
ELECTRONIC COMPONENTS AND CIRCUITS

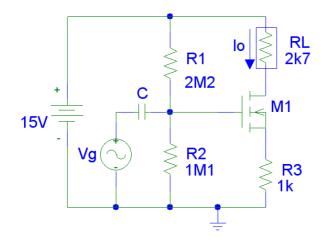
Part II (Continuous evaluation test 2) Jose A. Garcia-Souto

Time: 1 hour and 30 minutes

EXERCISE 1

a)
$$V_B \approx 0 \text{ V}$$
 $V_E = 0.7 \text{ V}$ $I_E = 3 \text{ mA}$ $I_B = 10.1 \, \mu\text{A} \Rightarrow V_B = 20.2 \text{ mV}$

- b) $I_{CQ} = 3 \text{ mA}$ $V_{ECQ} = 1.6 \text{ V} > V_{EC-SAT} \Rightarrow \text{Active}$
- c) C1 and C2 are short-circuits \Rightarrow Base to ground $g_m = 120 \text{ mA/V}$ $r_\pi = 2.5 \text{ K}\Omega$
- d) Include C1 and C2.



ELECTRONIC COMPONENTS AND CIRCUITS

Part II (Continuous evaluation test 2)

Jose A. Garcia-Souto

EXERCISE 2

DATA:

MOSFET Transistor

 $V_t = 1 V$

 $K = 0.5 \text{ mA/V}^2$

NOTA: $I_D = K \cdot (V_{GS} - V_t)^2$

 $V_A = 100 \ V$

 $C\to \infty$

a)
$$V_{GS} = 3 \text{ V}$$

$$I_0 = I_D = 2 \text{ mA}$$

b)
$$V_{DSQ} = 7.6 \text{ V} > V_{DS-SAT}$$

 $I_{DQ} = 2 \text{ mA}$

Saturation $V_{DS-SAT} = 2V$

c)
$$r_{ds} = 50 \text{ K}\Omega$$

 $g_m = 2 \text{ mA/V}$ $i_0/v_g = g_m r_{ds} / [R3(1+g_m r_{ds}) + RL + r_{ds}] \approx 1/R3 = 1 \text{ mA/V}$

d)
$$Z1 = R3 = 3 \text{ K}\Omega$$

 $Z2=R4\://R5//r_\pi=7.7\;K\Omega$

 $Zi = R1 = 1M\Omega$

 $Vo/Vg = [-g_{m2}R7] \cdot [-g_{m1}(R3//R4//R5//r_{\pi)}] = 1742.4 \text{ V/V}$

64.8dB

e) C short-circuit Include Cgs and Cgd

ELECTRONIC COMPONENTS AND CIRCUITS

Part II (Continuous evaluation test 2) Jose A. Garcia-Souto

EXERCISE 3

The circuit of Figure 3 is an AC coupled amplifier based on a JFET transistor.

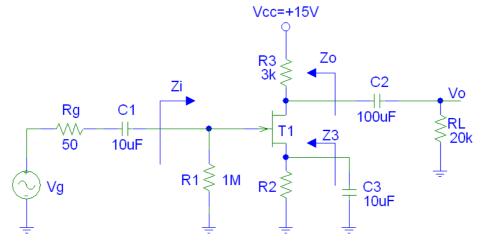


Figure 3

DATA:

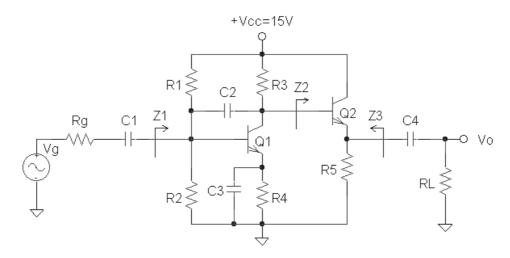
a)
$$V_{GS} = -1.5 \text{ V}$$
 $R2 = -V_{GS} / I_D = 600 \Omega$ $g_m = 3.33 \text{ mA/V}$

b) C1 and C2 are short-circuits ⇒ coupling AC

c)
$$Vo/Vg = -g_m(R3//RL) \cdot [R1/(R1 + Rg)] = -8.7 \text{ V/V}$$

 $Zi = R1 = 1 \text{ M}\Omega$ $Zo = R3 = 3 \text{ K}\Omega$

d)
$$Z3 = R2//(1/g_m) = 200 \Omega$$



ELECTRONIC COMPONENTS AND CIRCUITS

Part II (Continuous evaluation test 2)

Jose A. Garcia-Souto

EXERCISE 4

a)
$$I_{C1} = 0.5 \text{ mA}$$
 $V_{CE1} = 5.6 \text{ V}$

$$I_{C2} = 2 \text{ mA}$$
 $V_{CE2} = 5.6 \text{ V}$

$$Vo = 0 V$$

b)
$$r_{\pi 1} = 10 \text{ K}\Omega$$
 $r_{\pi 2} = 2.5 \text{ K}\Omega$

$$g_{m1} = 20 \text{ mA/V}$$

$$g_{m2} = 80 \text{ mA/V}$$

$$Z1=R1//R2//r_{\pi 1}=5~K\Omega$$

$$Z2 = r_{\pi 2} + (1 + \beta_o)[R5//RL] = 474.85 \text{ K}\Omega$$

$$Z3 = [(R3 + r_{\pi 2})/(1+\beta_o)]//R5 \approx 62 \Omega$$

c)
$$R_{C4}^{\circ} = Z3 + RL = 4.7 \text{ K}\Omega$$

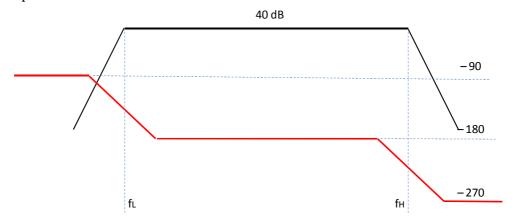
$$\tau_{C4} = 94 \text{ ms}$$

$$f_L = 1.7 Hz$$

d) Miller
$$C_M = 603 \text{ pF} C'_M = 3 \text{ pF}$$

$$R_{\rm M}^{\infty} = {\rm Rg}/{\rm R1}/{\rm R2}/{\rm r_{\pi 1}} = 2.5~{\rm K}\Omega$$

$$\tau_{\rm M}=1.51~\mu{\rm s}$$


$$R_{M'}{}^{\infty}=R3//Z2=10~K\Omega$$

$$\tau_{M'}=30\;ns$$

Dominant pole approximation

 $f_H = 103 \text{ KHz}$

e) Bode plot

Page 4 / 4