LANGUAGE PROCESSORS

uc3m

UNIT 2: LEXICAL ANALYSIS

David Griol Barres

dgriol@inf.uc3m.es
Computer Science Department
Carlos III University of Madrid
Leganés (Spain)

OUTLINE

| Introduction: Definitions
The role of the Lexical Analyzer
Scanner Implementation
Regular Expressions review
Regular Expressions for tokens
Finite Automata review
Implementing the scanner
From regular expressions to NFA
From NFA to DFA
From DFA to program

Introduction: Definitions

\square Lexical analysis or scanning:To read from left-to-right a source program and divide it into a set of tokens (first phase of a compiler).

TOKEN: Sequence of characters with a collective syntactic meaning

\square Objectives:

- To simplify the syntax analyzer.
- To facilitate the portability of the compiler.

Introduction: Definitions

Objectives:

- It may identify errors in the source program.
- It may strip out from the source program comments and white space characters (tab, newline, space).
- It may also associate a line number from the source program with a given error message.

The role of the Lexical Analyzer

uc3m

Introduction: Definitions

- Tokens: reserved words (if, while) , identifiers (a23, var53d), special symbols (+, *, >=)...
- Lexemes: Particular instances of tokens.
- Patterns: Rules that describe the lexemes of a token.

Tokens: subject, verb, predicate Lexemes: verb (go, be, belong, arrive...)
Pattern: go | be | belong | arrive ...

The role of the Lexical Analyzer

- Errors than can be detected:

The scanner has no information about context

- It can detect:
- illegal characters,
- unterminated comments...
- Can eliminate comments, white spaces, etc.
- Correlates error messages from the compiler with the source program .

The role of the Lexical Analyzer

- It does not look:
garbled sequences,
- tokens out of place,
- undeclared identifiers,
- misspelled keywords,
- mismatched types.

Scanner Implementation

There are basically two methods for implementing a scanner:

1. A program that is hard-coded to perform the scanner analysis (Loop and Switch).
2. Using methods to define and recognize patterns in sequences of characters:
\square regular expressions.

- finite automata theory.

Scanner Implementation

There are basically two methods for implementing a scanner:
I. A program that is hard-coded to perform the scanner analysis (Loop and Switch):

- Write the lexical analyzer in a conventional programming/scripting language, using the I/O facilities of that language to read the input.A good candidate is PERL with the rich pattern matching capabilities it offers.
* Write the lexical analyzer in assembly language and explicitly manage the reading of input.

Scanner Implementation

Loop and Switch

- Main Loop:
- Reads characters one by one from the input file.
- Uses a switch statement to process the character(s) just read.
- Output:A list of tokens and lexemes from the source program.
- Ad hoc scanners (specific problems).
- Gcc: C lexer is over 2,500 lines of code;

Scanner Implementation

There are basically two methods for implementing a scanner:

1. Using methods to define and recognize patterns in sequences of characters:
-regular expressions.

- finite automata theory.

Regular Expressions review

\square Given an alphabet Σ, the rules that define regular expressions of Σ are:

- $\forall a \in \sum$ is a regular expression.
$\square \varepsilon$ is a regular expression.
- If \mathbf{r} and \mathbf{s} are regular expressions, then
(r) rs r|s
r*
are regular expressions.
\square Nothing else is a regular expression.

Regular Expressions review

Axioms:

- $\mathrm{r}|\mathrm{s}=\mathrm{s}| \mathrm{r}$
$\square r|(s \mid t)=(r \mid s)| t$
$\square(r s) t=r(s t)$
- $r(s \mid t)=r s \mid r t$
- $\lambda r=r$
- $r \lambda=r$
$\square r^{*}=(r \mid \lambda)^{*}$
- $r^{* *}=r^{*}$

Regular Expressions review

Notation:

- One or more: +
- $R^{*}=r^{*} \mid \lambda$
- Cero or one: ?
- Cero or more: *
- Any character: .
- Any other character:~
- Classes: $\mathrm{a}|\mathrm{b}| \mathrm{c}|\ldots| \mathrm{z}=[\mathrm{a}-\mathrm{z}]$

Regular Expressions for tokens

Numbers:
nat $=[0|1| 2|3| 4|5| 6|7| 8 \mid 9]+$
natwithSign $=(+\mid-)$? nat
number = natwithSign ("." nat)? (E natwithSign)?

Regular Expressions for tokens

- Identifiers and reserved words:
reserved $=$ if \mid while \mid do $\mid \ldots$
letter $=[a-z A-Z]$
digit= [0-9]
identifier $=$ letter(letter|digit)*

Regular Expressions for tokens

Comments:
\{this is a comment in Pascal\}
comment $\left.=\{(\sim\})^{*}\right\}$

Finite Automata review

Once all the tokens are defined using regular expressions, a finite automaton can be created for recognizing them.
A finite automata consists of:

- A finite set of states, including a start state and some final states.
- An alphabet Σ of possible input symbols.
- A finite set of transitions.

Finite Automata review (II)

		a	b
(start)	$x:$	y	z
	$y:$	x	z
(final)	$z:$	z	z

Finite Automata review (IV)

digit
(o|1|2|3|4|5|6|7|8|9)+

Finite Automata review (VI)

Deterministic finite automata (DFA):
$A F D=(\Sigma, Q, f, q 0, F)$
$\square \Sigma$ is the alphabet of possible input symbols.

- Q is the set of states
- q0 $\in Q$ is the start state
$\square F \subseteq Q$ is the set of final states
- f is the transition fuction

$$
f: Q \times \Sigma \rightarrow Q
$$

Finite Automata review (VII)

Nondeterministic finite automata:
$N F A=(\Sigma, Q, f, q 0, F)$
$\square \Sigma$ is the alphabet of possible input symbols.

- Q is the set of states
- $q 0 \in Q$ is the start state
$\square F \subseteq Q$ is the set of final states
- f is the transition fuction

$$
f: Q \times(\Sigma \cup\{\lambda\}) \rightarrow P(Q)
$$

Finite Automata review (VIII)

Deterministic finite automata (DFA):
I. There are not moves on input ε.
2. For each state s and input symbol a, there is exactly one edge out of s labeled as a.
Nondeterministic finite automata (NFA):
I. More than one edge with the same label from any state is allowed.
2. Some states for which certain input symbols have no edge are allowed.
3. ε-NFA: ε transitions allowed.

Implementing the scanner

\square From regular expressions to NFA:

- Thompson's construction
\square From NFA to DFA:
- Subsets construction
\square From DFA to program:
- Specific purpose programs
- Transition tables

Thompson's construction

Input.

- A regular expression r over an alphabet T.

Output.

- An NDFA N accepting the language L(r). Method.
- First we parse r and fragment it into sub-expressions.
- Then we create NDFAs for the basic symbols appearing in the regular expression.
- Finally, we integrate the basic fragments into an NDFA that represents the entire expression.

Thompson's construction

Basic Regular expressions (ε, a):

Thompson's construction

Concatenation rs:

Thompson's construction

Selection r|s:

Thompson's construction

Repetition ${ }^{*}$:

ε

Example 1: ab |a

ab

ab|a

uc3m

Conversion of and ε-NFA into a DFA

Subset construction

Operator	Description
λ-closure(s)	Set of NFA states reachable from NFA state s on λ-transitions alone.
λ-closure(T)	Set of NFA states reachable from some NFA state s in T on λ - transitions alone.
$\operatorname{move}(T, a)$	Set of NFA states to which there is a transition on input symbol a from some NFA state s in T.

uc3m

Conversion of and ε-NFA into a DFA

Subset construction

For $s \in N$, closure(s) $=\{t \in N$, there are a ε - -transitions from s to $t\}$ For T in N , closure $(\mathrm{T})=\mathrm{U}_{\text {si } \in \mathrm{T}}$ closure $\left(\mathrm{s}_{\mathrm{i}}\right)$

For T in $N, \operatorname{move}(T, a)=U_{\text {si } \in \mathrm{T}}\{$ states in N to which there is an a-transition from s_{i} in T \}

Algorithm: construction of states D_{E} and the D_{T} table

1. Initially, D_{E} contains the closure $\left(\mathrm{s}_{0}\right)$
2. while there is an unmarked state T in D_{E}
I. Mark T
3. for each input symbol $\mathrm{a} \in \Sigma$:
4. $\mathrm{U}=$ closure $(\operatorname{move}(\mathrm{T}, \mathrm{a}))$
5. if U is not in D_{E} then
6. add U to D_{E}
7. $D_{T}(T, a)=U$
8. End
9. End

Minimizing the number of states of a DFA

- Construction of a DFA M' accepting the same language as \mathbf{M} and having as few states as possible
।. Construct an initial partition Π with two groups : \mathbf{F} (acp), \mathbf{S} (no)

2. Construct Π_{n} :

For each group G of Π, partition G into subgroups for until any pair of states s and t in the same subgroup there is a transtition on an input a to states in the same group Π.
3. If $\Pi_{\mathrm{n}}=\Pi$, go to the next step. Otherwise repeat previous step with Π $\leftarrow \Pi_{\mathrm{n}}$
4. The groups in Π are the states of M^{\prime}

1. Construct transition table
2. Eliminate unreachable states

Specific purpose programs (I)

\{start: state I\}
if nextchar is a letter then
read newchar;
\{now in state 2\}
while nextchar is a letter or a digit do read newchar; \{stay at state2\}
end while;
\{goto to state 3 without reading newchar\} accept;
else
\{error or other cases\}
end if;

- Only for a small number of states.
- Each DFA has its specific implementation.

Specific purpose programs (II)

state:=| \{initial state\}
while state $=1$ or 2 do
case state of:
I: case inputchar of letter: read newchar;
state:=2;
else state:=... \{error or another\}; end case;
2: case inputchar of letter, digit: read newchar; state: $=2$;
else state:=3; end case:
end case; end while;
if state := 3 then accept else error;

- Introduces a variable that denotes the state.
- Case selections to represent the transitions.

Transition tables

Input character	Letter	digit	another	Accept ?
I	2			no
2	2	2	[3]	no
3				yes

Transition tables

```
state := I
ch := next input character;
while not Accept[state] and not error(state) do
    newstate := T[state,ch];
    if Advance[state,ch] then ch := next input char;
    state := newstate;
end while;
if Accept[state] then accept;
```

- The code is reduced.
- It can be used for many different problems.
- It is easy to modify.

