
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

OUTLINE
 Introduction
 Code optimization

 Basic Blocks
 Where?
 Local Optimizations
 Constant folding
 Constant propagation
 Algebraic simplification and re-association
 Strength Reduction
 Other Local Optimizations

 Global optimizations
 Live Variable Analysis

2

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Introduction

 Ideally, compilers should produce target code that is
good as can be written by hand, but rarely that is the
case.

 OBJECTIVE: Transform a piece of code to make it
more efficient without changing its output (execution
speed and memory requirements).

 One of the most interesting topics in compiler research.
 Optimization should preserve the meaning of programs.
 More an art than a science.

3

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Code optimization

 Principles of design:
 Correctness above all.
 Application: Intermediate or target code.
 Efficiency.
 Control-flow analysis.

4

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Basic Blocks

 A basic block is a segment of the code that has exactly one
entry point and one exit point.

 A basic block begins in one of several ways:
 The entry point into the function.
 The target of a branch (often a label).
 The instruction following a branch or a return.

 A basic block ends in any of the following ways:
 A jump statement.
 A conditional or unconditional branch.
 A return statement.

5

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Where?

 Local optimizations (within a basic block)
1. Constant folding
2. Constant propagation
3. Algebraic simplification and reassociation
4. Operator strength reduction
5. Copy propagation
6. Dead code elimination
7. Common subexpression elimination
 …

 Global optimizations. Data flow analysis

6

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant folding
 Expression: 3-(5+6)+4-A*10

 Result: -4-(A*10)

-

*

A 10

+

3 +

5 6

- 4

-

*

A 10

-4

Evaluation at
compile-time of
expressions whose
operands are known
to be constant.

7

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Constant propagation

 If a variable is assined a constant value:
 The subsequent uses of that variable can be replaced by the

constant as long as no intervening assignment has changed the
value of the variable.

8

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

b = 5
c = 4*b
c > b

d = b + 2

e = a + b

b = 5
c = 20
c > 5

d = 7

e = a + 5e = a + b

tf tf

b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf

Local Optimizations: Constant propagation

9

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Algebraic simplification
and re-association

An expression x op y is redundant at a point p if it has already
been computed at some point(s) and no intervening
operations redefine x or y.

m = 2*y*z t0 = 2*y t0 = 2*y
m = t0*z m = t0*z

n = 3*y*z t1 = 3*y t1 = 3*y
n = t1*z n = t1*z

o = 2*y–z t2 = 2*y
o = t2-z o = t0-z

redundant

10

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

 Replaces an operator by a “less-expensive” one:
 Example: Induction Variables in control loop iterations

j = j – 1
t4 = 4 * j
t5 = a[t4]
if t5 > v

j = j – 1
t4 = t4 - 4
t5 = a[t4]
if t5 > v

t4 = 4*j

11

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Local Optimizations: Strength Reduction

while (i <= limit - 2)

t := limit - 2
while (i <= t)

L1:
t1 = limit – 2
if (i > t1) goto L2
body of loop
goto L1

L2:

t1 = limit – 2
L1:

if (i > t1) goto L2
body of loop
goto L1

L2:

12

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Other Local Optimizations

 Copy Propagation: Generalization of the constant propagation.
 Example: a=b Replace the occurrences of a with b.

 Dead Code elimination: Eliminate instructions that are never
used.

 Common subexpression elimination: Instructions that
produce the same result (eliminate or unify code for not
computing again the same result).

13

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Global optimizations

 Apply similar optimizations across basic blocks. Usually
one function at a time (Data-flow analysis).

 Each block is a node in the flow graph of a program

14

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Live Variable Analysis

A variable x is live at a point p if there is
some path from p where x is used
before it is defined.

Want to determine for some variable x
and point p whether the value of x
could be used along some path starting
at p.

is x live
here?

15

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Global Live Variable Analysis

 Code motion: Unify code common to one or more basic
blocks to reduce the code size and re-evaluations.

 Machine optimizations: Take into account specific
machines features code optimized for that machine.

 Register allocation: Minimize traffic between registers
and memory Register coloring.

16

	Número de diapositiva 1
	OUTLINE
	Introduction
	Code optimization
	Basic Blocks
	Where?
	Local Optimizations: Constant folding
	Local Optimizations: Constant propagation
	Local Optimizations: Constant propagation
	Local Optimizations: Algebraic simplification and re-association
	Local Optimizations: Strength Reduction
	Local Optimizations: Strength Reduction
	Other Local Optimizations
	Global optimizations
	Live Variable Analysis
	Global Live Variable Analysis

