
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

OUTLINE

 Introduction
 Issues
 Input to the Code Generator
 Target Programs/Target Machine
 Instruction Cost
 Instruction Selection
 Basic Blocks
 Basic Blocks and Flow Graphs
 Transformations on Basic Blocks

 Register Allocation

2

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Introduction

 Is the last phase of our compiler model.
 It takes as input an intermediate representation of the

source program (optimized or not) and produces as
output an equivalent target program.

 The requirements are:
 the output must be correct,
 and of high quality.

 Optimal code generation is mathematically undecidable.
 Heuristic techniques are used for the generation of good

quality code.

3

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Issues

 Input to the Code Generator.
 Target Programs/Target Machine.
 Memory Management.
 Instruction Selection.
 Register Allocation.

MACHINE-SPECIFIC TASK

4

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Input to the Code Generator

 Intermediate representation of the source program.
 Symbol Table:
 The symbol table is used to determine the run-time addresses of the

data objects denoted by the names in the intermediate
representation.

 The intermediate representation can be of many forms:
 postfix notation
 3-address representation
 syntax trees, etc.

 Assumption: the input is free of errors.

5

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Target Programs/Target Machine

 A code generator must produce correct code.
 Absolute machine language, relocatable machine language

or assembly.
 Familiarity with the target machine and its instruction set

is very important for designing a good code generator.

6

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

The Target Machine

 A register machine
 Two-address instruction: op source destination
 Address modes:

MODE FORM ADDRESS ADDED COST

Absolute M M 1
Register R R 0
Indexed c(R) c + contents(R) 1
Indirect register *R contents(R) 0
Indirect indexed *c(R) contents(c+contents(R)) 1

7

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Instruction Cost

 We consider the cost of an instruction to be one plus
the costs associated with the source and destination
address modes

 Examples:
 MOV R0,R1 cost=1
 MOV R2,M cost=2

8

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Instruction Cost

 Intermediate code: temp2 = temp1 + 2

MOV temp1, temp2
ADD #2, temp2
(cost=6)

ADD R0, *R1
MOV *R1, *R2
(cost=2)

9

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Instruction Selection

d=a-b+c t1=a-b MOV a,R0
t2=t1+c SUB b,R0
d=t2 MOV R0,t1

MOV t1,R0
ADD c,R0
MOV R0,t2
MOV t2,d

 A target machine with a rich instruction set may provide
several ways of implementing a given operation.

10

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Basic Blocks

 A sequence of consecutive statements in which
flow of control enters at the beginning and leaves
at the end without halt or the possibility of
branching excepts at the end

11

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Basic Blocks and Flow Graphs

 Flow Graphs represent the
flow of control

 The nodes of a Flow Graph
are Basic blocks

 Partition into Basic Blocks:
1. The first statement is a leader
2. A statement that is the target of

a goto is a leader
3. A statement that follows a goto

is a leader
4. A Basic block contains a leader

and all the statements up to but
not including the next leader or
the end of the program

x = 1

i = 1

L:

x = x * x

i = i + 1

if i < 10 goto L

12

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Transformations on Basic Blocks

 Given:
1. L:
2. t = 2 * x
3. w = t + x
4. If w > 0 goto L’

 (3) cannot be executed unless (2) has been executed
before, (3) could be changed to w = 3 * x

13

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Register Allocation

 Instructions involving register operands are usually
shorter and faster than those involving operands in
memory.

 Should L be a register or a memory address?
 A simple strategy

 Computed results can be left in registers as long as
possible.

 Everything must be stored before the end of a basic block.

14

	Número de diapositiva 1
	OUTLINE
	Introduction
	Issues
	Input to the Code Generator
	Target Programs/Target Machine
	The Target Machine
	Instruction Cost
	Instruction Cost
	Instruction Selection
	Basic Blocks
	Basic Blocks and Flow Graphs
	Transformations on Basic Blocks
	Register Allocation

