
David Griol Barres
dgriol@inf.uc3m.es

Computer Science Department
Carlos III University of Madrid

Leganés (Spain)

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

OUTLINE

 Introduction
 Recovering from errors
 Error Recovery Strategies
 Panic mode
 Phrase level
 Error Productions
 Global correction
 Top-down predictive parser: error detection
 Error detection and recovery in LL parsers
 Error detection and recovery in LR parsers

2

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Introduction

 A parser should:
 Find errors as soon as possible.
 Report errors with a comprehensive message.
 Try to parse as much of the code as possible in

order to find as many errors as possible.
 Avoid cascading errors.

3

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Recovering from errors

 For many minor errors, the parser can “fix” the program
by guessing at what was intended and reporting a
warning, but allowing compilation to proceed.

4

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error Recovery Strategies

 No universally acceptable strategy.
 Common strategies:

1. Panic mode.
2. Phrase level.
3. Error productions.
4. Global correction.

5

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Panic mode
 Characteristics:

 The simplest method to implement.
 Can be used by most parsing methods.
 It does not go into an infinite loop.
 An adequate method in situations where multiple errors in

the same statement are rare.

 On discovering an error, the parsers discards input symbols one
at a time until a synchronizing token (e. g., delimiters).

 Drawbacks:
 A considerable amount of input is skipped without checking

it for additional errors.

6

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Phrase level

 Characteristics:
 It can correct any input string.

 On discovering an error, a parser may perform local
correction on the remaining input to allow the parser to
continue (e. g., replace a comma by a semicolon).

 Drawbacks:
 The difficulty in coping with situations where the actual error

occurred before the point of detection.
 Some replacements may lead to infinite loops.

7

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error Productions

If we know what errors are common in a language, we
can augment the grammar with productions that
generate the erroneous constructs in order to detect
the error.

8

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Global correction

 Use algorithms for choosing the minimal sequence of
changes to obtain a globally least-cost correction.

 Drawbacks:
 Too costly to implement in terms of time and space.

9

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Top-down predictive parser: error detection

An error is detected when the terminal on top of the
stack does not match the next input symbol or when
nonterminal A is on top of the stack, a is the next
input symbol and the pasing table entry M[A,a] is
empty.

10

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error detection in LL parsers

 Grammar:
S::=a A S | b A
A::=c A | d

 Table:
 Input: a b ...
 State of the parser when the error is detected.

Stack Input
$S a b ...
$SAaa b ...
$SA b ...

 Error: There is a b in the input instead of a c or d.

ΣN
a b c d

S aAS bA

A cA d

11

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error recovery in LL parsers

 Panic-mode heuristics:
 For a nonterminal A, we could place all the symbols in

Follow(A) into its synchronizing set.
 We could also use the symbols in First(A) as a synchronizing

set for re-starting the parse of A.

12

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error recovery in LL parsers

 Phrase-level recovery:
 Fill in the blank entries in the parsing table with pointers to

error routines:
 The routines may change, insert, or delete symbols on the input and

issue error messages.
 They may also pop from the stack.

 Protect against loops!
 Any recovery action eventually results on an input symbol being

consumed or the stack being shortened.

13

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error detection in LR parsers

 Grammar

S::=A ·A
A::=x ·A | y

 Input: xy

 State of the parser when
the error is detected:

Stack Input
0x3A6 $
0A2 $
0A2 $

action goto

x y $ S A

0 d3 d4 1 2
1 acpt
2 d3 d4 err3 5
3 d3 d4 6 6
4 r3 r3 r3 7
5 r1 8
6 r2 r2 r2

14

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error handling in LR parsing

 Error detection:
 An error entry in the parsing action table.
 A canonical LR parsing will never make a reduction before announcing

an error.

 Panic-mode error recovery
 Scan down the stack until a state s with a goto on a particular

nonterminal A is found.

 Discard zero or more input symbols until a symbol a is found that can
follow A.

 Push goto[s,A] onto the stack and continue the parsing.

15

David Griol Barres Carlos III University of Madrid dgriol@inf.uc3m.es

Error handling in LR parsing

 Phrase-level recovery
 Appropriate recovery procedure: the top of the stack and/or first input

symbols would be modified in an appropriate way for each error entry.
 Any reduction called for by an LR parser is surely correct.
 Recovery actions may include insertion or deletion of symbols from the

stack or the input or both, or alteration and transposition of input
symbols.

 Popping a stack state that covers a nonterminal should be avoided
because it eliminates a construct that has already been successfully
parsed.

16

	Número de diapositiva 1
	OUTLINE
	Introduction
	Recovering from errors
	Error Recovery Strategies
	Panic mode
	Phrase level
	Error Productions
	Global correction
	Top-down predictive parser: error detection
	Error detection in LL parsers
	Error recovery in LL parsers
	Error recovery in LL parsers
	Error detection in LR parsers
	Error handling in LR parsing
	Error handling in LR parsing

