We will

create step by step a full example. Reading this chapter at least once is

advisable for all users. Users interested in knowing in detail all the functionality

and not only those modules or parts that are more basic should read the next

chapter "Detailed user manual” where they will find deeper explanations and

they will learn to take advantage of all the functionality of ProGen.

4.1. S4.1. SYSTEM REQUIREMENTSYSTEM REQUIREMENTS

 To use ProGen you will need:

- 64M of RAM

- 600Mhz processor

- 20M of empty space in your hard drive.

- Java 1.2 or higher

It is recommended to have:

- 256M or more RAM.

- 1.5Ghz or faster processor.

- 50M of empty space in your hard drive.

- Java 1.5

ProGen has been tested on UNIX / Linux, Mac OS X and Windows

environments, but it will run on any platform where you have installed Java 1.5.

Genetic Programming problems tend to be of high computational

complexity, and hence the results will be obtained more quickly the higher the

speed of the computer. Additionally, ProGen can be configured to generate

large amounts of data. The amount of disk space required depends entirely on

the configuration of the experiment (number of individuals, generations, nodes,

USER MANUAL

 12

etc.). Logically the minimum required disk space is therefore strongly linked to

the experiment we want to run.

ProGen is written using Java 1.5 but respecting backward compatibility to

1.2.

4.2. INSTALLATION OF PROGEN

 To install ProGen simply unzip the file with the source code in the desired

directory. The directory hierarchy you get will look like:

 At the root directory (ProGen) you will find the following:

 - The master_file.cfg file (main properties file). ProGen runs the

experiment referenced by this file.

 - The src directory (where the .java files are located as in the hierarchy

shown in the image)

 - The bin directory (where the files .class files are located following the

same hierarchy as for the .java files)

 - The doc directory (where is the javadoc documentation of the project).

USER MANUAL

 13

4.3. CREATION OF A NEW PROJECT

 The different projects are stored in subdirectories in the directory

ProGen/src/userprogram. Let's create a new project that we will call

"Regression". In this project we want ProGen to find a program capable of

solving the symbolic regression problem, or to put it another way, to

approximate an equation like this: Y = X ^ 3 + X ^ 2 + X.

 Let's see what are the steps to follow:

1. Create a new directory in the directory userprogram with the name

you want to give to the project. In our project we call Regression to this

directory.
The new directory hierarchy is as follows:

2. Now we need to have in the newly created directory at least two

files. One will contain our program code (at least the fitness function). We

will call this file Regression.java. The other file will contain the experiment

configuration. We will call this one Regression.txt. The easiest way to start is

to copy these files from another project and rename them. Then edit them to

suit our particular problem. Once this is done the situation at the moment is

that shown in the following figure:

USER MANUAL

 14

3. Now we need to edit the files Regression.java (we call it the

project file) and Regression.txt (we call it the experiment properties file).

Let's see how:

4.3.1. THE PROJECT FILE

The project file is the file where is the java code of our project. It must

necessarily contain the implementation of the method fitness and then, it can

grow to be as complex as the user needs. It may include other classes, other

files, databases and an unlimited etc.

In our case we are implementing a simple problem and we just need the

fitness function. We will do the following:

4. We change references in the file that we are using as a template

for our own project (change the name of the class by “ class Regression”

and in the package declaration in the first line we put the name of our

package. In this case we have to type "package userprogram.Regression").

5. We delete the code of the fitness method and write our own fitness

function. Remember that the best fitness is 0.0. The methods initialize and

uninitialize are not mandatory. What they contain will be executed only once

before and after the process of evolution. It can be used to initialize data,

print a welcome message as in our case or you can simply delete them. See

USER MANUAL

 15

how the code of the fitness function of the class Regression.java would be

(you can find the file among the examples of ProGen).

 public double fitness(Individual ind){
 //System.out.println("evaluando individuo");
 double fitness = 1000;
 double error = 0.0;
 double y = 0.0;
 double result = 0.0;

 for (double i = 0; i < 1000; i++){
 setVariable("X", i);
 y= Math.pow(i,4)+ Math.pow(i,3) + Math.pow(i,2) + i;
 result = ((Double)ind.evaluate(this)).doubleValue();
 error += Math.pow(y-result, 2);
 }
 fitness = Math.sqrt(error / 1000);

 return fitness;
 }

 We just take 1000 test cases. We assign values to X from 0 to 999

and calculate the corresponding value of Y. We evaluate the individual and

compare the result with the previously calculated. The error is accumulated.

The fitness of the individual is the mean quadratic error obtained (the square

root of the total accumulated error divided by the number of test cases).

 Important is to underline how simple we asing value to variables.

With the sentence setVariable ("X", i); we assigned to the variable X (which

corresponds to a terminal as defined in our experiment configuration file) the

value of i. This method is inherited from class UserProgram.java and can be

invoked directly from anywhere in your program. The method works with

objects, so that the same method can be used to for example load a map or

restore a "snapshot" of any object.

 If we want ProGen to run some code before or after the execution

of the program (some message, some initialization, etc.) use the methods

initialize and uninitialize respectively. If the problem implemented was SantaFe,

in which an ant explores a map, the initialize method is perfect to create the

map with the values that the user wants. If what you want is that the map is

initialized before the evaluation of each individual, and not only once prior to the

USER MANUAL

 16

program execution and the evolution process, the best thing would be to use

the method setVariable mentioned above, within the fitness function.

 For the regression example is not necessary to initialize or

uninitialize anything so that our program is already created, and we are ready to

configure and run experiments. Next we will configure an experiment.

4.3.2. THE EXPERIMENT PROPERTIES FILE

6. Open the file that you renamed as Regression.txt and set up the

experiment to meet your preferences. We believe it is sufficiently intuitive, so

in this Quick Start guide we just mention the most important properties for

our example. If you have any doubt, go to the point "5.2 Data input" of the

documentation of ProGen (in this user manual). There you will find a

detailed explanation of each property.
 In any problem about Genetic Programming, you must ask

yourself the following questions. One advantage that ProGen gives to you is

that specifying the responses is really easy. So, coming back to our

particular example about symbolic regression.

a. Do I need to define ADFs?

 The ADFs allow us to evolve independently functions that

can be complex or can be handled easier and better separately. For more

information about the ADFs read Section 5.3: Using ADF's. To find a

program able to give an approach to the equation Y = X ^ 3 + X ^ 2 + X, in a

first instance it seems like we don’t need to use them.

b. What functions and terminals do I need?

 At a first glance one might say that it will be necessary to

use the addition and the power functions. If we do not have the power function

we can implement it in a moment (see section 5.4: Inclusion of new functions),

or we can use the multiplication and leave it to ProGen to do the job. Regarding

USER MANUAL

 17

terminals we need one to be the variable X. Taking a look at the library included

in ProGen, we see that we can use the following:

 DoublePlusFc: Sum of numbers of double type.

 DoubleMultFc: Multiplication of numbers of double type.

 D1: Variable double.

c. Do I need several main trees?

 ProGen offers the possibility to use several main trees,

however the answer to this question is usually no.

d. What type of data should the trees return?

 In this case the individual will only have one tree. We want

ProGen to find a program that is able to calculate the result of a particular

equation. So trees must return a number, in this case of type double.

e. Which genetic operators do I need? What selectors are

going to make ProGen converge towards the solution faster? Which

probabilities should I set? What size for the population? Which initialization

method is better?...

 This is one of those parts of Genetic Programming you

must experiment with. The answer to these questions is different for each

problem, which is why we offer a tool really fast and flexible to configure.

ProGen makes easier the configuration process, allowing you to change,

remove or include new selectors, operators, parameters, etc. in the

experiment and run it again without even re-compilation. Modifying your

experiment is matter of very few seconds. In addition, thanks to the

experimenter you can also define in a few seconds batteries of experiments

so that it is ProGen who alters the values of the properties and launches an

experiment after another. For more information go to point 5.8: The

experimenter.

7. Well, you already have a first idea of what you need to solve the

symbolic regression. Let's describe your wishes to ProGen by writing them

in the properties file.

USER MANUAL

 18

 We had decided that we will use the following functions and

terminals: DoublePlusFc, DoubleMultFc and D1. Since we are not going to

use ADFs and we want to use only a main tree per individual (which returns

a double value), we only need a function set. In the properties file, these

especifications are corresponds to the following:

prp_num_function_sets: 1
prp_function_set_0: DoublePlusFc, DoubleMultFc, D1
prp_return_type_fs_0: double

prp_number_of_trees: 1
prp_tree0_function_set_number: 0

We are saying to ProGen that we use a single main tree, the tree

uses the function set 0 that contains the list of functions and terminals

desired and finally we are indicating that the trees created with this function

set return the type double.

8. We now define the evolution parameters. As already commented,

these are totally dependent of the problem to be solved and generally they

must be adjusted using the experience, intuition and test and error. To start

we ca say that we want to use the crossover with a 40% of probability, the

mutation with growth (GrowMutation) with a 60% of probability, and also that

we want the 16.34% of the population move to the next generation by

elitism. We want Crossover to use RandomSelector to select individuals and

GrowMutation to use tournament of size 4. The translation of thise in the

properties file looks like the following:

prp_elitism: 16.34%

prp_operator_number: 2
prp_op1_name: Crossover(internal=0.9)
prp_op1_probability: 0.4
prp_op1_selection: RandomSelector()

prp_op2_name: GrowMutation(internal=1, levels=3, mode=grow)
prp_op2_probability: 0.6
prp_op2_selection: Tournament(size=4)

 What if we would like Crossover to use as its selector

RandomSelector 30% of the times and roulette (Roulette) the remaining

70%?

USER MANUAL

 19

 We simply consider them different operators and then we adjust

the probabilities of occurrence:

prp_elitism: 16.34%

prp_operator_number: 3
prp_op1_name: Crossover(internal=0.9)
prp_op1_probability: 0.12
prp_op1_selection: RandomSelector()

prp_op2_name: Crossover(internal=0.9)
prp_op2_probability: 0.28
prp_op2_selection: Roulette()

prp_op3_name: GrowMutation(internal=1, levels=3, mode=grow)
prp_op3_probability: 0.6
prp_op3_selection: Tournament(size=4)

Note: While operators are here numbered starting from 1, it is expected that

in future versions their numeration will start from 0.

Note: The values passed as parameters to the selectors and operators

(internal, size, etc.) are parameters with which the user can specify the

behavior of these operators and selectors. For more information about the

parameters accepted by each operator or selector read section 6: Library

available. If you want to know how to include new parameters for redefining

the behavior of operators or selectors, or improve them with new possibilities

that you like read paragraph 5.7: Pass-parameters: easy and unlimited.

9. What else remains undone? Now we simply have to adjust the

value of other properties as for example the number of generations, the

population size, the maximum depth of individuals ... We believe it is an

intuitive task, however all the properties of this file are explained in section

5.2: Data input.

10. Now we are ready to run our problem and find a program that can

calculate regression. If the result is not satisfactory at the first attempt, just

look at the output of ProGen, try to guess how you can you improve the

evolution (more generations perhaps? Another configuration for the

USER MANUAL

 20

operators?). Edit the file Regression.txt to set new values, save the file and

launch the new experiment. You do not need to compile anything.

4.3.3. THE MAIN PROPERTIES FILE

11. Go to the ProGen´s root directory. Here is the main properties file (by

default it is called master_file.cfg). At the moment just make sure that the option

"prp_experiment_file" is referencing your experiment properties file

(src/userprogram/Regression/Regression.txt). To have more information about

the main properties file go to point "5.2 The Data input" inside this user manual).

Your experiment is now ready to be launched.

4.4. EXECUTION OF AN EXPERIMENT

 To run an experiment simply execute the following command:

java ProGen <file>

where <file> is the name of the main properties file (if you have not created your

own, this file will be named master_file.cfg). Remember that this file must

reference the experiment file. Since the name of this file is passed as a

parameter, you can have as many main properties files as you wish in the main

directory.

Note: Neither the filename or its extension are important as far as it

contains the property "prp_experiment_file." You can launch ProGen executing

for example "java ProGen my_file.pro" or "java ProGen properties.txt", and so

on. As long as the file referenced by the parameter exists on the proper path

and contains the property "prp_experiment_file" pointing to the experiment

properties file, the program will be launched successfully.

USER MANUAL

 21

 Note: To compile simply execute the command javadoc followed by the

name of the file or files you want to compile.

USER MANUAL

 22

5. D5. DETAILED USER MANUALETAILED USER MANUAL

 In this section we are going to explain in more detail the characteristics of

ProGen and how can we get the maximum advantage of it.

5.1. D5.1. DESCRIPTION OF CLASSEESCRIPTION OF CLASSESS
 Doubtless is that the best way to get to know ProGen in dept is by

exploring its classes and the interface that each of them offers. Knowing the

source code in detail we will be able to modify it as we wish. However, ProGen

is a program that contains several thousands of lines of code and

understanding every method could be a heavy task. This does not mean that

you can not use every feature or even modify ProGen. ProGen was created to

be easily modified. From point 5.2 you will find information about how to do that.

Even the operators, selectors and functions that we offer can be modified quick

and easily and deep knowledge of ProGen classes is not required. Just follow

the instructions that you will find from section 5.3 (Inclusion of new functions).

The source code is divided in packages in such a way that we can guess by

intuition what we are going to find inside each of them.

Nevertheless, for all users, expert or not, who are interested on exploring

the code and knowing how does ProGen’s kernel work, how is it implemented,

what exactly happens when a particular method is invoked, etc. we offer inside

ProGen´s documentation a detailed description of every package, every class,

every method and every attribute.

 Note: The detailed description of each component can be already found

in this document (out of the user manual) in the section under the title “Detailed
Design”. To avoid unnecessary repetition of the information, from this manual

(considered the fact that it is released together with the rest of the

documentation) we will just point to the corresponding sections.

USER MANUAL

 23

5.1.1. PROGEN’S PACKAGES

 5.1.1.1. Package progen

 This is the package that encloses the main class. It includes the following

classes: ProGen.java and Experimenter.java. The detailed information about

this package can be found in the section “Detailed design” (inside this

document, out of this manual).

 5.1.1.2. Package progen.functions

 Package that stores the library of functions and terminals provided with

ProGen. It has been specially designed to be improved with new functions and

terminals in a fast and easy way. It also includes the class ADF, considered a

USER MANUAL

 24

special kind of function and the class ARG, considered a special kind of

terminal. The detailed information about this package can be found in the

section “Detailed design” (inside this document, out of this manual).

5.1.1.3. Package progen.evolution

This is the package that stores all those classes that have a direct

implication in the evolution process. It includes evolutive operators and

selectors. The detailed information about this package can be found in the

section “Detailed design” (inside this document, out of this manual).

 5.1.1.4. Package progen.kernel

 This package builds the kernel of ProGen. Basically includes those

classes that are necessary to create, evaluate and control the population. The

detailed information about this package can be found in the section “Detailed

design” (inside this document, out of this manual).

5.1.1.5. Package progen.userprogram

 In this package are included all the user programs. A user program is a

problem that we want ProGen to solve, as for example the symbolic regression,

SantaFe trail or any other problem that we intend to solve using Genetic

Programming. The detailed information about this package can be found in the

section “Detailed design” (inside this document, out of this manual).

5.2. D5.2. D ATA INPUTATA INPUT
The data imput handled by ProGen v1.0 is read from text files, called

properties files. The first of them, passed as an argument in the ProGen

execution is called the main properties file. In this file there is a reference to the

second file, or experiment file. Following we explain its content and how must

both files be configurated.

USER MANUAL

 25

The main properties file:

ProGen recibe como argumento el fichero principal de propiedades, que

tiene el siguiente aspecto:

#Master file configuration:

prp_experiment_file: Regression\Regression.txt

#EXPERIMENTER
prp_experimenter: off
prp_population_size: 2,10:2
prp_initialization_mode: grow, full
#prp_max_nodes: 100,300:50
#prp_max_depth: 6,10:1
prp_generations: 10,20:5

Mainly, this file contains a reference to the experiment properties file and

properties used by the experimenter (For details about the experiment please

read the section 5.8 of this document). Although this data may be included

inside the experiment properties file in order to have a single input file, we

expect in the future that together with the experimenter properties, this file will

contain properties to manage other functionality as parallelism or

multipopulations. Because of this, we decided to use both of the files, one with

the properties for a specific experiment and the other, the main one, for higher

level options.

The experimenter will be explained later, so about this file we will only

say for the moment that the property “prp_experiment_file” must have a value,

and this value must contain the path to the experiment properties file.

Note: In UNIX/Linux or Mac OS X environments, the character delimiting

directories in the paths is ‘/’ instead of ‘\’, so the path to the file in the example

above would look like:

prp_experiment_file: Regression/Regression.txt

The experiment properties file:

USER MANUAL

 26

The experiment properties file is the place where we will set the whole

configuration for a specific experiment. It is highly flexible and potent. Any error

in the settings in this file will be detected by ProGen that will return an

explanation of the particular error. Further in this document you can find a

detailed description of every possible error and how to correct it. An experiment

properties file has the following look.

 #***
 # Experiment properties file *
 #***

#----PROJECT----

#The project must be written in a java file with the same name that
you specify in this property.
#it will be also used to name output files.
prp_project_name: Regression

#Available: English, Español
prp_language: español

#Output: detailed or summarized
output_mode: detailed

#----POPULATION----

prp_load_population: population.xml
prp_population_size: 100
#Full, grow, half and half
prp_initialization_mode: half and half
#Maximun number of attempts to generate a valid tree (both for the
initial population and during the evolution)
prp_max_attempts: 50

#----INDIVIDUALS----

#valid trees during the evolution
prp_max_nodes: 50
prp_max_depth: 10

#Valid depth range for the initial population trees
prp_depth_interval: 2,4

#----EVOLUTION----

prp_generations: 10
#Evolution will stop when this value (or any other inside the allowed
error interval) is reached
prp_stop_fitness: 0.5
#Upper and lower bounds from the stop_fitness value. Reaching a value
in this interval will also stop the evolution

USER MANUAL

 27

prp_error_interval: 0.0, 100.0

#exact number or percentage value
prp_elitism: 10%

prp_operator_number: 4
prp_op1_name: Crossover(internal=0.5)
prp_op1_probability: 0.2
prp_op1_selection: RandomSelector(amongTheBest=100%)

prp_op2_name: GrowMutation(internal=1, levels=3, mode=grow)
prp_op2_probability: 0.2
prp_op2_selection: Tournament(size=1)

prp_op3_name: PointMutation(internal=1)
prp_op3_probability: 0.5
prp_op3_selection: Roulette()

prp_op4_name: Reproduction(internal=1.0)
prp_op4_probability: 0.1
prp_op4_selection: RandomSelector(amongTheBest=100%)

#----FUNCTIONS and ADF´S----

#if you want to use ADF´S name them like ADF0, ADF1 and so. To refer
its branches use ARG0, ARG1...

prp_num_function_sets: 3
prp_function_set_1: DoublePlusFc, DoubleMinusFc, D1, ADF0
prp_return_type_fs_1: double

prp_function_set_2: DoublePlusFc, DoubleMultFc, D1
prp_return_type_fs_2: double

prp_function_set_3: DoublePlusFc, DoubleMinusFc, D1, ADF0
prp_return_type_fs_3: double

prp_number_of_trees: 1
prp_tree0_function_set_number: 1
prp_tree1_function_set_number: 3

prp_adf_number: 1
prp_ADF0_function_set_number: 2
prp_ADF0_interface: double

 These properties define the configuration with which an experiment is

going to be run. Following you can find an explanation for each of them.

A. Block Project

 prp_project_name: Project name. Important: This name must be the

same than the name of the java file that contains the project´s fitness

USER MANUAL

 28

function. If in this property you write the value “MyProgram”, ProGen in

order to evaluate the population will look for the fitness function in

MyProgram.class. If it doesn’t find the file, the execution will be aborted

returning the corresponding error.

 prp_language: This property allows you to decide in which language

you want ProGen to inform you about the possible errors. In this first

version of ProGen the languages available are Spanish and English. If

you leave this property blank, or if the property is not found in the

properties file, or if you write something different from one of the

available languages, by default the error output will be in English.

 prp_output_mode: Especifies the level of detail that ProGen will use to

log what has happened during the evolution process. Possible values for

this variable are:

Mode Information provided in the output

Normal - Grammars used, initial population,

best individual, fitness and generation

in which it was found.

Detailed - Logs everytime that an operator or

selector is aplied, the individuals

involved, the population in every

generation, the best individual for each

generation and its fitness, and

stadistical data about the experiment.

B. Block Population

 In this block you can specify the data related with the population.

 prp_population_size: Wished size for the population.

USER MANUAL

 29

 prp_initialization_mode: Initialitation mode for the initial population.

Possible values for this property are:

Mode Information provided in the output

Grow Trees grow randomly.

Full Trees grow full. For each tree to be generated it´s chosen

a depth value randomly between the minimum and

maximum specified depth. Then the tree is generated full.

(All the terminal nodes are in the last level)

Half and half Aproximately half of the trees are generated using the

grow method, and half using the full method.

 Prp_max_attempts: Maximun number of times that ProGen will retry

generating a tree. Every time that it is generated a tree that does not

meet the conditions specified in the properties file, ProGen will retry as

long as the number of retries does not get higher than the value of this

property.

C. Block Individuals

 In this block we specify how do we want the individuals for the

experiment to be.

 prp_max_nodes: Maximun number of nodes that the trees of an

individual can have. A tree whose number of nodes is higher than this

value will be rejected. This value is taken into account when generating

the initial population and also during the evolution.

 prp_max_depth: This property defines the maximun depth that the

individuals can reach. Unlike the last property, this one is taken into

USER MANUAL

 30

account only during the evolution process. To control the máximun depth

of the trees when generating the initial population we use the following

property.

 prp_depth_interval: It indicates the minimum and maximum depth

which may have the individual trees from the initial population. The value

of this property must be two numbers separated by a comma. Example:

"5, 8." Where the first number indicates the minimum depth (5) and the

second number the maximum depth (8).

D. Block Evolution:

 prp_generations: Maximum number of generations that we want the

evolution to last.

 prp_stop_fitness: Represents a condition for stopping. If the fitness

function defined by the user returns this value, the evolution will stop.

 prp_error_interval: Stop condition. The user can define an error range

for the stop_fitness (previous property). For example: If we define

prp_stop_fitness to have the value 17 and prp_error_interval to have the

value: 4, 8 it means that the evolution will be halted if the user´s fitness

function returns 17, but also if it returns any value between 17-4 and 17

+8 . When the evolution is stopped for having been found a fitness stop

or fitness within the range of error, it is reported by ProGen using the

standard output.

 prp_elitism: Number of individuals who will pass intact to the next

generation because they are the best. This value can be expressed in

absolute terms or as a percentage of the population size.

Examples:

prp_elitism: 30 # The 30 best individuals will pass to the next

generation.

USER MANUAL

 31

prp_elitism: 15% # Starting with the best individual, the 15% of the

population will pass to the next generation.

 prp_operator_number: Number of genetic operators that the user

wants to use in the experiment. For each of them it should appear in the

properties file the properties prp_opN_name, prp_opN_probability and

prp_opN_selection, where N ranges from 1 to the specified value in this

property. In other words, if in this property we declare that we will use 4

operators, the three properties cited must appear with N = 1, N = 2, N = 3

and N = 4.

Note: We only use this numeration method (from 1 to N) for the genetic

operators for implementation reasons. In the rest of parameters with

numerations with have stuck to the convention widely accepted by

programmers of counting from 0. In future releases of ProGen also

genetic operators will be counted from 0.

Prp_op1_name: Name of the operator. This name coincides with the

Java file name where it is implemented (without extension). The

parameters are passed in brackets as in the following example:

Example: prp_op1_name: Crossover (internal = 0.6)

 prp_op1_probability: probability of this operator to be used to generate

new individuals. This probability is taken into account, whenever ProGen

requires an operator to evolve an individual. The value logically must be

between 0 and 1 and if we use more than one genetic operator it must

also guarantee that the sum of the probabilities of all of them is equal to

1.

prp_op1_selection: Name of the selector used by this operator. The

name of the selector must match the Java filename where it is

USER MANUAL

 32

implemented (no extension). Any operator can use any selector. The

parameters are passed in brackets as in the following example:

Example: prp_op1_selection: Tournament (size = 4, amongTheBest =

40%)

Pass-Parameter: Operators and selectors can receive parameters. In

some cases these parameters are mandatory (see section dedicated to the

explanation of operators and selectors to know exactly what parameters can

or must receive each operator / selector). To pass several parameters to a

selector or to an operator we simply separate them by commas as in the

example above.

Note: You can pass any information to an operator or selector using

pass-parameter. This system is especially useful to improve, modify or

customize operators and selectors offered by ProGen and it is also very

useful to create new operators and selectors easily and without limitations.

For a deeper explanation of this method please read the section 5.7: Pass-

Parameter: Easy and unlimited in the page 42.

E. Block Funciones y ADF´s:

 In this block we specify the functions that we use in the trees and in the

ADF's of ProGen individuals, as well as how many main trees to have in each

individual, how many ADF's, return types and so on.

 prp_num_function_sets: Number of function sets that we are going to

use. A function set is a set of functions and terminals. Allowing the

existence of several sets we allow the possibility of having different trees

evolving with different functions, which is particularly useful when we

want to evolve with ADFs. If this property has the value N then in the

same properties file they must also appear the properties

"prp_function_set_i" and "prp_return_type_fs_i" where i is a number

USER MANUAL

 33

ranging from 0 to N-1. In other words, if we declare the use of 3 function

sets, the two properties cited must appear for i = 0, i = 1 and i = 2.

prp_function_set_1: Here user should write a list of functions and

terminals separated by commas. The trees that we will indicate later to

be created using this function set, will have in their nodes functions and

terminals from this list. The list of functions and terminals offered by

ProGen can be found in this document (see index), but it has been

designed to grow in a really simple way. In this document you will find

detailed information on how to include your own functions to the list. The

names of the functions that should appear on this property are the names

of the Java files that implement them (without extension).

If ADFs are declared (see how to do this in the following properties) they

can be included on the list as any other function assigning them numbers

from 0. In this case it is not necessary the existence of a Java file for

every ADF we want to use, since the file ADF.java is generic and ProGen

is responsible for creating the objects needed.

Example: prp_function_set_1: DoublePlusFc, DoubleMinusFc, D1, D2,

ADF0

 prp_return_type_fs_1: Return type of the trees that will be generated

using this function set. ProGen is a tool that allows typed Genetic

Programming. All functions and terminals have both, return type and

types for the arguments they receive (type of possible child nodes). All

trees are created using grammars so that the trees are always

semantically correct. To evaluate a tree it is necessary to know what type

is the final value that this tree returns. Such information is provided to

ProGen through this property.

USER MANUAL

 34

 prp_number_of_trees: ProGen can handle several main trees. This

property specify how many main trees we want to use. Typically this

value is always one but we wanted to allow the existence of n especially

for researchers. For every main tree we want to use we must include a

property "prp_treeN_function_set_number" where N start counting from
0.

 prp_tree0_function_set_number: Specifies the function set with which

we want to generate trees of this index.

Example: Main trees number 0 of each individual will be generated with

the function set number 3

Prp_tree0_function_set_number: 3

 prp_adf_number: Declaration of the number of ADFs you want to use.

The ADFs are numbered from 0. For every ADF we want to use we have

to include in this properties file the properties "prp_ADF0_function_set"

and "prp_ADF0_interface".

 prp_ADF0_function_set: Specifies the function set with which we want

to generate trees of this index.

Example: The ADF0 of each individual will be generated with the

function set number 3

Prp_ADF0_function_set: 3

 prp_ADF0_interface: Specifies the ADF interface using the following

format: returnType$$typeArg1$$typeArg2$$TypeArgN…

Specifying the interface for the ADF we allow that grammars can

integrate ADF nodes into the trees as any other function..

Nota: When declaring the interface of an ADF we declare types for its

children, it is being defined implicitly the arity of the ADF. If the ADF has

arity N, the function set that we will use to generate these trees must

USER MANUAL

 35

include in its list of functions and terminals functions ARG (ARG0,

ARG1… until ARG (N-1)). This allows that in the ADF trees we can have

nodes that allow jumping back to the tree that invoked the ADF. Running

ARG0 the execution jumps to the child number 0 of the node that called

the ADF.

The figure below helps understanding better this structure of "jumps" or

calls.

Some important considerations about the properties files:

- The properties in both properties files can appear in any order.

- If any mandatory property does not appear in the file, ProGen will warn

you of the error when trying to run the experiment.

- You can add any comments using the "#" character. Everything from

this symbol to the end of the line will be ignored.

USER MANUAL

 36

- The values of the properties are written without quotation marks. The

value "10" with the quotation marks will not be recognized as a number but as a

string.

- You can add new properties if you find it useful. The java class

responsible for reading (Parser.java) will be explained below. The use of the

string "prp_" at the beginning of each property is a convention of style. If you

choose to include any property to the file, you are free to adopt it or not.

 Examples:

Found Consequence

prp_property1: value ProGen will read this property and

store its value.

#prp_property1: value This line is commented; it will be

completely ignored by ProGen.

Comments unsigned at the beginning

(without the #)

ProGen will read this line and will treat

it as a property. It is not altering the

execution but it is advised that the

comments begin with the "#" for

ProGen not to store unnecessary data.

prp_property1: This property will be read and its value

will be stored as null. If ProGen needs

that this property has a value other

than null, user will be informed with an

error.

Note: The inclusion of properties by the user is entirely unnecessary. Whether

you wish to extend the functionality of ProGen with your own functions,

operators, selectors, etc as if you want to change any of the existing ones, the

easiest and most powerful way of passing on information is through "pass-

parameter" method.

USER MANUAL

 37

- Do not be afraid to edit the file properties to configure the experiment

entirely to meet your wishes. We have already seen how easy it is, and also be

aware that any mistakes you could incur in will be informed by ProGen. All

mistakes have an error code. In this document you will also find a detailed

explanation of any potential errors that can occur and how to solve them.

- Properties files allow the user to modify the configuration of the

experiment to run many different tests and experiments quickly without

recompiling anything. There is also the possibility of automating the launch of

multiple experiments using the experimenter (see section 5.8: The

experimenter).

5.3. U5.3. USING SING ADF’ADF’SS
 ADFs, as it has been already mentioned before, are trees that evolve

independently. They are created from a different function set whose functions

and terminals are chosen by the user and which encode a sub-function of the

main program.

 If we want to use ADFs in our experiment we must follow the next steps:

1. The use and composition of the ADFs are specified in the properties file,

so the first thing we need to do is open it for editing.

2. Let's say we want to use an ADF (it must be named ADF0). The first

thing is to think about what functions we should include in this ADF

For example:

The ADF0 uses functions: DoublePlusFc, DoubleMultFc and D1 and its

return type will be double. In other words, evaluating the ADF0 will return

a double.

3. Do we have any function set of these characteristics? Imagine that we

have a function set (the main tree), but it uses a different set of functions

USER MANUAL

 38

and terminals. This means that we have to create a new function set to

be used by the ADF0. As we already have a function set (which is the

number 0) we create function set number 1. We do the following:

a. We add one to the value of the property "prp_num_function_sets."

Before this value was 1 (we only had a function set). Changing the

value with a 2 we tell ProGen that we are going to use two sets

function (that may or may not be different).

b. We include the properties:
prp_function_set_1: DoublePlusFc, DoubleMultFc, D1
prp_return_type_fs_1: double

With this we tell ProGen that function set number 1 contains the

functions DoublePlusFc, DoubleMultFc and D1, and that the return

type for this function set should be double.

4. We already have the function set. Now we have to tell ProGen we are

going to use an ADF.

a. In property "prp_adf_number" write the value 1. (One ADF).

b. We include property "prp_ADF0_function_set_number: 1." With

this we are telling ProGen that we want that the ADF0 will be built

using the function set number 1. (The one we just created).

c. We include property "prp_ADF0_interface: double$$double" This

tells ProGen that ADF0 is a function that returns a double and

receives a double. In other words, it is not a terminal function and

therefore it will not be placed in leaf nodes of the tree that will be

generated by this function set (function set 1).

5. Note: The ADF0 receives an argument (in its interface we have declared

so). When you run a node ADF0 the execution flow jumps to the tree

ADF0. Then we must have the possibility of returning to the original tree

for the ADF0´s child node to be also run. It is mandatory to establish a

way to evaluate this child and this is done through ARG functions. Since

the ADF0 have only one child, we call him ARG0 (if it had two they would

USER MANUAL

 39

be ARG0 and ARG1, etc.). The function set we use to build the ADF0

(function set 1 in this case) must include the function ARG0. It would look

like this:

 “prp_function_set_2: DoublePlusFc, DoubleMultFc, D1, ARG0“

Note: The functions ADF (ADF0, ADF1 ...) and the terminals ARG

(ARG0, ARG1 ...) do not require the existence of a Java file with its same

name, as it is the case of other functions and terminals. These special

functions are created automatically using generic classes ADF.java and

ARG.java

6. Are we done? Yes, and no. The ADF0 is declared, it uses a function set

and there are no mistakes (we included ARG0 in the function set and the

return types of both the ADF (declared in prp_ADF0_interface) and the

function set that it uses (declared in Prp_return_type_fs_1) are not

contradictory (double in both cases)). Now we only have to use it. Our

main tree is not using ADF0 so the ADF0 will be never invoked. In our

example, the main tree is using function set 0. We can edit its property

as follows:
prp_function_set_1: DoubleMinusFc, ADF0, D2, D1
prp_return_type_fs_1: double

 Note: If you use several ADFs in such a way that they form loops

ProGen will inform you of the mistake.

 Let's look at a possible individual generated under this configuration:

USER MANUAL

 40

It is relevant to say that the value of the variables is the same at a given

moment for all of the individual trees. For example, if in the figure above the

values of D1 and D2 were 10.0 and 2.0 respectively, when evaluating this

individual it would be obtained the value: 22.0 - (-2) = 24.0

Lets remember that trees are executed in preorden, so the first thing is to

evaluate the left branch of the main tree, jumping to ADF0 (which returns 22).

From this value it is subtracted the result of the execution of the right branch,

that is -2.

This structure can get very complicated if we use several ADFs and

especially if they have arguments (what results in ARG functions). If we have

many ADFs with many ARGs it is very normal that the ADF and ARG nodes get

nested causing executions to be very long. We advise not to abuse of the use of

ADFs. Use ADFs if you have evidence that they will be useful and note that for

obvious reasons (they multiply the number of nodes to process) the time

needed to run an experiment will be much higher than if you do not use them. If

it is beneficial or not to use ADFs is a controversial issue which has conducted

several studies. We can say that the benefit depends on the specific problem

and that ADFs are an important part of the Genetic Programming. We have put

USER MANUAL

 41

special care to optimize performance in the evaluation of the trees so that you

have the best tools to experiment as you wish.

5.4. I5.4. INCLUSION OF NEW FUNCNCLUSION OF NEW FUNCTIOTIONSNS
This section we will explain how to use your own functions and how to

increase ProGen´s own function library.

Creating a function is really easy. The time required depends on the

operation that the function has to perform, but for a simple operation we assure

you that two minutes is plenty of time. Follow these steps:

1. Go to progen.functions package and open the file of a function

to use it as a template. For example PlusFc.java (sum of two

integers). The code is shown below:

package progen.functions;

import userprogram.UserProgram;
import progen.kernel.*;

/**
 * This class implements the function "Plus".
 */
public class PlusFc extends Function{

 /**
 * Constructor. Passes to the upper class Function its

 * arity, signature and symbol
 */

public PlusFc(){
 super(2, "int$$int$$int", "+");
 }

 /**
 * This function adds two numbers and returns the result
 * @param children the nodes hanging from the node

 * that contains this function, arguments for the operation.
 * @param uProgram Reference to the user´s project file.
 * @param stack Used only for ADFs and ARGs. You can ignore it.
 * @return The result of the operation
 */
 public Object execute(PGNode[] children, UserProgram uProgram, PGStack
stack){
 Integer child_1 = (Integer)children[0].evaluate(uProgram, stack);
 Integer child_2 = (Integer)children[1].evaluate(uProgram, stack);

 return (Integer) child_1.intValue() + child_2.intValue();
 }
}

USER MANUAL

 42

2. We have already opened it, we are now going to edit it. We

have marked with bold font things that we need to change

(ignoring the comments). Lets go line by line.

a. The name of the class. We put ours. The suffix Fc is a

convention used in ProGen, absolutely not mandatory.

b. The name of the constructor method to match the class name

as in any Java class...

c. The super sentence: We will specify the arity, the interface and

the symbol of our function.

d. The content of the method execute: If our function has arity 2,

we know that we can access to children [0] and children [1].

Executing the method evaluate we get returned the value of

the child. It is returned as an Object so we must make casting

to the corresponding type. (We know the type since we have

declared it in the interface). Every class is valid as data type.

We do with the values of the children whichever operation we

want to perform (in this case add the Integer value) and then

we return the result.

3. We already have the new function ready to be used. If we want

to include a new terminal it will be easier if we take a terminal

object as a template (like D1.java). The process is the same,

even shorter and simpler.

Note: If we want the function to be visible to all the projects we

implement, then we save it in the package progen.functions with all the

others and it will be ready to be used for any project that you do. If you

prefer that the function is visible only from the current project, it should be

saved in your project directory within the directory progen.userprogram.

<nameofmyproject> In that case you must change the header of the file

so instead of declaring membership to progen.functions package it does

to the package progen.userprogram. <nameofmyproject> (without

symbols <>).

USER MANUAL

 43

Note: In the case that the name of your own defined function is the same

as other function inside ProGen´s library, ProGen will use yours (it look

first in the user's home directory and then in the directory

"progen\functions"

5.5. 5.5. INCLUSION OF NEW OPERATORS

 What happens if I need an operator that is not included in ProGen? For

example, a new operator that I invented and I want to prove. Can I include it in

ProGen and use it as any other? The answer is yes. Simply follow these steps:

1. Go to the directory progen\evolution. You will find there operators

which ProGen does include. Use one as a template, for example

open Crossover.java.

2. Choose a name for your new operator and save the file with that

name plus the extension .java.

3. Use the same name for the class declaration and the constructor

method.

4. Edit in the constructor the “super” sentence:

a. Change the first argument for the name of your operator.

b. As the second argument put the number of individuals that

your operator needs.

c. As the third argument put the number of individuals that your

operator returns.

d. It is not necessary to touch the three remaining arguments

(selector, probability and params). Their values are taken from

the properties file.

5. Write the program sentences for the apply method. When your

operator is selected it will execute the code of this method. Typically

all operators begin with the sentence:
Individual[] individuals =

_selector.select(_individualsNeeded, file);

USER MANUAL

 44

This sentence asks the selector used by the operator (which we

specified in the properties file) to select as many individuals as the

operator needs and leave them in the matrix of individuals'

individuals'. Typically also all operators end with the sentence
return individuals;

That returns the individuals (which we operated with during the

execution of the method) for ProGen to check their validity, that

means to check whether they are in compliance with the restrictions

imposed by the user on how a valid individual should be (in terms of

maximum number of nodes, maximum depth, and so on.). Resulting

individuals considered valid will be part of the new population.

Note: Individuals returned by selectors are copies; that means that

operating on them does not alter the original population.

Note: To implement the method “apply” in your operators you will find

very useful to observe how ProGen operators access to individuals, their

trees, their nodes, and so on. Anyway in the next point we introduce to

you some methods that can be used and can be very useful.

Note: Once you finish writing your operator, compile it and leave it in the

directory progen\evolution with the other operators so it will be visible to

all projects. Once this is done you can select it in your experiment file like

any other operator. ProGen dynamically creates the objects from the

information specified in the experiment file.

5.5.1. SOME USEFUL METHODS
 Here are some methods that can be very useful when it comes to

implementing your own genetic operators.

Method
Class it

belongs to
Description

USER MANUAL

 45

Select Selector Returns an array with as many

individuals as you ask for

parameter

GetRandomTree Individual Returns a tree Individual

randomly chosen

GetParam Operator Returns the value of a

parameter passed from the

properties file. (See section 5.7

The pass-parameters method)

GetRandomNode PGTree Returns a node of the tree

chosen randomly (among those

whose type is the type

specified by the parameter)

getRandomCompatibleTree Individual Returns randomly an individual

tree that has been generated

by the same grammar than the

tree received by parameter.

getRandomCompatibleNode PGTree Returns (randomly chosen) a

node of the tree that is

compatible (interchangeable)

with the node recibed by

parameter.

Swap PGSubTree Exchanges the subtree that

executes the method with the

subtree received by parameter.

Updates also de number of

nodes, depths and roots (if

necessary) of the resultant

trees.

 The methods in this table are presented in a very general way. To get

accurate information on what they do, how they do it, parameters they receive,

USER MANUAL

 46

and so on see the section "detailed design" (within this document, but out of this

user manual).

5.6. I5.6. INCLUSION OF NEW SELENCLUSION OF NEW SELECTORSCTORS
 As with the operators, you can create and include in ProGen new

selectors built to meet your specific requirements. To do so just follow these

steps:

1. Go to the directory progen\evolution. There you will find the selectors

which includes ProGen. Use one as a template, for example open

Tournament.java.

2. Choose a name for your new selector and save the file with that name

plus the extension .java (progen / evolution).

3. Use the same name for declaring the class and the constructor.

4. Modify the constructor method, specifically the sentence "super":

a. Change the first argument for the name of your selector.

b. The remaining two arguments (pop and params) don’t need to

be touched. Their values are obtained automatically.

5. Edit the program code of the method “select”. When your selector is

invoked it executes the code inside that method. Keep in mind the

following:

a. The reference to the population is the variable _population

defined in Selector.java.

b. You can resize the visible population by calling to the method

amongTheBest, defined in the class Selector.java (it returns

new dimension), and then you can use the parameter

amongTheBest any time you want (see section 6.3 Selectors).

c. ProGen v1.0 uses generational evolution. Thus individuals who

are selected for the execution of an operator must not return to

the original population but to a new one. This means that we

always have to return copies of the individuals selected calling

to the method copy. Take a look at any of the selectors

included in ProGen for more clarity.

USER MANUAL

 47

5.6.1. SOME USEFUL METHODS

Method
Class it

belongs to
Description

AmongTheBest Selector Resizes the visible population

so only individuals among the

best “n” can be selected. It

returns the new size (virtual

size) of the population.

See section 6.3 Selectors.

GetRandomTree Individual Returns a tree of the individual,

randomly chosen.

PrintToMatlab PGTree Prints the tree to a file that can

be open with Matlab, in order to

see the tree shape.

getSize Population Returns the number of

individuals that the population

has.

getIndividual Population It returns an individual of the

population.

copy Individual Returns a copy of the

individual.

getAdjustedFitness Individual Returns the fitness of the

individual.

The methods in this table are presented in a very general manner. To get

accurate information on what they do, how they do it, the parameters they

receive and so on, see the point "detailed design" (within this document, but out

of this user manual).

USER MANUAL

 48

5.7. P5.7. PASSASS--PARAPARAMETERMETER: : EASY AND LIMITELESSEASY AND LIMITELESS..
 What would happen if you want to expand the possibilities of a selector

or an operator? Imagine that what you want is that the RandomSelector (for

example) does not return an individual at random, but you want to specify a

minimum amount of fitness and return and individual (at random) whose fitness

is higher than this value. The selector should look into the population (which is

always ordered by their fitness value), and choose randomly an individual

between the best individual and the individual border. Whether you create a

new selector as if you decide to edit RandomSelector, you need to specify the

value of that parameter (the minimum fitness). Creating a new selector in this

case does not make much sense because if you specifie for the new selector

minimum fitness = 0.0 the behaviour will be identical to the RandomSelector

included in ProGen. In other words, you do not need both. The simplest way is

to use parameters to extend the functionality of RandomSelector. Let's see step

by step how it's done:

1. Choose a name for the parameter. For example “minimum fitness” (Note

that you can include spaces if desired). The parameter can be used as in

the example:

“prp_op1_selection: RandomSelector(minimun fitness = 0.5)”

2. When you run ProGen, RandomSelector knows already that the

parameter "minimum fitness" has the value 0.5. But we are not taking

this into account yet. We must change the method of select

RandomSelector to use the new parameter, for example:

...

// We get the parameter value with getParam and convert it to double.

double fitmin = Double.parseDouble(getParam(“minimun fitness”));

 do{

// What RandomSelector was already doing

IndividualSelected = selectIndividualRandomly ();

 while (individualSelected has fitness <fitmin)

USER MANUAL

 49

 return IndividualSelected;

 As it can be seen, flexibility is maximum, and you only need to modify the

file selector whose functionality you want to extend, modify, etc. or create

another selector considering as many parameters as desired.

Note: In the experiment properties file you can specify the parameters of the

selectors and operators in any order.

Note: If in the experiment properties file you declare the use of a parameter that

does not exist (that the selector does not take into account) absolutely nothing

happens.

Note: If within your selector’s select method you invoke getParam asking for a

parameter that has not been passed through the experiment properties file, the

method getParam will return the string "null".

5.8. E5.8. EL L EEXPERIMENTERXPERIMENTER
 What we are going to describe below is another feature that you will only

find in ProGen. This is a simple and elegant way to define and execute a battery

of experiments one after another without further intervention from the user. The

experimenter allows you to:

 1. Define the value of one or several properties in the form of ranges with

the following shape : prp_property: "initial value, final value: offset

Example: prp_population_size: 100, 500: 200

Including this property in the experimenter will turn your experiment into 3

different experiments: One for a population size of 100, one for a population

size of 300 and another for a population size of 500. The remaining properties

will be taken from the experiment properties file.

USER MANUAL

 50

2. Get a separate output for each experiment launched, so that it can be

easily analyzed and then processed to obtain statistics, graphics, or any type of

data.

Note: When several properties are included in the experimenter, all

experiments resulting from all the possible combinations with all the values of

these properties will be launched.

For the experimenter to be put into operation, the property

"prp_experimenter" in the main properties file must be set to have the value

ON (no matter if you use capital or small letters).

Then include the properties you want to play with (whose value you want

to change). As it was already mentioned, if you include more than one property

in the experimenter, it will generate all the possible experiments arising from the

combination of the possible values for each property. Let's illustrate this with an

example: If you include the following lines in the main properties file:

#EXPERIMENTER
prp_experimenter: on
prp_population_size: 100,500:100
#prp_initialization_mode: grow, full
#prp_max_nodes: 100,300:50
#prp_max_depth: 6,10:1
prp_generations: 100,150:50

 The experimenter will be launched (since it is configured with the value

"on") and ProGen will proceed to launch 10 experiments. Why 10? Note that the

only properties that are not commented are:
prp_population_size: 100,500:100

(5 possible values: 100, 200, 300, 400 and 500) and

prp_generations: 100,150:50
(2 possible values: 100 and 150).

From these values they can be obtained 10 different combinations that

will define 10 different experiments. (100 individuals and 100 generations, 100

individuals and 150 generations, 200 individuals and 100 generations ... etc.).

USER MANUAL

 51

Note: The only properties that can be used in the experimenter are those

getting numerical values and the property "prp_initialization_mode".

5.9. T5.9. THE OUTPUTHE OUTPUT

For the output we have mainly developed three java classes.

One of them is the HistoricalData class. The purpose of this class is to

store all important information about the execution of a generation in order to

make it accessible at the end of the execution. We have considered that it

would be interesting to use this information to construct graphical diagrams and

others. For each generation this class stores: the number of the generation, the

breeding time, the evaluation time, the number of individuals, the best, worst

and average individual, etc.

The main class of the output package is the class Output. In each

generation this class extracts all information from the population at a generation

and set it at a HistoricalData object wich is stored into an array. Once all data is

processed, Output sends it to the OutputInterfaces.

The flexible element of the output package is the abstract class

OutputInterface. This class defines the expected functionality of all compatible

output interfaces at the time it implements some of the methods which will be

common to all of them.

Progen offers a variety of classes which extends this class, and offers the

most usual output requirements such as ExperimentsStats, StandardConsole,

StandardFile, etc. At any moment the user will be able to define his own

OutputInterfaces in an easy way.

USER MANUAL

 52

Here we have a simplified class diagram. Into this diagram, doesn’t

appear all attributes and all methods of each class. In the same way all classes

which extends OutputInterface aren’t shown.

Any user can make his own OutputInterface class by programming a

class which extends the abstract class OutputInterface. This class will have to

implement the abstract methods defined by OutputInterface such as the

following:

• receiveParams which allows ProGen to give arguments, if

necessary, to the class.

• closeInterface which finalizes the OutputInterface, if necessary, as

it is for file streams.

• connectInterface which manage the information in the required

way, such as calling System.out.println, etc.

USER MANUAL

 53

The functionality of this package is defined in the following sequence

diagram:

This allows that each OutputInterface manages the information in their

own way, being called by the Output class.

5.9.1. CREATING A NEW OUTPUTINTERFACE

It is easy and usefull to the user to be able to create their own output

system. This can be done through the following steps:

1. Create a class which extends OutputInterface into the output

package.

2. Implement the abstract method according to the user

requirements.

3. Include the class into the o_interfaces property of the

master_file.cfg file.

USER MANUAL

 54

The output of ProGen allows you to encapsulate output systems into an

output element. For example, you can program a class which contains other

three OutputInterfaces. By this way, into the new outputinterface method

connectInterface you will call the connectInterface method of the other

OutputInterfaces encapsulated.

5.9. T5.9. THE OUTPUTHE OUTPUT

For the output we have mainly developed three java classes.

One of them is the HistoricalData class. The purpose of this class is to

store all important information about the execution of a generation in order to

make it accessible at the end of the execution. We have considered that it

would be interesting to use this information to construct graphical diagrams and

others. For each generation this class stores: the number of the generation, the

breeding time, the evaluation time, the number of individuals, the best, worst

and average individual, etc.

The main class of the output package is the class Output. In each

generation this class extracts all information from the population at a generation

and set it at a HistoricalData object which is stored into an array. Once all data

is processed, Output sends it to the OutputInterfaces.

The flexible element of the output package is the abstract class

OutputInterface. This class defines the expected functionality of all compatible

output interfaces at the time it implements some of the methods which will be

common to all of them.

Progen offers a variety of classes which extend this class, and it offers

the most usual output requirements such as ExperimentsStats,

USER MANUAL

 55

StandardConsole, StandardFile, etc. At any moment the user will be able to

define his own OutputInterfaces in an easy way.

Here we have a simplified class diagram. Into this diagram, it doesn’t

appear all attributes and all methods of each class. In the same way all classes

which extend OutputInterface aren’t shown.

Any user can make his own OutputInterface class by programming a

class which extends the abstract class OutputInterface. This class will have to

implement the abstract methods defined by OutputInterface such as the

following:

• receiveParams which allows ProGen to give arguments, if

necessary, to the class.

USER MANUAL

 56

• closeInterface which finalizes the OutputInterface, if necessary, as

it is for file streams.

• connectInterface which manage the information in the required

way, such as calling System.out.println, etc.

The functionality of this package is defined in the following sequence

diagram:

This allows that each OutputInterface manages the information in their

own way, being called by the Output class.

5.9.1. CREATING A NEW OUTPUTINTERFACE

It is easy and useful for the users to be able to create their own output

system. This can be done through the following steps:

USER MANUAL

 57

4. Create a class which extends OutputInterface into the output

package.

5. Implement the abstract method according to the user

requirements.

6. Include the class into the o_interfaces property of the

master_file.cfg file.

The output of ProGen allows you to encapsulate output systems into an

output element. For example, you can program a class which contains other

three OutputInterfaces. By this way, into the new outputinterface method

connectInterface you will call the connectInterface method of the other

OutputInterfaces encapsulated.

5.9.2. THE OUTPUT OF PROGEN

Despite the OutputInterfaces indicated into the master_file.cfg, ProGen

generates some initial information and shows it into the console.

 * ProGen *

Construyendo gramatica: Valor de retorno:Integer
R0: A0 , A1 , Aterminal2
R1: Aterminal3
A0: (userprogram.Gphash.BitAndFc R0 R0) , (
userprogram.Gphash.BitOrFc R0 R0) , (userprogram.Gphash.BitXorFc R0
R0) , (userprogram.Gphash.BitMultFc R0 R0) , (
userprogram.Gphash.BitSumFc R0 R0)
A1: (userprogram.Gphash.BitNotFc R0) , (
userprogram.Gphash.BitVrotdFc R0)
Aterminal2: userprogram.Gphash.A0 , userprogram.Gphash.Hval
Aterminal3: userprogram.Gphash.Bit32ERC
Axiom: A0 , A1 , Aterminal2 , Aterminal3

ProGen---> Generating population RPB0
I:0 A:1 Depth:4 Nodes:10: (userprogram.Gphash.BitXorFc (
userprogram.Gphash.BitNotFc (userprogram.Gphash.BitNotFc (
userprogram.Gphash.BitVrotdFc userprogram.Gphash.A0))) (
userprogram.Gphash.BitNotFc (userprogram.Gphash.BitNotFc (
userprogram.Gphash.BitMultFc userprogram.Gphash.Hval
userprogram.Gphash.A0))))
I:1 A:1 Depth:4 Nodes:9: (userprogram.Gphash.BitSumFc (
userprogram.Gphash.BitVrotdFc userprogram.Gphash.A0) (
userprogram.Gphash.BitVrotdFc (userprogram.Gphash.BitOrFc (

USER MANUAL

 58

userprogram.Gphash.BitOrFc userprogram.Gphash.Hval
userprogram.Gphash.Hval) userprogram.Gphash.Hval)))
…
I:198 A:1 Depth:3 Nodes:12: (userprogram.Gphash.BitXorFc (
userprogram.Gphash.BitOrFc (userprogram.Gphash.BitVrotdFc
userprogram.Gphash.A0) (userprogram.Gphash.BitNotFc
userprogram.Gphash.A0)) (userprogram.Gphash.BitOrFc (
userprogram.Gphash.BitXorFc userprogram.Gphash.A0
userprogram.Gphash.A0) (userprogram.Gphash.BitVrotdFc
userprogram.Gphash.A0)))
I:199 A:3 Depth:6 Nodes:18: (userprogram.Gphash.BitNotFc (
userprogram.Gphash.BitMultFc (userprogram.Gphash.BitVrotdFc (
userprogram.Gphash.BitNotFc (userprogram.Gphash.BitVrotdFc (
userprogram.Gphash.BitXorFc userprogram.Gphash.Hval
userprogram.Gphash.A0)))) (userprogram.Gphash.BitNotFc (
userprogram.Gphash.BitMultFc (userprogram.Gphash.BitOrFc (
userprogram.Gphash.BitNotFc userprogram.Gphash.A0) (
userprogram.Gphash.BitNotFc userprogram.Gphash.Hval)) (
userprogram.Gphash.BitNotFc (userprogram.Gphash.BitVrotdFc
userprogram.Gphash.Hval))))))
ProGen---> Initial population generated

First of all, we can see the welcome of ProGen. Then it will be shown

information about the grammar used to generate the population, and finally a

description of all the individuals of the initial population.

Once this initial information has been shown, ProGen starts managing

the information of the generations. The information corresponding to the

StandardConsole has the following view:

|-= Generation 0 =-|
===
 Individual | Raw Fitness | Adjusted Fit. | Nodes tree 0 | Depth tree 0 |

 Best of Gen. | 48,4510 | 0,0202 | 21 | 6 |
Generation Mean | 8026,4785 | 0 ,0022 | 10,6917 | 3 ,9500 |
 Worst of Gen. | 44236,4651 | 0 ,0000 | 7 | 3 |

--
 Time (ms.) | Population Mean | Total Population Time |
--
 Breeding Time | 0,0000 | 0,0000 |
Evaluation Time | 1 ,9867 | 1192,0000 |
--

 New Best Individual:

 Raw fitness: 48.45102520710212
 Adjusted fitness: 0.020222027669031636

 Tree Nodes Depth

 Tree 0 21 6

Tree 0:
 (>>> (^ (>>> (^ (~ (>>> hval
)
)
 (| (~ hval
)
 (& a0
 a0
)
)
)
)
 (~ (>>> (+ (>>> a0
)
 (* a0
 hval
)

USER MANUAL

 59

)
)
)
)
)

===

|-= Generation 1 =-|
===
 Individual | Raw Fitness | Adjusted Fit. | Nodes tree 0 | Depth tree 0 |

 Best of Gen. | 48,3787 | 0,0203 | 21 | 5 |
Generation Mean | 2032,2948 | 0 ,0087 | 13,7600 | 4 ,4050 |
 Worst of Gen. | 44236,4651 | 0 ,0000 | 13 | 4 |

--
 Time (ms.) | Population Mean | Total Population Time |
--
 Breeding Time | 0,0667 | 40,0000 |
Evaluation Time | 2 ,2200 | 1332,0000 |
--

 New Best Individual:

 Raw fitness: 48.37872516488049
 Adjusted fitness: 0.020251636644342277

 Tree Nodes Depth

 Tree 0 21 5

Tree 0:
 (>>> (* (~ (* (>>> hval
)
 (+ a0
 a0
)
)
)
 (^ (* (& a0
 hval
)
 (>>> hval
)
)
 (+ (>>> a0
)
 (>>> hval
)
)
)
)
)

===

|-= Generation 932 =-|
===
 Individual | Raw Fitness | Adjusted Fit. | Nodes tree 0 | Depth tree 0 |

 Best of Gen. | 3 ,7087 | 0 ,2124 | 25 | 19 |
Generation Mean | 217,2546 | 0 ,1382 | 23,9383 | 18,1550 |
 Worst of Gen. | 44236,4651 | 0 ,0000 | 25 | 19 |

--
 Time (ms.) | Population Mean | Total Population Time |
--
 Breeding Time | 0,0333 | 20,0000 |
Evaluation Time | 3 ,2200 | 1932,0000 |
--

 New Best Individual:

 Raw fitness: 3.7086689608497205
 Adjusted fitness: 0.21237424170492997

 Tree Nodes Depth

 Tree 0 25 19

Tree 0:
 (* (>>> (>>> (>>> (>>> (>>> (>>> (>>> (>>> (* (>>>
 (>>> (>>> (>>> (>>> (>>> (>>> (>>> (^ hval

 a0

)

)

)

)

)

)

)

)
)
 (^
 hval

USER MANUAL

 60

 a0
)
)
)
)
)
)
)
)
)
)
 a0
)

===

|-= Generation 1000 =-|
===
 Individual | Raw Fitness | Adjusted Fit. | Nodes tree 0 | Depth tree 0 |

 Best of Gen. | 3 ,2569 | 0 ,2349 | 25 | 19 |
Generation Mean | 112,0751 | 0 ,1416 | 24,0750 | 18,2467 |
 Worst of Gen. | 12342,4580 | 0 ,0001 | 1 | 0 |

--
 Time (ms.) | Population Mean | Total Population Time |
--
 Breeding Time | 0,0667 | 40,0000 |
Evaluation Time | 3 ,2883 | 1973,0000 |

===

As we can see, the information about the different generations is divided

into three different sections.

The first of them shows the number of the generation whose information

is shown into the table.

The second one shows information about the individuals which belong to

that population. In this table it is shown: the raw fitness, the adjusted fitness, the

number of nodes and the depth of the individual. All this information is shown

about the best, worst and average individual of the population.

The third table shows the time in milliseconds used to breed and

evaluate each individual and the full generation.

Whenever a new best individual is reached the following information is

shown.

New Best Individual:

 Raw fitness: 3.7086689608497205
 Adjusted fitness: 0.21237424170492997

 Tree Nodes Depth

 Tree 0 25 19

Tree 0:
 (* (>>> (>>> (>>> (>>> (>>> (>>> (>>> (>>> (* (>>>
 (>>> (>>> (>>> (>>> (>>> (>>> (>>> (^ hval

 a0

)

)

)

)

)

)

)

USER MANUAL

 61

)
)
 (^
 hval

 a0
)
)
)
)
)
)
)
)
)
)
 a0
)

===

The first part talks about the information of the best individual, including

the raw fitness, the adjusted fitness, the number of nodes and the depth. Then

there are shown the trees and adfs that define the individual. Note that the trees

and adfs are shown in preorden notation.

5.10. 5.10. EE RRORSRRORS: D: DESCRIPTION AND SOLUTESCRIPTION AND SOLUTIONSIONS
Experiments on ProGen are configured from a properties file. This

properties file specifies for example which functions will include each of the

function sets you want to use, the genetic operators, the number of trees, and

so on. For the experiment to run, it is necessary that ProGen checks that the

data entered is valid, that there are no inconsistencies, that not necessary

information is missed, and so on. When ProGen encounter any error in the

properties file it informs the user by the standard output printing an error, which

consists of a numeric code and a textual description. The error message is

usually completed with specific information about the exact location where it

was found.

 Below there is a list of the different errors that ProGen can detect and

you can get, as well as its solution.

Code 0

USER MANUAL

 62

Message "Error 0: Function set wrongly built. You are using ADF´s or

funtions whose arguments have an unreachable type"

Solution For the grammar to be able to generate trees, it is neccesary that

for every function or ADF, the types that they receive (i.e. the

return type of their children) are returned by other functions of the

function set, or that in the function set there are terminals of that

type. For example, if we use a function that needs a double, and

we dont use any function or Terminal returning double, it will be

imposible that the grammar can generate trees including that

function or ADF.

For the function or ADF that raised the error we must make sure

that there are other functions or terminals returning the types that

that function or ADF receives as parameters.

(Or remove that function or ADF from the function set if you don’t

want to use it).

Code 1

Message "Error 1: Setting a value of incompatible type to the following

variable"

Solution The user, in his program, has tried to asign to the mentioned

variable a value of an incorrect type. When the user invokes

setVariable he must get sure that he is passing an object of the

same type of the variable. For more information read the section

7.4: the method setVariable()

Code 2

USER MANUAL

 63

Message "Error 2: The function set you try to use to generate the tree or

ADF is invalid (it must be a number between 0 and the specified

value in \"prp_num_function_sets\""

Solution Get sure that all the trees and ADFs that you want to use are

generated using function sets previously declared.

Code 3

Message "Error 3: It could not be found the file"

Solution You are trying to use a file that has not been found. Get sure that

the file exists in the correct path.

Code 4

Message "Error 4: A function set that is used by a main tree (not ADF) can´t

contain ARG´s"

Solution Main trees are not invoked from other trees, so it makes no sense

that they include ARG nodes (used to jump back to the n-child of

the node that invoked the tree where the ARG is). Make sure that

there are no ARG terminals in the function sets used by main

trees.

Code 5

Message "Error 5: Invalid name for an ADF funcion (they must be named

ADFi being i a natural positive number)"

Solution Make sure that in your function sets there are no ADFs that does

not match the correct format.

USER MANUAL

 64

Code 6

Message “Error 6: ADF not declared,”

Solution Make sure that in your function sets there are no ADFs whose

index is bigger or equals than the number of ADFs declared in the

property “prp_adf_number”.

Code 7

Message "Error 7: The return type of an ADF must be the same as the return

type of the function set that it uses"

Solution If an ADF returns certain data type and uses certain function set,

the type returned by the trees generated by that function set must

match with the type returned by the ADF. The oposite would be a

contradiction.

Code 8

Message "Error 8: All ADF´s using the same function set must have the

same interface"

USER MANUAL

 65

Solution If several different ADFs use the same function set, these ADFs

must have the same interface (return and wait for the same types

and have the same arity). Failure to do so leads to ambiguity in the

evaluation of ARGs.

Example:

Suppose we have the following situation:

- An individual with a tree and two main ADFs (ADF0 and

ADF1)

- The main tree uses the function set number 0 where they

are included ADF0 and ADF1

- ADF0 has arity 3 and ADF1 has arity 2 .

- The function set that uses ADF0 (for example function set

number 1) must necessarily contain ARG0, ARG1 and

ARG2, since ADF0 has arity three and it should be possible

to evaluate any of its branches .

- From this situation, we can conclude that ADF1 can not use

the function set number 1, as it may contain functions ARG2

when ADF1 has only arity two. The evaluation of a node

ARG2 in ADF1 would be an error.

With this we explain the need for all ADF using the same

function set to have the same arity... But, do they also need to

have exactly the same interface? The answer is yes.

When creating the ADF trees, for ARG nodes can be placed in

the tree, they need to have a type, but ... What is the type of the

ARG? At the moment of creating the ADF tree it is necessary

that the ARGs have a type. But if the child 0 of ADF0 is an

integer, and the son 0 of ADF1 is not, and ADF0 and ADF1 use

the same function set (they have been generated by the same

grammar and therefore are interchangeable) could happen that

after a crossover, evaluating a ARG node returns a different

type that the type that the parent node of that ARG is expecting.

USER MANUAL

 66

Code 9

Message "Error 9: Invalid name for an ARG function (they must be named

ARGi being i a natural positive number)"

Solution Make sure that no function set includes ARGs that does not match

the correct format.

Code 10

Message "Error 10: Acording to the interface of the ADF´s that uses the

following function set, it doesn´t exist such ARG"

Solution A function set contains an ARGN, but the ADFs that use that

function set don’t have that N child. Remove that ARG from the

function seto r modif. The interface of the ADFs that use that

function set for the inconsistency to dissapear.

Code 11

Message "Error 11: Acording to the interface of the ADF´s that uses the

following function set, it must be present the following ARG"

Solution If an ADF receives arguments, then the function set that it uses

must include an ARG function for each of them. Include the ARG

indicated or modify the interface of the ADFs using that function

set, removing from it the specified child.

Code 12

Message "Error 12: The way the ADF´s are being used can generate loops"

USER MANUAL

 67

Solution One or more of your ADF are using function sets that try to invoke

to each other directly or by means of one or more other function

sets. Review your function sets to avoid this situation.

Code 13

Message "Error 13: Since no ADF is using the following function set the type

of the ARG´s is impossible to be determinated so they must be

removed from the function set"

Solution In a function set there are functions ARG and no ADF is using that

function set. That means that the parser is unable to determine the

type of the ARG. Remove it from the function set.

Code 14

Message "Error 14: Make sure that the following property has a natural

positive number as a value"

Solution The message is quite self-explanatory

Code 15

Message "Error 15: You must write a value for the following property"

Solution The message is quite self-explanatory

Code 16

Message "Error 16: It couldn’t be found the following compulsory property"

Solution Include (or uncomment) the specified property.

USER MANUAL

 68

Code 17

Message "Error 17: The following property must have one of the following

values"

Solution The message is quite self-explanatory

Code 18

Message "Error 18: It was impossible to instantiate the file"

Solution Make sure that the file exists in the correct path and that its

corresponding .java file does not implement interfaces not

imported.

Code 19

Message "Error 19: Illegal access when instantiating the file"

Solution This error can not be produced by a wrong configuration of the

properties files. If you get this error, review the indicated file (that

will for sure be one of those created by the user) and check if it has

access restrictions.

Code 20

Message "Error 20: Make sure that all function sets include at least one

terminal function of the same type as the function set return type"

Solution This error shouln not be launched, since it is not true that a tree

cant be generated if it returns certain type and the function set

doesn’t include at least one terminal of that type.

USER MANUAL

 69

Code 21

Message "Error 21: The following property was defined by the user as

compulsory, but it was not found in the properties file"

Solution This error corresponds to a disabled feature. It can not be produce

in this version of ProGen.

Code 22

Message "Error 22: The parameters of the following operator or selector

doesnt fit the correct format"

Solution Operators and selectors can receive parameters. The format is

name = value. Parameters must be separated by commas and the

whole set of parameters must be passed in brackets.

Example: operator (name1=value1, name2=value2,…)

Code 23

Message "Error 23: Coulndt be invoked the constructor for the class"

Solution This error is launched when you invoke a constructor of a clase

(using reflexion) and there is any error with the parameters. This

error should not take place since you do not need to edit the code

responsible for this features (although of course you can do it if you

want).

Code 24

Message "Error 24: Incorrect value: The following property or param must

contain either a positive numeric value or a percentage value

(positive number from 0 to 100, followed by the sign \"%\")"

USER MANUAL

 70

Solution The message is quite self-explanatory.

Code 25

Message "Error 25: Probability properties must contain a value between 0

and 1"

Solution The message is quite self-explanatory.

Code 26

Message "Error 26: The adition of the probabilities of all operators must be

equals 1"

Solution The message is quite self-explanatory.

Code 27

Message "Error 27: It couldn't be created the file"

Solution The file we want to create could not be created. Make sure that the

path where you want to create the file exists.

Code 28

Message "Error 28: The file couldn't be written"

Solution Make sure the file exists and it’s not write-protected.

Code 29

Message "Error 29: The file couldn't be closed"

USER MANUAL

 71

Solution Make sure the file exists and it has not been previously closed.

Code 30

Message "Error 30: You must specify a size param for the Tournament

operator (a positive number between 1 and the population size)"

Solution If you use the selector “Tournament” it is mandatory that you

specify the parameter “size”.

Code 31

Message "Error 31: The max_attempts value was reached while trying to get

valid individuals by applying the operator"

Solution Raise the value of this property, or relax the conditions needed for

a tree to be valid (increase the number of nodes, the maximun

depth of the tree…).

Code 32

Message "Error 32: Values that represent intervals must have the following

format: Number1,Number2:Number3 All the numbers must be

positive and follow the relation: Number1 <= Number2"

Solution Write the range using the format specified in the message.

Code 33

USER MANUAL

 72

Message "Error 33: The population size must be greater than zero. If it´s

already set to a value greater than zero in your experiment file,

check the experimenter in your main properties file"

Solution Make sure you specify a value for the population size bigger than

zero. Note that it is possible that you have the experimenter on and

you are specifying there the zero value.

Code 34

Message "Error 34: The variable you are trying to access to, doesn’t exist"

Solution Make sure that a terminal with the name specified in the message

exists (and that you are using it in any function set).

Code 35

Message "Error 35: In the property prp_depth_interval the format is: 'n1, n2'

where: n1, n2 are integer numbers and (1 < n1 <= n2)"

Solution Write the value of the property in the correct format.

Code 36

Message "Error 36: Your function sets must contain at least one function

returning the type specified as the return type for that function set.

Otherwise in the best case all your trees will have only one node"

Solution If a tree must return certain data type, the function set used to

generate that tree must contain at least one function that returns

that same type. Make sure this condition is met.

USER MANUAL

 73

Code 37

Message "Error 37: Trying to generate randomly a valid individual, the

max_attempts value was reached"

Solution Raise the value of this property, or relax the conditions needed for

a tree to be valid (increase the number of nodes, increase the

range prp_depth_interval…).

Code 38

Message "Error 38: You declared an ADF that does not appear in the

function set of any principal tree (RPB). ADF is inaccessible and

thus useless. If you want to use trees that cannot be accessed by

RPBs, then define a RPB instead of an ADF (PRoGen supports

multiple RPBs in he same individual). This error was produced in

ADF"

Solution Message is self-explanatory.

USER MANUAL

 74

6. L6. L IBIBRARY AVAILABLERARY AVAILABLE

 In this point we are going to introduce the library of functions, genetic

operators and selectors included in this first version of ProGen. Note that the list

of funcionts as well as the lists of operators and selectors can be enhanced with

your own functions, operators or selectors respectivement.

6.1. FUNCTIONS AND TERMINALS
 The functions available in ProGen 1.0 are:

Name
Return

type
Simbol Arity

Type of its

children
Description

AndFc boolean ^ 2
boolean,

boolean
Logic and

NotFc int ~ 1 boolean Logic nor

OrFc boolean v 2 boolean Logic or

ExclOrFc boolean · 2 boolean Exclusive or

DoubleMinusFc double - 2
double,

double

Subtraction of

two doubles

DoubleMultFc double * 2
double,

double

Multiplication of

two doubles

DoublePlusFc double + 2
double,

double

Addition of two

doubles

DoubleDivFc double / 2
double,

double

Protected

division of two

doubles

GrtEqThanFc boolean >= 2 int, int
Greater or

equals than

LwEqThanFc boolean <= 2 int, int
Lower or equals

than

LwThanFc boolean < 2 int, int Lower than

USER MANUAL

 75

GrtThanFc boolean > 2 int, int Greater than

Equals boolean == 2
Object,

Object
Equals

MinusFc int - 2 int, int
Subtraction of

two integers

MultFc int *
Multiplication of

two integers

PlusFc int + 2 int, int
Addition of two

integers

DivFc int / 2 int, int

Protected

division of two

integers

 The terminals available are:

Name Return type Simbol Description

B1 boolean B1 Variable boolean

B2 boolean B2 Variable boolean

D1 double D1 Variable double

D2 double D2 Variable double

I1 int I1 Variable integer

I2 int I2 Variable integer

 All these functions can be selected to be part of any function set in any

properties file of any experiment and there is no need to import any file for it.

 Note: If we want to override any of these functions or terminals (to use

the same name for another function or terminal with a different behaviour) we

can do it including the function or terminal in the project directory. ProGen will

search first in the project directory and only if the function or terminal is not

found there it will search in its own library.

USER MANUAL

 76

 Note: Symbols can be repeated without any problem; although we

recommend to repeat them only when doing so doesn’t affect the clarity. (For

example using the symbol + for adding integers and doubles).

6.2. OPERATORS
 The genetic operators available in ProGen 1.0 are the following:

Name Crossover

Description
Chooses two nodes in two individuals and crosses

(exchanges) the subtrees hanging from them.

Name Internal

Values Between 0.0 and 1.0
Supported parameters

Description
Probability of selecting for the

crossover an internal node of the tree.

Name PointMutation

Description

Chooses a node of an individual and changes the

function that it contains with another equivalent (same

interface) of the same function set that generated the

tree.

Name internal

Values Between 0.0 and 1.0
Supported parameters

Description
Probability of selecting for the

crossover an internal node of the tree.

Name GrowMutation

USER MANUAL

 77

Description
Chooses a node of an individual, cuts the subtree

hanging from it and creates a new branch in the place

of the old one.

Name internal

Values Between 0.0 and 1.0

Description
Probability of selecting for the

crossover an internal node of the tree.

Name levels

Values Integer number greater than zero.

Description
Maximun number of levels that we

want the new branch to grow under

the selected node.

Name mode

Values grow or full

Supported parameters

Description Growing mode for the new branch.

Name Reproduction

Description Returns the individuals untouched.

Name ---

Values --- Supported parameters

Description ---

6.3. SELECTORS
 The selectors available in ProGen 1.0 are the following:

Name RandomSelector

Description Choose an individual randomly from the population.

USER MANUAL

 78

Name amongTheBest

Values
A percentage (0% to 100%), or an

absolute value between 0 and the

population size.

Supported parameters

Description

Resizes the population from which the

selector will select individuals. If the

value received is a percentage, the

visible population will be that

percentage of the best individuals in

the population (example 50% best

individuals). If the value received is an

absolute value the population visible is

that number of individuals counting

from the best (example the 94 best

individuals).

Name Roulette

Description

Chooses an individual randomly according to its

fitness proportional. That is, individuals who have

fitness values closer to 1 are proportionately more

likely to be selected than individuals with fitness

values close to 0.

Name amongTheBest Supported parameters

Values
A percentage (0% to 100%), or an

absolute value between 0 and the

population size

USER MANUAL

 79

Description

Resizes the population from which the

selector will select individuals. If the

value received is a percentage, the

visible population will be that

percentage of the best individuals in

the population (example 50% best

individuals). If the value received is an

absolute value the population visible is

that number of individuals counting

from the best (example the 94 best

individuals).

Name Tournament

Description
Chooses randomly several individuals (as many as

indicated in the parameter size) and returns the one

that has the best fitness (the highest).

Name amongTheBest

Values
A percentage (0% to 100%), or an

absolute value between 0 and the

population size

Description

Resizes the population from which the

selector will select individuals. If the

value received is a percentage, the

visible population will be that

percentage of the best individuals in

the population (example 50% best

individuals). If the value received is an

absolute value the population visible is

that number of individuals counting

from the best (example the 94 best

individuals).

Supported parameters

Name size

USER MANUAL

 80

Values Integer number.

Description Size of the tournament.

USER MANUAL

 81

7. I7. I MPLEMENTATION DETAILMPLEMENTATION DETAILSS

 This section is dedicated to clarify some details about ProGen´s

implementation. We will dedicate a few lines to explain how ProGen internally

works in some interesting points:

7.1. T7.1. THE GRAMMARSHE GRAMMARS
The class Grammar.java is responsible first and foremost for building

grammars capable of generating individuals that are valid according to the

functions included in the function sets (the types of their children and their

return types). For every function set there will be a grammar in charge of

generating all the trees that use this function set. For example, the following

function set:

prp_function_set_1: DoublePlusFc, DoubleMinusFc, DoubleMultFc, D1, D2,

AndFc, LwThanFc, GrtEqThanFc, B, NotFc, PlusFc, MinusFc, I1

Where the interfaces of each function are:

DoublePlusFc: double$$double$$double

DoubleMinusFc: double$$double$$double

DoubleMultFc: double$$double$$double

D1: double

D2: double

AndFc: boolean$$boolean$$boolean

LwThanFc: boolean$$int$$int

GrtEqThanFc: boolean$$int$$int

B: boolean

NotFc: boolean$$boolean

PlusFc: int$$int$$int

MinusFc: int$$int$$int

I1 : int

The corresponding grammar is:

R0: A0 , Aterminal1

USER MANUAL

 82

R1: A2 , A3 , Aterminal4 , A5
R2: A6 , Aterminal7
A0: (DoublePlusFc R0 R0) , (DoubleMinusFc R0 R0) , (DoubleMultFc
 R0 R0)
Aterminal1: D1 , D2
A2: (AndFc R1 R1)
A3: (LwThanFc R2 R2) , (GrtEqThanFc R2 R2)
Aterminal4: B
A5: (NotFc R1)
A6: (PlusFc R2 R2) , (MinusFc R2 R2)
Aterminal7: I1
Axiom: A0 , Aterminal1 , A2 , A3 , Aterminal4 , A5 , A6 , Aterminal7

 Grammars in ProGen have four different kinds of rules:

- R Rules: There is one for each return type. In this case we have three

different types: double, boolean and int, which correspond to R0, R1 and

R2 respectively.

- A Rules: There is one for every different interface, in other words, are

grouped under the same rule those functions that have equivalent

interfaces.

- Rules Aterminal: Equivalent to the rules A but they put together only

terminals.

- Axiom: Rule from which the grammar starts generating words (in this

case words are lisp strings that encode programs).

Note: Although the grammar allows that from the axiom we can jump to any

A rule or Aterminal, in the practice we prohibited the jumps from the axiom to

any A rule whose return type is not the type that the tree generated by the

grammar has to return (specified in the "prp_return_type_fs1" in this

example) and also the jumps to Aterminal rules, so single node trees, or

trees returning types different than the specified in the mentioned property

are not going to be generated.

 The use of grammars allows the use of types in the functions and

prevents the generation of individuals with incompatibilities among the types of

their nodes. This ensures that the initial population will be generated much

faster, since rejecting individuals is not necessary. It is important to underline

that the generation of individuals remains completely random, as we put

barriers only to prevent the generation of invalid individuals.

USER MANUAL

 83

7.2. G7.2. GENERACIONAL EVOLUTIOENERACIONAL EVOLUTIONN
 ProGen, in the version 1.0 works in generational mode, this means that

when an operator of the population takes one or more individuals to modify,

resulting individuals are left in a new population. When this new population is

full of individuals, it becomes the only population thus completing a generation.

 For later versions, it will be offered the possibility that in addition to

operating in generational mode, ProGen will be able to run experiments in

"Steady state." In this mode the new individuals are placed in the old population

(it is necessary to use replacement policies as “less selected individual”, “worse

fitness”, etc.) so that the same individual can suffer several transformations

before moving on to the next generation.

7.3. R7.3. REJECTION OF INDIVIDUEJECTION OF INDIVIDUALSALS
 When an operator returns one or more individuals, ProGen checks their

validity depending on the configuration supplied by the user in the experiment

properties file. Those individuals that are valid will be inserted into the new

population and invalid individuals will be rejected. This means that an operator

who returned two individuals could have 0% success (none of the individuals

returned is valid), 50% or 100% of success. Once an operator has been

selected, it will continue being applied until it accumulates 100% of successful

individuals returned, that is, if the crossover is selected ProGen will insist on its

use until it returns two individuals valid (in one or as many attempts as needed,

provided that they do not exceed the value of the property

"prp_max_attempts"). To make it clearer: If crossover is selected it has to return

two valid individuals. If in a first attempt it returns only one valid individual, it will

be applied again, this means: It will select another two individuals from the

population and apply the crossover. If this time it returns one or two valid

individuals (remember we already got one in the previous attempt), a different

operator can be chosen to go on generating the offspring. If in this second

USER MANUAL

 84

attempt, crossover returns zero valid individuals, a new attempt will be

performed.

Keeping every valid individual we optimise performance.

7.4. T7.4. THE METHOD SETHE METHOD SETVV ARIABLEARIABLE()()
 The method setVariable is the way to specify the value of terminals. This

method is located in the class UserProgram.java, inside the package

userprogram. Since user programs must inherit from the class UserProgram,

any user program can invoke directly the method setVariable.

Sintaxis: void setVariable (String variable, Object valor)

 What the method does is to assign a value to a variable. Variables are

the terminal functions defined in the function sets. That way, if I have declared

in a function set the terminal M1 that whose type is Map, in any where inside my

program I can:

- Create a map: Map myMapa = new Map();

- Asign it to M1: setVariable (M1, myMap);

 In this moment the Map object inside the terminal M1 will become

myMap.

 As you can see, variables are referenced by their symbol (the symbol of

the terminal). This method is specially useful when you want to set initial

conditions before evaluating the individuals with the fitness function. Coming

back to the regression example where we want to find a program able to solve

the equation Y = X^3 + X^2 + X, we can use setVariable to fix the value of X to

be 2.17 with only writing anywhere inside the code of our program:

setVariable("X", 2.17). We only have to ensure that there is a terminal named X

whose value is double type. Otherwise ProGen will inform about the error.

 Internally, setVariable does the following:

USER MANUAL

 85

- Searchs (by the symbol) the variable inside the variable

vector_variables.

- Asigns it the new value.

- Executes the variable (terminal function) for it to return its value.

With this we control that the object assigned has the proper type.

Otherwise java will launch a controlled exception and the

execution will end returning the error 1.

USER MANUAL

 86

8. F8. F REQUENTLY ASKED QUESREQUENTLY ASKED QUESTIONSTIONS

1. What is ProGen?

 ProGen is a genetic programming engine designed to be used in a

simple way for all kinds of users. It is powerful, simple, error-preventive and

elegant.

2. What can I do with ProGen?

 With ProGen you can solve any problem that is affordable using

Genetic Programming. It is very flexible so you can quickly set up experiments

that meet your needings.

3. Aren’t there other programms that do the same already?

 There are other Genetic Programming tools widely used, like lil-gp,

BeagleGP, ECJ, etc. They are all very good in some points, but weak in

some others. Some are very rigid and impose unnecessary constraints;

Others have not been updated for years and have many errors and bugs.

Most of them are hermetic and inaccessible, so the simple task of adding a

genetic operator of your own becomes a real odyssey. And almost none of

them have a documentation that is appropriated for every level, that clearly

explains from simple tasks like implementing a first problem of Genetic

Programming, to other more complicated like including selectors or genetic

operators, change the parameters that they receive, and so on. ProGen has

been created by a group of researchers at the Carlos III university of Madrid,

who already had a big experience using this kind of tools. The challenge we

faced from the very beginning was to inherit the good features of those tools

we knew, completing them with all those we missed while eliminating all

those that we found uncomfortable or inadequate. As a result we created a

modular tool, very easy to use at the most basic level but designed explicitly

USER MANUAL

 87

for the user to be able to include deep changes and that we distribute

together with a documentation that seeks to facilitate to the maximun the

interaction with all level users.

In addition, this tool belongs to the ProGen´s free software project, that

already counts with five official developers and the support of the group

EVANNAI of the department of computer science at Carlos III university of

Madrid, ensuring the continuity in the short and medium term of the project,

and its proper maintenance.

ProGen’s main characteristics are:

- Support for ADFs, ERCs, multiple main trees, etc.

- An experimenter to program batteries of experiments.

- Strongly-typed Genetic Programming

- Library of standard functions and terminals

- Several genetic operators and selectors

- Several methods of generation for the initial populations

Examples, templates, tutorials and detailed and friendly documentation

4. What and when should I compile?

 You just have to compile when you change the source code. The

entire configuration of ProGen is done outside of the code, so that when

your project is written (the fitness function is enough) compile it and you are

ready to launch as many experiments as you want without the need for new

compilations.

5. What does it mean that ProGen´s evaluation is typed?

 This means you can use any type of data. Any java class can be a

variable, and therefore your functions can receive and return any type of

data as well. ProGen trees are generated using grammars created

dinamically depending on the types used by the functions you use, and that

ensure that all trees are evaluable because they are well formed.

6. Who can get more out of ProGen? Beginners of experts?

USER MANUAL

 88

 Both alike. The simplicity is an advantage for all of them, and

experts have all the power and especially all the flexibility they need.

