E-commerce security: SSL/TLS, SET and others.

Universidad Carlos III de Madrid

Grupo SeTI · Dpto. Informática

The need of authenticated payment

- SSL protects credit card details while they are transmitted through Internet but...
 - Why trust the Merchant? Once credit card details are obtained, fraud can be performed with them
 - Why trust the Cardholder? Fake credit card details can be sent to honest Merchant

SET: Secure Electronic Transaction

- Open encryption and security specification.
- Designed to protect credit card transactions on the Internet
- Involved companies:
 - MasterCard, Visa, IBM, Microsoft, Netscape, RSA, Terisa and Verisign
- Is not itself a payment system
- Establishes a set of security protocols and formats that enable users to employ the existing credit card payment infrastructure on an open network in a secure fashion

SET: Secure Electronic Transaction

Main services:

- Provides a secure communications channel among all parties involved in a transaction
- Provides trust by the use of X.509v3 certificates
- Ensures privacy (information is only available to parties when and where necessary)

SET: Players

- Cardholder (= Consumer)
 - Authorized holder of payment card
- Merchant (= Commerce)
 - Selling goods or services
- Issuer (= Consumers bank)
 - Financial institution, provides payment cards
 - Responsible for payment of debt of cardholder
- Acquirer (= Merchants bank)
 - Financial institution, gives account to merchant, processes payments, transfers payments to merchants account.

SET: Players

Payment Gateway

- Played by the acquirer or third party
- Interface between SET and existing bankcard payment networks for authorization and payment functions
- Merchant exchanges SET messages with payment gateway over Internet
- Payment gateway has some direct connection with the acquirer's financial processing system

Certification Authority

- Issues X.509v3 certificates for cardholders, merchants and payment gateways
- Success of SET depends on available CA infrastructure

SET: Players

Source: W. Stallings and L. Brown. Slides of Chapter 17. Cryptography and Network 7 Security. 4th edition.

SET: Services

Confidentiality of information

- The merchant does not know the cardholders account (including credit card number) and payment information
- Conventional encryption by DES

Integrity of data

- Order information, personal data and payment instructions
- RSA digital signatures using SHA-1 hash codes
- HMAC using SHA-1

SET: Services

Cardholder account authentication

- Merchants (through Payment Gateway) can verify that a cardholder is a legitimate user of a valid account number
- X.509v3 certificates with RSA signatures
- Merchant authentication
 - Cardholders can verify that a merchant has a relationship with a financial institution for accepting payment cards
 - X.509v3 certificates with RSA signatures

SET Transaction Flow

- 1. Customer opens account
 - Credit card account (VISA, MasterCard...)
 - With a bank supporting electronic payment + SET
- 2. Customer receives a certificate
 - Signed by the bank
 - Links customer's key pair and credit card (hash of)
- 3. Merchants have their own certificates (for each card brand)
 - One key pair for signing messages
 - One key pair for key exchange

SET Transaction Flow

- 4. Customer places an order
 - Merchant returns an order form (list of items, price)
 - Merchant sends also the customer its certificate
- 5. Merchant is verified
- 6. Order and payment are sent
 - Payment contains credit card details
 - Payment is encrypted so merchant is prevented from reading credit card info
 - Customer's certificate is also sent to enable merchant to verify customer

SET Transaction Flow

7. Merchant requests payment authorization

• To the payment gateway

If the payment is authorized:

- 8. Merchant confirms order
 - To the customer
- 9. Merchant provides goods or service

10. Merchant requests payment

- To the payment gateway, who handles details
 - Customer is billed
 - Merchant is payed

SET: Dual Signature

- Not multiple signature
- Goal: link two messages intended for two different recipients
- Cardholder calculates the hashes of OI and PI (H(OI) and H(PI))
- Cardholder signs both OIMD and PIMD
 - OI and PI get linked
- To verify the dual signature:
 - Merchant receives OI plus H(PI) (PI is not known)
 - Payment Gateway receives PI plus H(OI) (OI is not known)

SET: Dual Signature - Generation

$$\begin{split} h_1 &= H(OI) \quad h_2 = H(PI) \quad h_3 = H(H(OI)||H(PI)) \\ DS &= E_{kvC}(H(H(OI)||H(PI)) \end{split}$$

SET: Dual Signature - Verification

Create $h_1 = H(OI) \rightarrow create h_3 = H(H(OI)||H(PI))$ \rightarrow Decrypt DS: $D_{KuC}(DS) = h_3 \rightarrow compare$

SET: Digital envelopes

- Message data M is encrypted using a randomly generated key k_s
 - E (k_s, M)
- Digital envelope" of the message M refers to the key k_s being further encrypted using the recipient's public key k_{uR}
 - E (k_{uR}, k_S)
- Both items are sent to the recipient:
 - E (k_S, M) || E (k_{uR}, k_S)
- The recipient decrypts the digital envelope using a private key k_{vR} and then uses the symmetric key to unlock the original message

SET: Main transaction types

- 1. Purchase request
- 2. Payment authorization
- 3. Payment capture

Four messages:

- C -> M: Initiate Request
- M -> C: Initiate Response
- C -> M: Purchase Request
- M -> C: Purchase Response

Step 1:

Cardholder requests certificates from merchant and payment gateway

Message includes:

- brand of customers credit card
- message identification number (ID)
- non-repeatable number, N_C

Step 2:

- The non-repeatable number, N_C
- \succ A non-repeatable number produced by the merchant, N_M
- A transaction identifier, TID
- Signed response: E (k_{vM}, (N_C || N_M || TID)) sent together with:
 - Signature certificate of Merchant, C_{SM}
 - Key exchange certificate of the Payment Gateway, C_{CPG}

Step 3:

- Cardholder creates OI, PI (both with TID), session key k_s, DS and sends to merchant:
 - 1. Order related information:
 - OI || DS || H (PI)
 - 2. Payment related information:
 - E (k_S, (PI || DS || H (OI))) || E (k_{uPG}, k_S)
 - 3. Signature cardholder certificate, C_{SC}

passed on by merchant to PG

Step 4:

- Merchant after...
 - verifying Cardholder certificates and Dual Signature using k_{uC}
 - processing the order
 - forwarding the payment information to PG for authorization
 ...sends purchase response to Customer, including:
 - Transaction identifier (TID), order acknowledge OACK, the signature of both, and merchant's signature certificate (C_{SM}):
 - E (k_{vM}, (OACK || TID)), C_{SM}

SET: Purchase Request Generation

Source: W. Stallings and L. Brown. Slides of Chapter 17. Cryptography and Network 23 Security. 4th edition.

SET: Purchase Request Verification

Source: W. Stallings and L. Brown. Slides of Chapter 17. Cryptography and Network 24 Security. 4th edition.

Two messages:

- M -> PG: Authorization Request
- PG -> M: Authorization Response

Step 1:

- Purchase related info
 - E (k_s, (PI || DS || H (OI))) || E (k_{uPG}, k_s)
- Authorization related info of Merchant (AI_M)
 - $AI_{M} = E(k_{sM}, (TID || E(k_{vM}, TID))) || E(k_{uPG}, k_{sM})$
- Certificates: C_{SC} || C_{SM} || C_{CM}

- > The Payment Gateway performs:
 - Verifies certificates
 - Decrypts digital envelope for Al_M: k_S
 - Decrypts Al_M
 - Verifies merchant's digital signature on AI_M
 - Decrypts digital envelope for PI: k_{sM}
 - Decrypts PI
 - Verifies customer's dual signature
 - Verifies merchant's and customer's TID match
 - Requests and receives and authorization from the issuer

Step 2:

- Authorization related info of Payment Gateway, Al_{PG}
- Capture token information, CTI
- ▷ C_{SPG}
- > $AI_{PG} = E (k_{sPG}, (A || E (k_{vPG}, A))) || E (k_{uM}, k_{sPG})$
- > $CTI = E (k_{sPG}, (CT || E (k_{vPG}, CT))) || E (k_{uM}, k_{sPG})$
- > A: Authorization, CT: Capture Token

Two messages:

- M -> PG : Capture Request
- PG -> M: Capture Response

Step 1:

CRqB = Q || TID || CTI; Q: Quantity of purchase

E (k_{s'M}, (CRqB || E (k_{vM}, CRqB))) || E (k_{uPG}, k_{s'M})
 C_{SM}, C_{CM}

- The Payment Gateway performs:
 - Decrypts and verifies capture request block (CRqB)
 - Decrypts and verifies capture token info (CTI)
 - Checks for consistency between CRqB and CTI
 - Creates a clearing request that is sent to the issuer over the private payment network
 - Then, funds are transfered to merchant's account

Step 2:

- ➢ E (k_{vPG}, (CRsB))
- ▷ C_{SPG}
- Merchant stores the capture response to be used for reconciliation with payment received from the acquirer

SET: Non repudiation

Authentication is achieved by the use of digital signatures

This helps to provide non-repudiation

SET in Practice

- High computational costs:
 - Number of messages
 - Digital signatures, RSA encryption/decryption cycles, DES encryption/decryption cycles, certificate verifications
- Cardholder side:
 - Install SET software for cardholder wallet
 - Arrange credit card account (supporting SET, providing certificate)
- Merchant side:
 - Install software for merchants selling point and integrate it into web-based ordering system
- Payment gateway
 - Install software for payment gateway server