
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

OUTLINE

 Bottom-up parsing
 LR(k) methods
 Shift-reduce Parsing
 LR Parsing Engine
 Model of an LR parser
 The LR Parsing Table
 Constructing the canonical LR(0) collection
 Limitations of LR(0) parsing
 SLR(1)
 LALR parser

2

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsing

 A bottom-up parser starts with the string of terminals
and builds the parse tree from the leaves upward, working
backwards to the start symbol.

 The parsers searches for substrings of the working string
that match the right side of some production. When such
a substring is found, it substitutes it for the nonterminal
on the left hand side of the production.

3

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsers

 Shift-reduce parsing:
1. Operator-precedence parsing:
 It chooses a specific action based on the precedence of the operators:
 Not two consecutive nonterminals.
 Not productions to ε.
 Disjoint precedence relationships.

 Specific analysis table.

4

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsers
 Example:
S aAb

| bAc
| aAd

A e
 We only take into account the symbol that is at the top

of the stack we may not come to a valid symbol
sequence to reduce:
 aA {b c d} but taking the previous history {b d}

5

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsers
 Shift-reduce parsing:

2. LR: LR(0), SLR(1),LR(1),LALR(1)
L : Read from left-to-right.
R : Rightmost derivation.
(k) : k look-ahead symbols (how many of them are needed to

take the right decisions when parsing).
S : simple
LA : look-ahead

SLR(k) < LALR(k) < LR(k)

complexity

expressivity

6

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR(k) methods

 Simple LR (SLR):
 The easiest to implement.
 The least powerful.

 Canonical LR:
 The most powerful.
 The most expensive to implement.

 LALR (lookahead LR):
 Intermediate in power and cost between the other two.

7

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsing: Shift-reduce parsers

 The largest class of grammars for which shift-reduce
parsers can be built successfully are the LR grammars.

 For a small but important class of grammars (operator
grammar) we can easily construct efficient shift-reduce
parsers by hand.

 Automatic parser generators (e. g., yacc, CUP)
generate an LALR(1) parser.

8

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Bottom-up parsing: LR

 LR(k): left-to-right scanning, right-most derivation, k look-
ahead characters.

 Advantages:
 LR parsers can be constructed for virtually all programming

language constructs for which a G2 grammar can be written.
 The LR parsing method is the most general nonbacktracking shift-

reduce parsing method known, yet it can be implemented
efficiently.

 An LR parser detects syntactic errors early.
 Drawback:
 Too much work to construct an LR parser by hand.

9

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Shift-reduce Parsing

 Parser state: a stack of terminals and non-terminals.
 Parsing actions: a sequence of shift and reduce operations.
 shift: move lookahead token to stack.
 reduce: replace symbols β from top of the stack with non

terminal symbol A corresponding to production A ::= β

10

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Problem

 How do we know which action to take: whether to shift
or reduce, and which production?

 Issues:
 Sometimes can reduce but should not.
 Sometimes can reduce in different ways.

11

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR Parsing Engine

 Basic Mechanism:
 Use a set of parser states.
 Use a stack.
 Use a parsing table to:
 Determine what action to apply (shift/reduce).
 Determine the next state.

 The parser actions can be precisely determined from the
table.

12

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Model of an LR parser

INPUT

sm LR
Parsing Program

OUTPUT

Action goto

a1 a1 an... $...

LR Parsing
Table

Stack

Xm

sm-1

Xm-1

...
s0

13

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

The LR Parsing Table

Next action
and next

state

Next
State

State

Terminals υ {λ} Non terminals

Action table Goto table

14

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR Parsing

 Let Xi be a grammar symbol and si a state symbol
 Parsing table
 Action[sm, ai]=

 Error: syntactic error
 Accept: the input is accepted, end of parsing
 Shift: push ai and the state sm onto the stack
 Reduce: pops symbols from the stack

 Goto[sm, Xi]= sk

15

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing LR parsing tables

An LR(0) item of a grammar G is:
 A production of G with a dot at some position of the right side.
 The dot indicates how much of a production the parser has seen at a given

point:

Example: production A→XYZ yields the following four items:

A→•XYZ

A→X•YZ

A→XY•Z

A→XYZ•

Question:
Which items are generated by the production A→ε?

16

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing LR parsing tables

 Definitions
 Valid LR(0) Item

A→β1•β2 is a valid item of αβ1 iff:
S →* αAw→*αβ1β2w (A∈ΣN,, α,β1,β2∈Σ*, w∈Σ*

T)
 State

 Set of items.
 States of the parser.
 The set of states: canonical LR(0) collection

 The items are the states of a FA which recognizes viable prefixes.
 The states are groups of the FA states (FA minimization).

17

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing LR parsing tables
 Input:

1. Augmented grammar G’
2. closure(I), I≡set of items
3. goto(I, X), X∈(ΣT ∪ ΣN)

 Output
 canonical LR(0) collection

 Augmented grammar G’ of G
 Add S’, ΣN= (ΣN ∪ S’ ’) | S’ axiom
 Add S’→ S, P= (P ∪ S’→ S)

18

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the canonical LR(0)
collection

G
1. S → A B end
2. A → type
3. A → id A
4. B → begin C
5. C → code

G’
1. S’ → S
2. S → A B end
3. A → tipo
4. A → id A
5. B → begin C
6. C → code

I4: A → id•A
A → •type
A → •id A

I5: S → A B•end

I6: B → begin•C
C → •code

I7: A → id A•

I8: S → A B end•

I9: B → begin C•

I10: C → code•

LR(0) items:
I0: S’ → •S

S → •A B end
A → •type
A → •id A

I1: S’ → S•

I2: S → A•B end
B → •begin C

I3: A → type•

19

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the canonical LR(0)
collection

 The canonical collection defines a DFA which recognizes the viable
prefixes of G, where I0 is the initial state and Ij ∀j ≠ 0 the final states

I0 I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

S

A

type

id

B

begin

A
type

id

end

C

code

20

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the canonical LR(0)
collection
 closure(I)

function closure(I);

begin

J:=I;
repeat

for ∀ Ji (A → α•Bβ) ∈ J , ∀ p (B → γ) ∈ P | (B → • γ) ∉ J
do J := J ∪ (B → • γ) ;

until no more items can be added to J ;

return J
end

A→ • B
B → • id | • C num | •(D)
C → • + D

¿ closure(A→ • B) ?A→ B
B → id | C num | (D)
C → + D
D → id | num

• Example:

21

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the canonical LR(0)
collection
 goto(I, X)
 If I is the set of items that are valid for some viable prefix γ,

then goto(I, X) is the set of items that are valid for the viable
prefix γX

function goto(I, X);
begin

J:=∅;
∀ Ii | (B → α•X β) ∈ I, J := J ∪ closure(B → α X • β) ;
return J

end

B → (•D)
D → • id
D → • num

I = {B→ • id, B→ • (D)}
¿ goto {I, (}?

A→ B
B → id | C num | (D)
C → + D
D → id | num

• Example:

22

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the canonical LR(0)
collection

 The algorithm to construct the canonical collection of sets of
LR(0) is as follows:

1. Io is defined as closure([S’·S])
2. In = goto(In-1,N) ∀N ∈(ΣT ∪ ΣN)for which ∃ [A α·Nβ] ∈ In-1

A ∈ΣN , α β ∈(ΣT ∪ ΣN ∪ ε)
3. Apply step 2 until no new states are generated.

23

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Constructing the analysis table

1. Construct the canonical collection of sets (previous slide).
2. Determine Actions for each Set

1. If [A α·aβ] ∈ Ii, a ∈ ΣT and goto(Ii, α)=Ij then Action(i, α) = (Shift, j)

2. If [S’ S·] ∈ Ii, then Action(i, $) = Accept

3. If [A α·] ∈ Ii, and A is not S’, then for every a ∈ FOLLOW(A),
Action(i,a) = (Reduce, A α)

3. Determine Gotos for each Non terminal
1. If goto(Ii,A) = Ij, then goto(i, A) = j

Action Goto

Sets Non
terminal 1

… Non terminal
m $ Terminal 1 … Terminal

m’

I0

…

In

24

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR Parsing
 A configuration of an LR parser
 (s0 X1 s1 X2 s2 ... Xm sm, ai ai+1 ... an$)

 Action[sm, ai] = shift s
 (s0 X1 s1 X2 s2 ... Xm sm ai s, ai+1 ... an$)

 Action[sm, ai] = reduce A → β
 (s0 X1 s1 X2 s2 ... Xm-r sm-r A s, ai ai+1 ... an$)

where s=Goto[sm-r, A] and r=|β| (r non-terminal symbols and r
terminal symbols are extracted from the stack)

25

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR parsing algorithm

Set ip to point the first symbol of w$ (s is on top of the stack and ip points to the a symbol)
Repeat forever begin

case Action[s, a]
Shift s’

push a
push s’
advance ip to the next input symbol

Reduce A → β
pop 2*|β| symbols from the stack
let s’ be the state now on top of the stack
s= Goto[s’, A]
push A
push s

Acept return
Error error()

end

26

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LR(0) summary

 LR(0) parsing recipe:
 Start with an LR(0) grammar.
 Compute LR(0) states and build DFA.
 Build the LR(0) parsing table form the DFA.

27

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Limitations of LR(0) parsing

 Very few grammars are LR(0).
 For other grammars: shift/reduce and reduce/reduce

conflicts.
 The limitations are caused by trying to decide what

action to take only by considering what has been seen so
far.

28

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

SLR(1)

 Take into account the symbol that follows the current
input.

 The concepts of item, closure, and goto are extended by
adding the look-ahead symbol.

 Uses the set of elements defined for LR(0).
 Specific algorithm to construct the analysis table:
 Input: augmented grammar.
 Output: action, goto.

29

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

LALR parser

 Motivation
 Often used in practice because has less states than the canonical LR

(LALR and SLR have the same number of states)

 Merge sets of LR(1) states with the same core
 If the Ii state contains [A->α • β, a] and state Ij contains [A->α • β, b]

we can form a union state Iij where [A->α • β, a/b]

 LALR(1) grammars are a subset of LR(1) grammars.
 Merging may produce reduce/reduce conflicts, but no shift-reduce

conflicts
 Some errors may appear later

30

	Número de diapositiva 1
	OUTLINE
	Bottom-up parsing
	Bottom-up parsers
	Bottom-up parsers
	Bottom-up parsers
	LR(k) methods
	Bottom-up parsing: Shift-reduce parsers
	Bottom-up parsing: LR
	Shift-reduce Parsing
	Problem
	LR Parsing Engine
	Model of an LR parser
	The LR Parsing Table
	LR Parsing
	Constructing LR parsing tables
	Constructing LR parsing tables
	Constructing LR parsing tables
	Constructing the canonical LR(0) collection
	Constructing the canonical LR(0) collection
	Constructing the canonical LR(0) collection
	Constructing the canonical LR(0) collection
	Constructing the canonical LR(0) collection
	Constructing the analysis table
	LR Parsing
	LR parsing algorithm
	LR(0) summary
	Limitations of LR(0) parsing
	SLR(1)
	LALR parser

