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Introduction

 Is the last phase of our compiler model.
 It takes as input an intermediate representation of the 

source program (optimized or not) and produces as 
output an equivalent target program.

 The requirements are:
 the output must be correct, 
 and of high quality.

 Optimal code generation is mathematically undecidable.
 Heuristic techniques are used for the generation of good 

quality code.
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Issues

 Input to the Code Generator.
 Target Programs/Target Machine.
 Memory Management.
 Instruction Selection.
 Register Allocation.

MACHINE-SPECIFIC TASK
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Input to the Code Generator

 Intermediate representation of the source program.
 Symbol Table:
 The symbol table is used to determine the run-time addresses of the 

data objects denoted by the names in the intermediate 
representation.

 The intermediate representation can be of many forms:
 postfix notation
 3-address representation
 syntax trees, etc.

 Assumption: the input is free of errors.
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Target Programs/Target Machine

 A code generator must produce correct code.
 Absolute machine language, relocatable machine language 

or assembly.
 Familiarity with the target machine and its instruction set 

is very important for designing a good code generator.
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The Target Machine

 A register machine
 Two-address instruction: op source destination
 Address modes:

MODE FORM ADDRESS ADDED COST

Absolute M M 1
Register R R 0
Indexed c(R) c + contents(R) 1
Indirect register *R contents(R) 0
Indirect indexed *c(R) contents(c+contents(R)) 1
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Instruction Cost

 We consider the cost of an instruction to be one plus 
the costs associated with the source and destination 
address modes

 Examples:
 MOV R0,R1 cost=1
 MOV R2,M cost=2
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Instruction Cost

 Intermediate code: temp2 = temp1 + 2

MOV temp1, temp2
ADD #2, temp2
(cost=6)

ADD R0, *R1
MOV *R1, *R2
(cost=2)
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Instruction Selection

d=a-b+c t1=a-b MOV a,R0
t2=t1+c SUB b,R0
d=t2 MOV R0,t1

MOV t1,R0
ADD c,R0
MOV R0,t2
MOV t2,d

 A target machine with a rich instruction set may provide 
several ways of  implementing a given operation.
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Basic Blocks

 A sequence of consecutive statements in which 
flow of control enters at the beginning and leaves 
at the end without halt or the possibility of 
branching excepts at the end
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Basic Blocks and Flow Graphs

 Flow Graphs represent the 
flow of control

 The nodes of a Flow Graph 
are Basic blocks

 Partition into Basic Blocks:
1. The first statement is a leader
2. A statement that is the target of 

a goto is a leader
3. A statement that follows a goto 

is a leader
4. A Basic block contains a leader 

and all the statements up to but 
not including the next leader or 
the end of the program

x = 1

i = 1

L:

x = x * x

i = i + 1

if  i < 10 goto L
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Transformations on Basic Blocks

 Given:
1. L:
2. t = 2 * x
3. w = t + x
4. If w > 0 goto L’

 (3) cannot be executed unless (2) has been executed 
before, (3) could be changed to w = 3 * x
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Register Allocation

 Instructions involving register operands are usually 
shorter and faster than those involving operands in 
memory.

 Should L be a register or a memory address?
 A simple strategy

 Computed results can be left in registers as long as 
possible.

 Everything must be stored before the end of a basic block.
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