
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es2

OUTLINE

 Aims of the course
 Why to take this course?
 Related topics
 What are compilers?
 Compilers vs. Translators
 Compilers vs. Interpreters
 Related programs
 Schema of a compiler
 Evolution
 Compilers classification

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es3

OUTLINE

 Phases of a compiler
 Introduction: Front-end and Back-end
 Lexical Analysis
 Syntax Analysis
 Semantic analysis
 Symbol table
 Intermediate Code Generation
 Code Optimization
 Code Generation
 Error Handling

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es4

OUTLINE

 Programming language design
 T-notation and Bootstrapping
 Programming paradigms
 Bibliography

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es5

Aims
 This module/course is designed to introduce the student

to the principles and practices of programming language
implementation.

 We cover lexical analysis, parsing theory, semantic
analysis, runtime environments, code generation, and
optimization.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es6

Aims
 At the end of the course you should know how to:

 Write a grammar for a given language.

 Verify that a grammar fulfills some properties.

 Modify a grammar so it fulfills some properties.

 Write a parser for a given language.

 Verify the semantics of a given language.

 Generate intermediate/final code.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es7

Why to take this course?

 Understand compilers/languages:
 Understand the code structure.
 Understand the language semantics.
 Understand the relation between source code and generated

machine code.
 Become a better programmer.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es8

Why to take this course?

 Theory is essential:
 Before the application of automata theory and formal

languages, programming, etc. compilers were pretty bad.
 Compiler theory and tools are applicable to other fields:

 Command and query interpreters;
 Text formatters (TeX, LaTeX, HTML);
 Graphic interpreters (PS, GIF, JPEG);
 Translating javadoc comments to HTML;
 Generating a table from the results of a SQL query;
 Spam filter;
 Server that responds to a network protocol;
 …

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es9

Related topics

Compilers

Computer
Architectures

Language
Theory

Algorithm
Theory

Software
Engineering

Programming
Languages

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es10

What are compilers?
 A program that reads a program written in one high-level

language and translates it into an equivalent program in
another (object) language, which is ready to be executed
on a computer.

CompilerSource
Program

Target
Program

Error
messages

Target programUser inputs Output

It must report the errors that
might appear in the source
program.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es11

Compilers vs. Translators
 Compilers typically refer to the translation from high-

level source code to low-level code.

 Translators refer to the transformation at the same level
of abstraction.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es12

Examples
 Typical compilers: gcc, javac…
 Non-typical compilers:
 Latex (document compiler).
 C-to-silicon compiler.

 Translators
 F2c: Fortran-to-C translator (both high-level).
 Latex2html (both documents).
 Dvips2ps (both low-level).

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es13

Compilers vs. Interpreters
 Interpreter:
 It directly executes the source program on inputs supplied by

the user.

Source program
OutputInterpreter

Errors

User inputs

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es14

Compilers vs. Interpreters
 Comparison Compiler – Interpreter:

 Hybrid compiler (combine compilation and interpretation):

Interpreter
The target program generated
maps faster input to outputs.

It usually can use more
sophisticated functions and
operators.

It can usually give better error
diagnostics.

Compiler

Intermediate program
Output

Virtual
MachineUser inputs

TranslatorSource
program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es15

Related programs
 Assembler: Program that translates an assembly-language

program into a relocatable machine code.

 Large programs are often compiled in pieces:

 Preprocessor: Previous program used to eliminate comments,
include other files…

 Linker: Collects the source program when it is divided into
separate files and resolves external memory addresses.

 Loader: Puts together all of the executable object files into
memory for execution.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es16

Related programs
 Outliner: Collects statistics about the execution of the

program (calls and time in each procedure…).

 Debugger: Determines the errors during the execution of a
compiled program.

 Project administrator: Coordination of the files that are
modified by several programmers (sccs, rcs).

 Editor: Includes the call to the compiler.

 Decompiler: Program that translates from a low level
language to a higher level one.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es17

Compiler, schema

Preprocessor Assembler Loader/link-editorCompiler

Source
Program Target

Assembly program
Relocatable

Machine code

Absolute machine
code

Skeletal source
program

Library,
Relocatable
Object files

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es18

Evolution
 In the 50’s compilers were considered difficult programs

to write.

 The first FORTRAN compiler took 18 staff-years to
implement.

 Since then, systematic techniques, programming
environments and software tools have been developed to
facilitate the task of building a compiler.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es19

Evolution
 First compilers translated arithmetic formulas into

machine code.
 Eg. FORTRAN stands for FORmula TRANslator.

 Nowadays:

 A wide variety of source languages.

 A wide variety of object languages, either another high-level
language or machine language.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es20

Evolution
 40’s: First computers (John von Neumann)  Programs

written in machine code.

C7 06 0000 0002 (Intel 8x86)

 Second step: Assembly language.

MOV X, 2

 It is not easy to read, write and understand.
 It depends on the machine for wich it has been generated.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es21

Evolution
 Write programs in a natural language:

X = 2
 FORTRAM (John Backus).
 Natural language structure  Chomsky hierarchy:
 Type 0 grammars: Unrestricted grammars.
 Type 1 grammars: Context-sensitive grammars.
 Type 2 grammars: Context-free grammars.
 Type 3 grammars: Regular grammars.

 60’s and 70’s: Syntax analysis (type 2 grammars).
 Regular expressions and Finite Automata (Type 3)  Lexical

analysis (structure of the words in a language).

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es22

Evolution
 Techniques for code optimization.

 Programs to automatically perform:
 Syntax analysis  Yacc.
 Lexical analysis  Lex.

 Interactive development environment (IDE): programs
window-based that include the different parts of a compiler.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es23

Compilers classification
 There are several classifications and types of compilers:
 assemblers, cross compilers, single-pass compilers, multi-pass

compilers, incremental compilers, self-hosting compilers,
metacompilers, decompilers…

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es24

Compilers classification
 Compiling evolves in two phases, namely the analysis and

synthesis phases.
 During the analysis phase the source program is read,

fragmented into pieces and transformed into a representation
that is suitable for the phase of synthesis.

 The synthesis phase constructs the target program from the
representation provided by the analysis phase.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es25

Phases of a Compiler

 Analysis (Front-end): All the operations related to the
source program (Lexical, syntax and semantic analysis,
intermediate code generation and handling of errors of every
part).

 Synthesis (Back-end): Phases that depend on the
intermediate code and/or the intermediate language (Code
optimization, code generation and symbol-table management).

Source program Target program

Intermediate
code

FRONT-END BACK-END

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es26

Phases of a Compiler

Lexical
analyzer

Syntax
analyzer

Semantic
analyzer

Intermediate
Code

generator

Input/output Error handler

Code
Optimizer

Code
generator

Symbol
table

Analysis Generation

Front End Backend

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es27

Lexical Analysis (scanning)

 Natural language: “She wrote a program” words: “She” “wrote” “a”
“program”

 The stream of characters of the source code is read from left to
right and grouped into tokens (sequences of characters having a
collective meaning)

x:=a+b*c;
y:=3+b*c;

Lexical
Analyzer

TOKENS

(id,”x”) (op,”:=“) (id,”a”)

(op,”+”) (id,”b”) (op,”*”)

(id,”c”) (punt,”;”)

(id,”y”) (op,”:=“) (num,”3”)

(op,”+“) (id,”b”) (op,”*“)

(id,”c”) (punt,”;”)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es28

Lexical Analysis (scanning)

 TOKEN: < token-name, attribute-value >

 Token: Sequence of characters with a collective syntax meaning.
 Lexeme: Sequences of characters that makes up a token.
 Pattern: Rules that describe the lexemes of a specific token.

Syntax
analysis

Semantic analysis, Code generation
Symbol table

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es29

Syntax Analysis (parsing)

 Syntax analysis: To generate a tree-like intermediate representation
(syntax tree) from the tokens generated in the lexical analysis.

 During hierarchical analysis the characters or tokens are grouped
into grammatical phrases that are used by the compiler to
synthesize output.

 Usually, the grammatical phrases are represented by a parse tree.

 The hierarchical structure of a program is usually expressed by
recursive rules.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es30

Syntax Analysis (parsing)

 Having the rules presented, we can represent the statement
position := initial + rate * 60

with the following parse tree:

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es31

Syntax Analysis (parsing)

 The syntax analyzer uses a syntax tree instead.
 Having the rules presented, the syntax analyzer captures the

statement
position := initial + rate * 60

with the following syntax tree:

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es32

Compiler; Grammar
statements ::= statement “;” statements | statement
statement ::= assignment | conditional | iteration
assignment ::= variable “:=“ expresion
condicional ::= “if” condition “then” statements “else”

statements
iteration ::= “while” condition “do” statements
expresion ::= variable-number “+” expresion |

variable-number “*” expresion |
variable-number “-” expresion |
variable-number “/” expresion |
variable-number

variable ::= [A-Za-z] [A-Za-z0-9]*

variable-number ::= variable | number
number ::= [0-9]+

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es33

Semantic analysis
 Checks for semantic errors and gathers type information;

identifies the operators and operands of expressions and
statements, and performs type checking.

•

:= :=

x + y +

a * 3 *

b c b c

x:=a+b*c;
y:=3+b*c;

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es34

Semantic analysis
 The syntax tree is used for the identification of the operators

and operands of expressions and statements.
 Examples:
 A semantic error is an undeclared variable.
 During type checking incompatible operands and operators

are identified, and conversions are made. If position, initial,
and rate are declared to be real then:

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es35

Symbol Table
 The symbol-table captures the identifiers found in the source

program along with information about their attributes.
 When the identifier is a variable, the attributes may provide

information about the type and scope of the identifier.
 When the identifier is a function, the attributes may provide

information about the type returned, the number and type of
its arguments, etc.

 The look-up table is populated through the three analysis
phases.

 Identifiers are captured during lexical analysis, and their
properties during syntactic (scope inferred) and semantic
analysis (types inferred).

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es36

Intermediate Code Generation
 After the analysis phase some compilers generate an explicit

intermediate representation of the source program.
 This representation should be easy to produce and translate

into the target program.
 An example of representation is the “three-address code”:
 Each instruction has at most three operands.
 Each instruction has at most one operator in addition to the

assignment. Hence, the compiler has to decide the order in which
the statements should be executed (for instance a multiplication
should happen before an addition).

 The compiler must generate a temporary name to hold the value
computed by each instruction.

 Some “three-address” instructions have fewer than three operands.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es37

Intermediate Code Generation
 For example the statement

position := initial + rate * 60

would result in the following representation:
tmp1 := inttoreal(60)
tmp2 := id3 * tmp1
tmp3 := id2 + tmp2
id1 := tmp3

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es38

Intermediate Code Generation
 By using intermediate code, the complexity of developing

compilers is reduced.
 m front ends and n backends share a common intermediate

code:

1

2

m

CI

1

2

nFront Ends Backends

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es39

Code Optimization
 The code optimizer attempts to refine the intermediate code

into an equivalent faster-running intermediate code.

 Programming language-independent vs. language-dependent:
Most high-level languages share common programming
constructs and abstractions. Thus similar optimization
techniques can be used across languages.

 Machine independent vs. machine dependent: Many
optimizations that operate on abstract programming concepts
(loops, objects, structures) are independent of the machine
targeted by the compiler.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es40

Code Optimization

•

:= :=

x + y +

a * 3 •

b c

x:=a+b*c;
y:=3+b*c;

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es41

Code Generation
 The code generator generates the code in the target language,

usually machine code or assembly.

 Register allocation is determined (i.e. the allocation of operands to
processor registers). The goal is to keep as many operands as
possible in registers to maximize the execution speed of software
programs.

 The intermediate representation is translated into the target code
through the selection of instructions.

 The instructions are then placed in the right order so that the
semantics of the program are maintained while performance is
maximized.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es42

Code Generation
 Through code generation the optimal intermediate

representation:
tmp1 := id3 * 60.0
id1 := id2 + tmp1

may be translated into:
MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

 R1 and R2 are registers, the F in each instruction tells us that
instructions deal with floating-point numbers, and the #
signifies that 60.0 is to be treated as a constant.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es43

Error Handling
 A compiler must respond to possible errors in the source

code.
 They can be detected in each one of the related phases:
 Scanner : detection of stray tokens,
 Syntax analyzer: invalid combinations of tokens
 Semantic analyzer: type errors…

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es44

Error Handling
 Some of the errors may cause the compiler to end

prematurely.

 Some of the errors are of lesser importance, and may
allow the compiler to continue.

 For instance the GCC rarely halts prematurely. Instead it
tries to recover from each error and present as many
warnings and errors as possible.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es45

T-notation and Bootstrapping

 T-notation represents the three languages that are involved for
building a compiler:

Source
language

Target
language

Compiler
language

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es46

T-notation and Bootstrapping
 Case 1:

 Case 2:

H

A B

H

B C

H

A C

H

A B

M

H K K

A B

Compiler from A to C
for the machine H

Compiler from A to B
written in K

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es47

Programming language design
 Building a compiler  design of the source language:
 Express algorithms.
 Well-defined syntax: programs easy to design, write, verify, understand

and modify.
 As simple as possible.
 Provide data structures, data types and operations.
 It should be possible to visualize the behavior of a program from its

written form.
 Reduced compiling and executing costs.
 No program that violates the definition of the language should escape

detection.
 Not features or facilities that tie the language to a particular machine.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es48

Programming paradigms
 Imperative (40’s):
 languages statement-oriented.
 we move from state to state characterized by the current

values of the registers, memory and external storage.
 control structures.
 E.g. FORTRAN,COBOL, ALGOL, PL/I, C, Pascal, and Ada.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es49

Programming paradigms
 Functional:
 function that must be applied to the initial state to get the

desired result.
 to build more complex functions until a final function is

reached which computes the desired result.
 control structures.
 E.g. LISP and ML.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es50

Programming paradigms
 Rule-Based or Declarative:
 Conditions  actions.
 to build more complex functions until a final function is

reached which computes the desired result.
 control structures.
 E.g. Prolog.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es51

Programming paradigms
 Object-Oriented:
 extension of the imperative paradigm.
 we build objects (data structures and operations that

manipulate those data)
 E.g. Smalltalk, Eiffel, C++, and Java.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es52

Bibliography

 Dragon book: Compilers: Principles, Techniques and Tools. Aho,
Sethi and Ullman. Pearson Addison Wesley, 2007.

 The Theory of Parsing, Translation, and Computing, I: Parsing
and volume II. Compiling. Aho and Ullman. Prentice Hall,
1973.

 Compiler construction : principles and practice. K. Louden.
Course Technology. 1997

	��UNIT 1: INTRODUCTION
	OUTLINE
	OUTLINE
	OUTLINE
	Aims
	Aims
	Why to take this course?
	Why to take this course?
	Related topics
	What are compilers?
	Compilers vs. Translators
	Examples
	Compilers vs. Interpreters
	Compilers vs. Interpreters
	Related programs
	Related programs
	Compiler, schema
	Evolution
	Evolution
	Evolution
	Evolution
	Evolution
	Compilers classification
	Compilers classification
	Phases of a Compiler
	Phases of a Compiler
	Lexical Analysis (scanning)
	Lexical Analysis (scanning)
	Syntax Analysis (parsing)
	Syntax Analysis (parsing)
	Syntax Analysis (parsing)
	Compiler; Grammar
	Semantic analysis
	Semantic analysis
	Symbol Table
	Intermediate Code Generation
	Intermediate Code Generation
	Intermediate Code Generation
	Code Optimization
	Code Optimization
	Code Generation
	Code Generation
	Error Handling
	Error Handling
	T-notation and Bootstrapping
	T-notation and Bootstrapping
	Programming language design
	Programming paradigms
	Programming paradigms
	Programming paradigms
	Programming paradigms
	Bibliography

