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Introduction: Definitions

 Lexical analysis or scanning: To read from left-to-right a 
source program and divide it into a set of tokens (first 
phase of a compiler).

TOKEN: Sequence of characters  with a collective 
syntactic meaning

 Objectives:
 To simplify the syntax analyzer.
 To facilitate the portability of the compiler.
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Introduction: Definitions

 Objectives:
 It may identify errors in the source program.
 It may strip out from the source program comments and 

white space characters (tab, newline, space).
 It may also associate a line number from the source program 

with a given error message.
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The role of the Lexical Analyzer
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Introduction: Definitions

 Tokens: reserved words (if, while) , identifiers (a23, 
var53d), special symbols (+, *, >=)…

 Lexemes: Particular instances of tokens.
 Patterns: Rules that describe the lexemes of a token.

Tokens: subject, verb, predicate
Lexemes: verb (go, be, belong, arrive…)

Pattern:  go | be | belong | arrive … 
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The role of the Lexical Analyzer

 Errors than can be detected:
The scanner has no information about context

 It can detect:
 illegal characters, 
 unterminated comments…

 Can eliminate comments, white spaces, etc.
 Correlates error messages from the compiler with the source 

program .
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The role of the Lexical Analyzer

 It does not look:
 garbled sequences,
 tokens out of place,
 undeclared identifiers, 
 misspelled keywords, 
 mismatched types.
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Scanner Implementation

There are basically two methods for implementing a scanner:

1. A program that is hard-coded to perform the scanner 
analysis (Loop and Switch).

2. Using  methods to define and recognize patterns in 
sequences of characters:
 regular expressions.
 finite automata theory.
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Scanner Implementation

There are basically two methods for implementing a scanner:

1. A program that is hard-coded to perform the 
scanner analysis (Loop and Switch):
 Write the lexical analyzer in a conventional programming/scripting 

language, using the I/O facilities of that language to read the input. A 
good candidate is PERL with the rich pattern matching capabilities it 
offers.

 Write the lexical analyzer in assembly language and explicitly manage 
the reading of input.
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Scanner Implementation

 Main Loop: 
 Reads characters one by one from the input file .
 Uses a switch statement to process the character(s) just 

read.

 Output: A list of tokens and lexemes from the source 
program.

 Ad hoc scanners (specific  problems).
 Gcc: C lexer is over 2,500 lines of code;

Loop and Switch
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Scanner Implementation

There are basically two methods for implementing a scanner:

1. Using  methods to define and recognize 
patterns in sequences of characters:
regular expressions.
 finite automata theory.
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Regular Expressions review

 Given an alphabet Σ, the rules that define regular expressions 
of Σ are:

 ∀a∈Σ is a regular expression.
 ε is a regular expression.
 If r and s are regular expressions, then

(r) rs r|s r* 
are regular expressions.

 Nothing else is a regular expression.
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Regular Expressions review

 Axioms:
 r | s = s | r

 r |(s |t) = (r |s)|t

 (rs)t = r(st)

 r(s|t)=rs |rt

 λr = r

 rλ = r

 r* = (r| λ)*

 r** = r*
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Regular Expressions review

 Notation:
 One or more: +

 R* = r * | λ

 Cero or one: ?

 Cero or more: *

 Any character: .

 Any other character: ~

 Classes:  a|b|c|…|z = [a-z]
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Regular Expressions for tokens

 Numbers:
nat = [0|1|2|3|4|5|6|7|8|9]+
natwithSign = (+|-)? nat
number = natwithSign (“.” nat)? (E natwithSign)?
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Regular Expressions for tokens

 Identifiers and reserved words:

reserved = if | while | do | …

letter = [a-zA-Z]
digit= [0-9]
identifier = letter(letter|digit)*
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Regular Expressions for tokens

 Comments:

{this is a comment in Pascal}

comment= {(~})*}
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Finite Automata review

 Once all the tokens are defined using regular 
expressions, a finite automaton can be created for 
recognizing them.

 A finite automata consists of:
 A finite set of states, including a start state and some final 

states.
 An alphabet Σ of possible input symbols.
 A finite set of transitions.
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Finite Automata review (II)
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Finite Automata review (IV)

not digit

f

not digit

digit
digit

digit 

(0|1|2|3|4|5|6|7|8|9)+
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Finite Automata review (VI)

Deterministic finite automata (DFA):
AFD=(Σ, Q, f, q0, F)

 Σ is the alphabet of possible input symbols.
 Q is the set of states
 q0 ∈ Q is the start state
 F ⊆ Q is the set of final states
 f is the transition fuction

f : Q × Σ → Q
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Finite Automata review (VII)

Nondeterministic finite automata:
NFA=(Σ, Q, f, q0, F)

 Σ is the alphabet of possible input symbols.
 Q is the set of states
 q0 ∈ Q is the start state
 F ⊆ Q is the set of final states
 f is the transition fuction

f : Q × (Σ ∪ {λ}) → P(Q)
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Finite Automata review (VIII)

Deterministic finite automata (DFA):
1. There are not moves on input ε.
2. For each state s and input symbol a, there is exactly one edge

out of s labeled as a.
Nondeterministic finite automata (NFA):

1. More than one edge with the same label from any state is
allowed.

2. Some states for which certain input symbols have no edge are 
allowed.

3. ε-NFA:  ε transitions allowed.
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Implementing the scanner

 From regular expressions to NFA:
 Thompson’s construction

 From NFA to DFA:
 Subsets construction

 From DFA to program:
 Specific purpose programs
 Transition tables

Regular 
expression NFA DFA Program
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Thompson’s construction
Input. 
• A regular expression r over an alphabet T.
Output. 
• An NDFA N accepting the language L(r ).
Method. 
• First we parse r and fragment it into sub-expressions.
• Then we create NDFAs for the basic symbols appearing in the 

regular expression. 
• Finally, we integrate the basic fragments into an NDFA that 

represents the entire expression.

Regular 
expression NFA DFA Program
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Thompson’s construction

i
ε

f

Basic Regular expressions (ε, a):

i
a

f

Regular 
expression NFA DFA Program
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ε

Concatenation rs:

r
…

s
…

Thompson’s construction

Regular 
expression NFA DFA Program
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ε

Selection r | s:

r
…

s
…

ε

ε

ε

Thompson’s construction

Regular 
expression NFA DFA Program
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ε

Repetition r*:

r
…

ε

ε

ε

Thompson’s construction

Regular 
expression NFA DFA Program
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Example 1: ab | a

a

ab

b

a bε

a bε
ε

a

ε

ε
ε

ab|a

Regular 
expression NFA DFA Program
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Conversion of and ε-NFA into a DFA

Regular 
expression NFA DFA Program

Subset construction

32
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Conversion of and ε-NFA into a DFA

For s∈N, closure(s) ={t∈N, there are a ε- −transitions from s to t}
For T in N, closure(T)=Usi∈T closure(si)

For T in N, move(T,a)=Usi∈T {states in N to which there is an                        
a-transition from si in T}

Algorithm: construction of states DE and the DT table
1. Initially,  DE contains the closure(s0)
2. while there is an unmarked state T in DE

1. Mark T
2. for each input symbol a∈Σ :

1. U=closure(move(T,a))
2. if U is not in DE then

1. add U to DE
2. DT(T,a)=U

3. End
3. End

Regular 
expression NFA DFA Program

Subset construction

33
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Minimizing the number of states of a 
DFA
 Construction of a DFA M’ accepting the same language as M and 

having as few states as possible
1. Construct an initial partition Π with two groups : F (acp), S (no)
2. Construct Πn:

1. For each group G of Π, partition G into subgroups for until any
pair of states s and t in the same subgroup there is a transtition on
an input a to states in the same group Π. 

3. If Πn=Π, go to the next step. Otherwise repeat previous step with Π
←Πn

4. The groups in Π are the states of M’
1. Construct transition table
2. Eliminate unreachable states

Regular 
expression NFA DFA Program

34
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Specific purpose programs (I)
{start: state 1}
if nextchar is a letter then

read newchar;
{now in state 2}
while nextchar is a letter or a digit do

read newchar;  {stay at state2}
end while;
{goto to state 3 without reading newchar}
accept;

else
{error  or other cases}
end if;

Regular 
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

• Only for a small number of 
states.

• Each DFA has its specific 
implementation. 
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Regular 
expression NFA DFA Program

state:=1  {initial state}
while state = 1 or 2 do

case state of:
1:    case inputchar of

letter: read newchar;
state:=2;

else state:=… {error or another};
end case;

2:   case inputchar of
letter, digit: read newchar;
state:=2;
else state:=3;
end case:

end case;
end while;
if state := 3 then accept else error;

letter
1 [other]

digit, letter

2 3

• Introduces a variable that denotes 
the state.

• Case selections to represent the 
transitions.

Specific purpose programs (II)
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Transition tables

Letter       digit       another        Accept ?

1         2                                                  no 

2         2              2             [3]                 no

3                                                             yes

Regular 
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

state

Input character
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Transition tables
state := 1
ch := next input character;
while not Accept[state] and not error(state) do

newstate := T[state,ch];
if Advance[state,ch] then ch := next input char;
state := newstate;

end while;
if Accept[state] then accept;

Regular 
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

• The code is reduced.
• It can be used for many different problems.
• It is easy to modify.
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