
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es2

OUTLINE

 Introduction: Definitions
 The role of the Lexical Analyzer
 Scanner Implementation
 Regular Expressions review
 Regular Expressions for tokens
 Finite Automata review
 Implementing the scanner
 From regular expressions to NFA
 From NFA to DFA
 From DFA to program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es3

Introduction: Definitions

 Lexical analysis or scanning: To read from left-to-right a
source program and divide it into a set of tokens (first
phase of a compiler).

TOKEN: Sequence of characters with a collective
syntactic meaning

 Objectives:
 To simplify the syntax analyzer.
 To facilitate the portability of the compiler.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es4

Introduction: Definitions

 Objectives:
 It may identify errors in the source program.
 It may strip out from the source program comments and

white space characters (tab, newline, space).
 It may also associate a line number from the source program

with a given error message.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es5

The role of the Lexical Analyzer

Source
Program

Lexical
Analyzer

Error messages

Token stream

Symbol
Table

Syntax
Analyzer

Control (Next)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es6

Introduction: Definitions

 Tokens: reserved words (if, while) , identifiers (a23,
var53d), special symbols (+, *, >=)…

 Lexemes: Particular instances of tokens.
 Patterns: Rules that describe the lexemes of a token.

Tokens: subject, verb, predicate
Lexemes: verb (go, be, belong, arrive…)

Pattern: go | be | belong | arrive …

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es7

The role of the Lexical Analyzer

 Errors than can be detected:
The scanner has no information about context

 It can detect:
 illegal characters,
 unterminated comments…

 Can eliminate comments, white spaces, etc.
 Correlates error messages from the compiler with the source

program .

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es8

The role of the Lexical Analyzer

 It does not look:
 garbled sequences,
 tokens out of place,
 undeclared identifiers,
 misspelled keywords,
 mismatched types.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es9

Scanner Implementation

There are basically two methods for implementing a scanner:

1. A program that is hard-coded to perform the scanner
analysis (Loop and Switch).

2. Using methods to define and recognize patterns in
sequences of characters:
 regular expressions.
 finite automata theory.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es10

Scanner Implementation

There are basically two methods for implementing a scanner:

1. A program that is hard-coded to perform the
scanner analysis (Loop and Switch):
 Write the lexical analyzer in a conventional programming/scripting

language, using the I/O facilities of that language to read the input. A
good candidate is PERL with the rich pattern matching capabilities it
offers.

 Write the lexical analyzer in assembly language and explicitly manage
the reading of input.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es11

Scanner Implementation

 Main Loop:
 Reads characters one by one from the input file .
 Uses a switch statement to process the character(s) just

read.

 Output: A list of tokens and lexemes from the source
program.

 Ad hoc scanners (specific problems).
 Gcc: C lexer is over 2,500 lines of code;

Loop and Switch

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es12

Scanner Implementation

There are basically two methods for implementing a scanner:

1. Using methods to define and recognize
patterns in sequences of characters:
regular expressions.
 finite automata theory.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es13

Regular Expressions review

 Given an alphabet Σ, the rules that define regular expressions
of Σ are:

 ∀a∈Σ is a regular expression.
 ε is a regular expression.
 If r and s are regular expressions, then

(r) rs r|s r*
are regular expressions.

 Nothing else is a regular expression.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es14

Regular Expressions review

 Axioms:
 r | s = s | r

 r |(s |t) = (r |s)|t

 (rs)t = r(st)

 r(s|t)=rs |rt

 λr = r

 rλ = r

 r* = (r| λ)*

 r** = r*

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es15

Regular Expressions review

 Notation:
 One or more: +

 R* = r * | λ

 Cero or one: ?

 Cero or more: *

 Any character: .

 Any other character: ~

 Classes: a|b|c|…|z = [a-z]

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es16

Regular Expressions for tokens

 Numbers:
nat = [0|1|2|3|4|5|6|7|8|9]+
natwithSign = (+|-)? nat
number = natwithSign (“.” nat)? (E natwithSign)?

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es17

Regular Expressions for tokens

 Identifiers and reserved words:

reserved = if | while | do | …

letter = [a-zA-Z]
digit= [0-9]
identifier = letter(letter|digit)*

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es18

Regular Expressions for tokens

 Comments:

{this is a comment in Pascal}

comment= {(~})*}

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es19

Finite Automata review

 Once all the tokens are defined using regular
expressions, a finite automaton can be created for
recognizing them.

 A finite automata consists of:
 A finite set of states, including a start state and some final

states.
 An alphabet Σ of possible input symbols.
 A finite set of transitions.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es20

Finite Automata review (II)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es21

Finite Automata review (IV)

not digit

f

not digit

digit
digit

digit

(0|1|2|3|4|5|6|7|8|9)+

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es22

Finite Automata review (VI)

Deterministic finite automata (DFA):
AFD=(Σ, Q, f, q0, F)

 Σ is the alphabet of possible input symbols.
 Q is the set of states
 q0 ∈ Q is the start state
 F ⊆ Q is the set of final states
 f is the transition fuction

f : Q × Σ → Q

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es23

Finite Automata review (VII)

Nondeterministic finite automata:
NFA=(Σ, Q, f, q0, F)

 Σ is the alphabet of possible input symbols.
 Q is the set of states
 q0 ∈ Q is the start state
 F ⊆ Q is the set of final states
 f is the transition fuction

f : Q × (Σ ∪ {λ}) → P(Q)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es24

Finite Automata review (VIII)

Deterministic finite automata (DFA):
1. There are not moves on input ε.
2. For each state s and input symbol a, there is exactly one edge

out of s labeled as a.
Nondeterministic finite automata (NFA):

1. More than one edge with the same label from any state is
allowed.

2. Some states for which certain input symbols have no edge are
allowed.

3. ε-NFA: ε transitions allowed.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es25

Implementing the scanner

 From regular expressions to NFA:
 Thompson’s construction

 From NFA to DFA:
 Subsets construction

 From DFA to program:
 Specific purpose programs
 Transition tables

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es26

Thompson’s construction
Input.
• A regular expression r over an alphabet T.
Output.
• An NDFA N accepting the language L(r).
Method.
• First we parse r and fragment it into sub-expressions.
• Then we create NDFAs for the basic symbols appearing in the

regular expression.
• Finally, we integrate the basic fragments into an NDFA that

represents the entire expression.

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es27

Thompson’s construction

i
ε

f

Basic Regular expressions (ε, a):

i
a

f

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es28

ε

Concatenation rs:

r
…

s
…

Thompson’s construction

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es29

ε

Selection r | s:

r
…

s
…

ε

ε

ε

Thompson’s construction

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es30

ε

Repetition r*:

r
…

ε

ε

ε

Thompson’s construction

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es31

Example 1: ab | a

a

ab

b

a bε

a bε
ε

a

ε

ε
ε

ab|a

Regular
expression NFA DFA Program

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Conversion of and ε-NFA into a DFA

Regular
expression NFA DFA Program

Subset construction

32

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Conversion of and ε-NFA into a DFA

For s∈N, closure(s) ={t∈N, there are a ε- −transitions from s to t}
For T in N, closure(T)=Usi∈T closure(si)

For T in N, move(T,a)=Usi∈T {states in N to which there is an
a-transition from si in T}

Algorithm: construction of states DE and the DT table
1. Initially, DE contains the closure(s0)
2. while there is an unmarked state T in DE

1. Mark T
2. for each input symbol a∈Σ :

1. U=closure(move(T,a))
2. if U is not in DE then

1. add U to DE
2. DT(T,a)=U

3. End
3. End

Regular
expression NFA DFA Program

Subset construction

33

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Minimizing the number of states of a
DFA
 Construction of a DFA M’ accepting the same language as M and

having as few states as possible
1. Construct an initial partition Π with two groups : F (acp), S (no)
2. Construct Πn:

1. For each group G of Π, partition G into subgroups for until any
pair of states s and t in the same subgroup there is a transtition on
an input a to states in the same group Π.

3. If Πn=Π, go to the next step. Otherwise repeat previous step with Π
←Πn

4. The groups in Π are the states of M’
1. Construct transition table
2. Eliminate unreachable states

Regular
expression NFA DFA Program

34

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es35

Specific purpose programs (I)
{start: state 1}
if nextchar is a letter then

read newchar;
{now in state 2}
while nextchar is a letter or a digit do

read newchar; {stay at state2}
end while;
{goto to state 3 without reading newchar}
accept;

else
{error or other cases}
end if;

Regular
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

• Only for a small number of
states.

• Each DFA has its specific
implementation.

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es36

Regular
expression NFA DFA Program

state:=1 {initial state}
while state = 1 or 2 do

case state of:
1: case inputchar of

letter: read newchar;
state:=2;

else state:=… {error or another};
end case;

2: case inputchar of
letter, digit: read newchar;
state:=2;
else state:=3;
end case:

end case;
end while;
if state := 3 then accept else error;

letter
1 [other]

digit, letter

2 3

• Introduces a variable that denotes
the state.

• Case selections to represent the
transitions.

Specific purpose programs (II)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es37

Transition tables

Letter digit another Accept ?

1 2 no

2 2 2 [3] no

3 yes

Regular
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

state

Input character

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es38

Transition tables
state := 1
ch := next input character;
while not Accept[state] and not error(state) do

newstate := T[state,ch];
if Advance[state,ch] then ch := next input char;
state := newstate;

end while;
if Accept[state] then accept;

Regular
expression NFA DFA Program

letter
1 [other]

digit, letter

2 3

• The code is reduced.
• It can be used for many different problems.
• It is easy to modify.

	Número de diapositiva 1
	OUTLINE
	Introduction: Definitions
	Introduction: Definitions
	The role of the Lexical Analyzer
	Introduction: Definitions
	The role of the Lexical Analyzer
	The role of the Lexical Analyzer
	Scanner Implementation
	Scanner Implementation
	Scanner Implementation
	Scanner Implementation
	Regular Expressions review
	Regular Expressions review
	Regular Expressions review
	Regular Expressions for tokens
	Regular Expressions for tokens
	Regular Expressions for tokens
	Finite Automata review
	Finite Automata review (II)
	Finite Automata review (IV)
	Finite Automata review (VI)
	Finite Automata review (VII)
	Finite Automata review (VIII)
	Implementing the scanner
	Thompson’s construction
	Thompson’s construction
	Número de diapositiva 28
	Thompson’s construction
	Thompson’s construction
	Número de diapositiva 31
	Conversion of and -NFA into a DFA
	Conversion of and -NFA into a DFA
	Minimizing the number of states of a DFA
	Specific purpose programs (I)
	Número de diapositiva 36
	Transition tables
	Transition tables

